
[image: The cover art depicts pens, pencils, a pencil sharpener, and a piece of graph paper scattered on a white background, and in the middle of these is a tablet, with the screen showing a flow chart with dozens of entries, collected in seven clusters, each with its own color, and the words “Writing Workflows” in the middle.]

Writing Workflows

Sweetland Digital Rhetoric Collaborative

Series Editors:

Anne Ruggles Gere, University of Michigan
Naomi Silver, University of Michigan

The Sweetland Digital Rhetoric Collaborative Book Series publishes texts that investigate the multiliteracies of digitally mediated spaces both within academia as well as other contexts.

Writing Workflows: Beyond Word Processing

Tim Lockridge and Derek Van Ittersum

Rhetorical Code Studies: Discovering Arguments in and around Code

Kevin Brock

Developing Writers in Higher Education: A Longitudinal Study

Anne Ruggles Gere, Editor

Sites of Translation: What Multilinguals Can Teach Us about Digital Writing and Rhetoric

Laura Gonzales

Rhizcomics: Rhetoric, Technology, and New Media Composition

Jason Helms

Making Space: Writing, Instruction, Infrastructure, and Multiliteracies

James P. Purdy and Dànielle Nicole DeVoss, Editors

Digital Samaritans: Rhetorical Delivery and Engagement in the Digital Humanities

Jim Ridolfo

digitalculturebooks, an imprint of the University of Michigan Press, is dedicated to publishing work in new media studies and the emerging field of digital humanities.

Writing Workflows: Beyond Word Processing

Tim Lockridge and Derek Van Ittersum

University of Michigan Press
Ann Arbor

Copyright © 2020 by Tim Lockridge and Derek Van Ittersum
Some rights reserved

[image: License: Creative Commons Attribution Non-Commercial No Derivatives Share Alike]

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Note to users: A Creative Commons license is only valid when it is applied by the person or entity that holds rights to the licensed work. Works may contain components (e.g., photographs, illustrations, or quotations) to which the rightsholder in the work cannot apply the license. It is ultimately your responsibility to independently evaluate the copyright status of any work or component part of a work you use, in light of your intended use. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

For questions or permissions, please contact um.press.perms@umich.edu

Published in the United States of America by the University of Michigan Press

First published December 2020

A CIP catalog record for this book is available from the British Library.

Library of Congress Cataloging-in-Publication data has been applied for.

ISBN 978-0-472-12726-9 (OA)

https://doi.org/10.3998/mpub.11657120

The publisher gratefully acknowledges the support of the Sweetland Center for Writing in making this project possible.

Contents

Introduction

Chapter 1.

From Process to Workflow

Chapter 2.

Sociocultural Theory and Mediational Means

Chapter 3.

Cooking Ideas

Chapter 4.

Automating Writing

Chapter 5.

Writing on the Edge

Chapter 6.

Mapping Workflows

References

Credits

A web-based version of this project is hosted by the Sweetland Digital Rhetoric Collaborative and available at this link: http://www.digitalrhetoriccollaborative.org/books/writing-workflows

Introduction

First, A Narrative about Mediated Practice

Here’s a common writing situation: A graduate student is tasked with writing a seminar paper. She starts with the literature review. She checks out books from the library, which she can’t write in, so on the way home she picks up a set of Post-it notes and flags. She then reads, attaching Post-it flags to pages, using a color scheme to mark the most important points and references she’d like to further explore. Later, she’ll type the flagged passages and store them in a note-taking application. A couple of frequently cited books spark her interest, and they’re related to a possible dissertation idea, so she orders them. When they arrive, she reads them carefully, underlining important passages and making marginal notes. She also works with PDFs and other digital texts, which she highlights using annotation software on her tablet computer. While doing all of this, she keeps track of her thoughts in a Moleskine notebook, developing the first threads of a paper topic. Soon she realizes it’s time to start writing, so she arranges her notes in piles, makes a few different document files—one titled “Draft,” one titled “Outline,” and one titled “References”—and gets to work.

As teachers of graduate students (and, of course, once being graduate students ourselves), we’ve seen many variations of this approach to writing. The above-mentioned student will find an ad hoc and idiosyncratic way to complete her project based on a mix of prior experience, personal needs, the technologies at hand, affective preferences, and the artifact to be delivered (among many other factors). And the student will draw on this practice for the next seminar paper, the next writing task, and so on—creating a routine, a personal and habitual approach to writing technologies and writing tasks.

[image: Young man writing on a notebook at a standing computer desk]

Fig01. While looking at stock and Creative Commons photos for this project, we were struck by the many varying displays of mediating technologies. Here, for example, we see Post-it notes hanging from a computer monitor, more Post-its on the desk, a notebook, a keyboard, two pens, and headphones—not to mention whatever might be running on the computer.

Research in the field of Writing Studies has excelled at capturing these many idiosyncratic approaches to writing.1 For example, in “On Multimodal Composing,” Sara Alvarez and her colleagues (2017) ask “What does computing look like in and across digital, networked spaces and the physical spaces our bodies inhabit as we compose?” (“Composing”). The videos in “On Multimodal Composing” show a breadth of approaches to writing, with writers moving across technologies and through physical spaces. In her video for “On Multimodal Composing,” Layne M. P. Gordon describes a writing process that is “highly multimodal and embodied,” that relies on “digital notes, handwritten notes, color, and visuals, as well as the inanimate objects that [she] surrounds herself with during a writing session” (“A Writing Session”). Layne’s video shows her working with Google Docs, Evernote, Apple’s Pages, and tablets of graph paper as she drafts. In another video in the online article, Michael Baumann documents the process of writing a slam poem, a collaborative process that begins with a “huge messy crude constellations of ideas” written by hand and that moves into typewritten documents by “outlining, cutting and pasting, opening new documents to work on a section in isolation before inserting that section back into the main file. Adding line and stanza breaks. Working on different sections—intro, middle, and conclusion in queered chronology” (“Creating a Slam Poem”).

Similarly, in Expanding Literate Landscapes, Kevin Roozen and Joe Erickson (2017) look at the composing processes of Lindsey Rachels, an undergraduate student whose writing process draws on her experience with art and design. Lindsey describes the process through which she wrote a literary analysis paper: spreading pages of notes across the floor, organizing them by topic, and then arranging them in groups on her desk. Her process, she says, “had a hands-on patchwork feel that I associate with the crafting of a piece of artwork” (“Arranging American Literature”).

Although much existing research has pointed to the specifics of writing processes and literate activity, the narratives of mediated writing processes are often presented as highly individual and idiosyncratic. The move to document those practices underscores the importance of individual approaches and the idea that mediated writing processes are personal, contextual, and bound up in experience, preference, and affect. The focus on the individual practice is also an echo of the process movement, which today resists the idea of one singular process being best, ideal, or universal. Yet this approach hasn’t pushed us—as writers ourselves or as members of a discipline dedicated to the study of writing—to understand why these individual and highly situated practices work well. It’s easy to shrug and think “That works for them, but I’d never do it that way” and never give it another thought. Stated simply, we don’t regard our personal mediated preferences and practices as a shareable form of knowledge beyond the individual narrative. This book instead suggests that the workflow offers a way to understand writing processes as tool-mediated and shareable.

Writing Workflows: Key Terms

This book introduces the concepts of workflow and workflow thinking as ways to describe, analyze, and share mediated approaches to writing and knowledge work. “Workflow,” in casual use, is an amorphous term. An IT department might refer to their workflow for distributing new software to faculty computers. A software developer might refer to an “Agile Scrum” workflow for producing the next version of an application. Or, perhaps more commonly, “workflow” might stand in as a general synonym for “process” or “procedure.” In all its variations, “workflow” invokes a connotation of systemization and structure, a lineage that traces back to industrial capitalism and manufacturing. A workflow structures business activity, ensuring that each business task moves through a routinized and manageable process in a search for (and in service of) efficiency.

	Those are not the workflows that this book will explore.

Instead, we turn to an affinity space (Gee 2004, 2005) that has adopted the concept of workflow as a personal and creative way of approaching writing tasks and knowledge work. The affinity space is comprised of a network of blogs and podcasts, and the major figures in this space are evangelists of software and creativity. They encourage their audience to try new apps, to explore new approaches to work, and to relentlessly tinker. In doing so, they talk about an ever evolving litany of software (Ulysses, MindNode, OmniOutliner, Todoist), hardware (mechanical keyboards, lap desks, styluses, tablets), and analog artifacts (fountain pens and notebooks by small companies like Field Notes and Baron Fig). They constantly rotate through writing tools, asking how a particular technology might shift their process and then sharing the pros and cons of those decisions with their audience. They are also—most importantly for this project—examining tools and approaches to writing that simply aren’t part of the conversation in Rhetoric and Composition.

From examining this workflows affinity space and the writers in it, we have derived four concepts, which we explore in this book:

Workflow

A writing workflow describes a process for completing a literate activity and the tools used in that process.

Workflows, when documented and shared, become more than idiosyncratic narratives. Instead, by naming and describing the workflow, a writer can look at their broader process and analyze the connections, intersections, and fissures within the component parts of their work. A workflow might describe how a writer annotates texts, converts those annotations to notes, arranges the notes, and then moves them into a literature review document. The workflow centers on a modular approach to a task, where the writer can rotate tools in and out or where the available affordances of new tools can reframe or shift the broader approach to a task. Reading about others’ workflows, writers may appropriate them in full or in part. For example, a workflow that depicts text moving through three different applications may inspire a writer to use those same apps together but for another task.

Workflow thinking

Workflow thinking is the act of reading knowledge work as modular and intertwined with technologies.

Through workflow thinking, writers break any particular task into a series of smaller steps and search for writing technologies and practices that might improve, challenge, or alter their work. Workflow thinking encourages the writer to ask questions about each component part of the workflow: “Through which technologies will I accomplish this task? Why? What does a change in practices offer here?” In offering the concept of workflow thinking, we diverge from the business- and systems-focused concept of the workflow (one that is often used by our participants) in suggesting that workflow thinking need not privilege efficiency above all else. Just as there are compelling outcomes to automating a mundane computing task via a program or script, there are also compelling outcomes to purposefully introducing constraints to a modular workflow component—for example, writing a draft in crayon (Wysocki et al. 2004)—and purposefully introducing friction into process.

Friction

Friction is a moment when the writer wants to accomplish a particular task with a particular method but the chosen tool obstructs that process.

A classic example of friction is the AutoFormatting in Microsoft Word, when the program mistakenly interprets user actions—for example, formatting a paragraph as an ordered list when that wasn’t what the writer intended. In our study of workflows, we identified several ways that writers identified friction: saying or acknowledging that there is a better way to accomplish a task, acknowledging that there are unnecessary steps in a process, or referring to software as “getting in the way.” In this regard, friction is often a workflow’s exigence—the moment when a writer develops a personal procedure for removing a perceived pain point. However, we also see friction as generative and creative, and a writer might purposefully and productively introduce friction into her process.

Workflow mapping

Workflow mapping is a way to visually and spatially examine the tools and technologies within a writer’s process.

Workflow maps facilitate workflow thinking, and mapping helps the writer consider how she develops and iterates on a writing process through writing environments and technologies. Workflow maps aren’t simple graphic representations; instead, we think of them as palimpsests, where past practices are layered beneath newer ones. Although workflow mapping could be a heuristic for literacy researchers or teachers, we explore its possibilities as a personal, metacognitive practice. Where workflow thinking looks ahead, asking what a new tool or approach might offer, workflow mapping visualizes the past, present, and possible future as a series of layers—asking how practices have been shaped across time.

Workflow Thinking, Workflow Mapping

Through the concepts of workflow thinking and workflow mapping, we hope to help readers better see and ask questions about often invisible tools and practices. Given the importance of workflow thinking to this project, we want to clearly introduce the concept before moving further into the book.

Workflow thinking is a personal practice that emerges from viewing knowledge work as modular and mediated. It helps a writer ask “What is possible here?” or “What might a new approach offer?” and it foregrounds the creative and generative potential of tools. This might be best illustrated by a specific case.

We both teach in programs that offer a PhD degree, and all of our doctoral students have to pass an exam after they complete their coursework. In preparing for the exam, a student has to read many books and articles, understand the key findings of each, and contextualize those key findings within both their field and their personal research interests. From an institutional perspective, the process is orderly: spend six months reading and taking notes, write an essay in response to faculty questions about the reading list, and then orally defend that essay. But at the level of day-to-day specifics, this process is quite complex and is mediated by many possible technologies. Should the student print out the essays and use a pen to annotate the pages? Should they keep the printed pages in hanging files or manila folders? Should they keep their long-form notes in a separate notebook? Or should they instead work with PDFs on a tablet or computer? How should they name and organize those PDFs? If they use a PDF highlighter tool, should they use just one color or should they try to use multiple colors for multiple purposes (say, red for important points and green for interesting references)? How should they keep a log of their thoughts? How do they ensure that the material will be accessible in five or ten years so that it’s usable both for the written exam but also for future work? We could fill a chapter with these questions and their possible variations.

In our experience, these practices aren’t the subject of inquiry and they aren’t often taught. The graduate student’s advisor might offer some organizational advice based on their own experience and preferences (which was likely learned in school or adopted from a mentor), or the graduate student might get recommendations from students who recently completed the exam or might simply draw on the practices developed across years of schooling, which were likely learned long ago and evolved as they proceeded through school.

Workflow thinking allows the student to pull apart this process and focus on its mediational specifics. It asks them to consider how they’re approaching this task, how different tools and practices might shape their work, how new tools or approaches might change it, and how they might view their personal workflow as shareable knowledge. Through workflow thinking they can ask questions of and imagine possibilities for the often invisible mediational means that shape writing.

Workflow thinking is a forward-facing disposition. It asks the writer to imagine how a new tool or practice might change their writing activity. But all writing activity is bound up in a mess of context—historical, cultural, and affective. Workflow mapping, which we discuss in chapter 6, is a retrospective concept. It examines how writing practices accrete over time, and it depicts those learned practices as a kind of palimpsest where past approaches to work shape and influence new ones. We have developed workflow mapping within a narrative frame, and mapping begins with narrated memories of composing technologies—thinking about past experiences and writing descriptions of them. From those particular descriptions, the writer would draw a series of sketches (using pieces of tracing paper, for example) that begin to layer those practices onto each other. These maps act as reflective tools through which a writer asks how their preferences have emerged and what they can learn from the ways that practices accrete over time.

In preparing for her exam, our hypothetical doctoral student will likely draw on previous preferences and learned practices. Perhaps a teacher once taught her to place a Post-it note on the insider cover of a book and to record the locations of important passages on it. But in preparing for the exam, she wants to move to a digital system in which she can search for particular phrases and page numbers. So instead of sticking with the Post-it method, she now reads with a Google Document open and records interesting passages and page numbers in the onscreen document. In the process of workflow mapping, she might see a link between these—noting how this approach to work has unfolded across time.

[image: Workflow map with Evernote at center]

Fig02. Workflow maps, which we introduce in chapter 6, use layered diagrams to consider how writing practices and preferences accrete over time.

Workflow mapping facilitates workflow thinking. It asks the writer to consider how these are learned practices and how ways of working build up and inform one another over time. Through mapping we can better see mediating technologies and preferences, imagine how new technologies might fit in, and situate those within histories and contexts.

We’ve built the concepts of workflow thinking and mapping from our analyses of the case studies in chapters 3, 4, and 5. We see this as an initial exploration of the concepts, however, and there’s much work to be done. The field needs more research like this—more studies of more writers in more contexts—and we hope that other researchers can help us build and extend these theories. We see these concepts as important but initial moves in a larger research agenda that focuses on the personal and affective work of writing with technologies.

The Participants and Affinity Space

This book began as a study of authors who we saw as “teachers” of the Markdown writing syntax.2 Markdown is a “plain text” writing syntax that uses common typographic symbols to indicate text styling. For example, bold text in Markdown is represented by **double asterisks** around the phrase to appear in bold type. In 2004 John Gruber, the inventor of Markdown, pitched it as a simpler way of writing for the web; an author would write in the Markdown shorthand and then use a computer script to turn that Markdown text into HTML. In the years since, Markdown support has been added to a number of writing applications. If you’ve used an app like Evernote, Scrivener, Ulysses, or Bear, you’ve likely bumped into Markdown. In many web writing contexts, it’s a popular and easy-to-learn writing technology.

At the 2013 Computers and Writing Conference, we (Derek and Tim) started talking about the broad Markdown affinity space: podcasts, blogs, self-published books, and social media conversations. We were particularly interested in the absence of these conversations within our field. How could a nearly ten-year-old writing technology continue to grow in professional and enthusiast spaces but also be largely absent among those who teach and research writing?

To answer this question, we designed a study in which we would interview several of these influential Markdown “teachers.” We mapped the Markdown affinity space, prioritizing those who had a significant audience that spanned multiple platforms, including blogs, podcasts, books, and Twitter feeds. In particular, we were interested in writers within the Markdown affinity space who published texts written in Markdown, taught users how to use Markdown, and made recommendations about Markdown-focused software.

The affinity space we identified, which is also covered in Van Ittersum and Ching (2013), is a group of Mac users who write, podcast, and chat about Apple-related technologies. This group has a strong affective connection to the Mac platform based on its large community of independent software developers, its malleability (through tools like Automator and Applescript), and Apple’s aesthetic decisions, which often align with the tastes of those in this affinity space. We reached out to a member of the space, conducted an interview, and followed up with subsequent interviews via a snowball sample method.

When we started to analyze our data, however, we realized that this wasn’t a project about Markdown. Instead, we saw that the interviews offered insights about broader writing practices and software preferences. These writers were interested in and talked in detail about software-mediated approaches to writing practices—what they called “workflows.” We began to identify and trace a practice that we saw as “workflow thinking,” which we introduce in this book. To build and contextualize our macro concept of workflow thinking, we offer the cases of three writers.

David Sparks is a lawyer, blogger, and podcaster. Sparks cohosts two podcasts: Mac Power Users (about Apple technologies) and Focused (about mindful focus and productivity). Mac Power Users is quite popular and is almost always ranked in the top seventy-five podcasts in Apple’s “Technology” podcast charts. Sparks has written traditional print books, including iPad at Work (2011) and Mac at Work (2010), but more recently he’s turned to his own self-published series of ebooks under the moniker of “MacSparky Field Guides,” which are highly mediated books about topics such as photos, presentations, paperless approaches to work, and the Markdown writing syntax. Sparks has also collaborated with software developers, producing video tutorials and walkthroughs for new software releases.

Brett Terpstra is a software developer, blogger, and podcaster. Terpstra is most widely known for his two writing applications: nvALT, a simple but popular note-taking application for the Mac, and Marked, a Mac app that offers a simple means of previewing and exporting Markdown documents into a variety of other formats. Terpstra also hosts the Systematic and Overtired podcasts. He is a writer for MacStories, he has published a video series on the Markdown syntax (with Pearson’s Peachpit imprint), and he has coauthored two self-published digital books with David Sparks: 60 Mac Tips, Volumes 1 & 2. Terpstra has been a guest on the Mac Power Users podcast six times.

Federico Viticci runs the popular MacStories website and hosts or cohosts many podcasts: Adapt (about using the iPad), Dialog (about creativity and technology), Canvas (about mobile productivity), AppStories (about mobile apps), Connected (about Apple and technology), and Remaster (about video games). Viticci was an early believer in the iPad’s potential as a platform for creative work, and he now has tremendous influence in that space—collaborating with developers, directing his readers and listeners toward specific applications, and writing custom scripts and workflows for those who subscribe to the MacStories newsletter. Each year, Viticci writes a long-form (50,000+ words) review of Apple’s iOS platform, which he self-publishes as a digital book. Viticci has been a guest on the Mac Power Users podcast four times.

There are other participants in this affinity space, but these three individuals provide a specific and intertwined set of connections. For example, Brett Terpstra is a contributing writer to Federico Viticci’s website, MacStories, and MacStories has linked to or mentioned blog posts by David Sparks more than thirty times. Both Terpstra and Viticci have appeared on the Mac Power Users podcast (cohosted by Sparks) several times, and both Sparks and Viticci have appeared on Terpstra’s Systematic podcast. Sparks and Terpstra have coauthored two books, and Sparks’s Markdown book includes interviews with Terpstra and Viticci. These three authors exist in a textual circle.

But the connections between these three also extend beyond references and podcast appearances. They are all enmeshed in a software economy comprised of writing and productivity apps. To encounter their work is to hear references to a realm of software—TextExpander, OmniFocus, PDF Pen, Drafts—produced by small developer teams. Sparks, Terpstra, and Viticci each have multiple roles in relation to these technologies: Sparks might produce a series of video tutorials for TextExpander, Terpstra might write a series of homemade computer scripts to expand TextExpander’s functionality, and Viticci might beta test a new version of the app and introduce it to his MacStories readership. They all have a complex and intertwined relationship with these small Mac software developers, and they each occupy multiple roles: part hobbyist, part advocate, part advertiser, part consultant, and part enthusiastic fan. Those roles, however, have also allowed them to develop a language of the workflow—one in which they constantly audition, evaluate, and adopt writing technologies.

Workflows: Not Power Users but Empowered Users

While writing this book, we have avoided labeling or lauding people as “power users,” despite the term’s prominence in computer-related discourses. If you browse the computer and technology books at your local library, you’ll probably see a number of titles detailing the pathway to power user: Mac OS for Power Users or The Microsoft Power User Cookbook or Synthesizers: From Presets to Power User. Books like these offer a binary in which a normal user simply uses software as is, while a power user clicks through all the menus, turns on the advanced features, and expertly customizes the app to their liking.

The concept of the power user poses two major problems. First, because it reifies the binary between the power user and the normal user, it creates a model of functional expertise and then differentiates the experts from everyone else. Second, the binary also exempts the so-called normal users from learning about or tinkering with technologies. It creates a context in which many users don’t have a community or support system for imagining the creative possibilities of their tools. And at its worst, the power user binary enforces stereotypes about computer users—stereotypes that privilege some and exclude others.

In doing the research for this book, however, we’ve seen a different dynamic in play. Although David Sparks’s cohosted podcast is called Mac Power Users (MPU), the discussions often focus on empowering users. This is doubly true for the MPU discussion forum, where listeners discuss technologies and share their personal workflows. MPU discussion threads might range from questions about how to digitize business cards, to recommendations for apps that count calories, to pictures of home offices. The discussion board—much like the podcast—doesn’t promise a continuum that moves users from newbie to expert; rather, it offers a space and support for experimenting with tools and talking about knowledge work.

In pointing to empowered users rather than power users, we want to move away from the notion that tinkering with tools or software is something that happens in a closed-off club for those with knowledge of programming or access to particular gadgets. Instead, we offer an approach to the mediated work of writing—an approach we call workflow thinking—that is abstracted from the above-mentioned affinity space but that can be helpful for all writers, regardless of their preferred writing technologies. As we discuss in chapter 2, we are dedicated to inclusive work and pedagogies, and we hope that all writers can feel comfortable with and find community in the creative use of and experimentation with a broad range of writing tools. While there are many ways to develop and express workflow thinking, we introduce workflow mapping in chapter 6 as a narrative, sketch-based model. Workflow mapping provides a space for writers to think explicitly about their workflows outside of engaging in them, and we think it can be useful for all writers—regardless of their familiarity with the computer scripts and gadgets that our participants prefer.

As such, we don’t argue that readers should simply pick up David Sparks’s specific mediated practices and follow them step-by-step, and we don’t want to present Sparks as an exemplar of digital writing. Instead, drawing on interviews and the texts produced within this affinity space, we’ve tried to identify the broader approach to evaluating and adopting writing technologies that is so common in this affinity space. Why, for example, is David Sparks so willing to try out a new writing technology? Why does he seem to constantly rotate software in and out of his workflow? And what might this teach writing instructors, who are often faced with institutionally sanctioned software defaults or rigid IT policies?

The latter question is a particularly vexing concern for teachers of writing, one of this book’s primary audiences. They, like many employees in large organizations, have to work within the parameters set by IT departments, and those policies often direct users toward a few sanctioned and supported tools (such as Microsoft Office or Blackboard). Sparks, Terpstra, and Viticci are all self-employed, and they don’t have the same institutional limits, making it easy for them to model an empowered approach to computing. Those in education or industry might face a different—and disempowering—set of forces.

An example might help here. Libby Anthony, an assistant professor of English at the University of Cincinnati Blue Ash College, found friction when using Blackboard, her campus’s Learning Management System. She often had problems when writing assignments or announcements inside Blackboard, and because she had to write in a web browser, she worried about losing her work. She asked colleagues for suggestions. Were there better ways to work with Blackboard? One colleague recommended that she try Bear, a note-taking application that synced across the phone and her computer and that could export notes to a format that Blackboard recognized. Libby searched the Mac App Store, installed Bear, and found that it wouldn’t work on her office computer. She then called IT, who told her that the syncing system that Bear uses (Apple’s iCloud service) is deactivated on faculty computers. Their suggestion was instead to use IT-sanctioned tools (specifically, MS Word and Box.com) or just write in Blackboard’s built-in composing space.

[image: Screenshot of Bear’s export function]

Fig03. Using Bear, Libby could write her lesson plans and quickly export them to HTML, which let her keep an archive of class materials and also avoid Blackboard’s sometimes painful text formatting window.

Libby’s experience underscores an exigence for this book: for many academic contexts, writing technologies are often seen as transparent and interchangeable. The above IT response implies that Word, Box, and Bear are interchangeable technologies, offering a parallel set of affordances. In working with Blackboard, however, Libby identified a moment of friction that came from her frustrations with Blackboard’s text-styling feature and she sought an application that would fit into her work and resolve that friction. She engaged in workflow thinking, and her campus IT department wasn’t prepared for that. However, if we can adopt workflow thinking more broadly, and if we can encourage a wide range of writers to think about the creative possibilities of writing technologies, we can push against the assumption that writing tools are simply interchangeable. And when more of us adopt an empowered approach to our writing technologies, we make more room for many different ways of doing knowledge work.

Workflow-centered approaches, of course, aren’t just about institutions or classrooms. Workflow thinking can be helpful in any number of contexts: creating an Instagram story, taking notes in a Moleskine notebook, or marking a book with Post-it flags. We see workflow thinking as a productive lens for many writers, including those who write exclusively as solo authors, those who collaborate, and those who must interface with sometimes stodgy campus IT departments. This book isn’t arguing that we should adopt the specific practices of any case or affinity space. Rather, we’re arguing that we can better learn about, mindfully adopt, and advocate for a broader range of writing technologies if we better understand how mediation functions within process. Workflow thinking helps us get there.

Situating workflows

In this book we draw on sociocultural theories of process (Prior 1998; Prior & Shipka 2003; Shipka 2011; Roozen & Erickson 2017; Haas 1996) to situate the work and practices of writers in the workflow affinity space. Sociocultural approaches help us better understand how people, tools, discourses, and practices develop over time. Software adoption and use, for example, is wrapped up in affective orientations, motivations, histories, and more. Although the choosing of one tool over another might seem like a simple or inconsequential act, this book considers how that practice is the product of many intersecting factors. And by drawing attention to more complete pictures of processes and mediation, this book considers how writers might use a strategy such as workflow thinking to find new and creative approaches to their writing tools, tasks, and environments.

This line of inquiry intersects with other lenses and projects in the field. For example, the conversations in the workflow affinity space share some commonality with what Jentery Sayers (2011) calls a “tinker-centric pedagogy,” which privileges hands-on experimentation and collaborative work. Similarly, blogs like ProfHacker have highlighted the possibilities of software that’s popular in the workflow affinity space (see, for example, posts about apps like Scrivener, Ulysses, Write, and Evernote, and about automation with Zapier and MacOS scripts). Profhacker has also posted about the work of Brett Terpstra (his Markdownifier script and his nvALT app), David Sparks (his Markdown book and his screencast series), and Federico Viticci (his app reviews and his workflows). The Kairos PraxisWiki and the Sweetland Digital Rhetoric Collaborative (DRC) Wiki have also devoted space to software evaluation and adoption.

Finally, we would point to Aimee Morrison’s work on the Hook and Eye blog as a helpful extension of workflow thinking and a way to push the concept beyond the sometimes efficiency-centric approaches of Sparks, Terpstra, and Viticci. Writing about her paper-based workflow, Morrison (2018) describes her affective preference for paper: “I love paper. I love paper journals and notepads, I love printouts, I love paper books. I love pens and highlighters and pencils and erasers and tape-flags and Post-Its” (para. 1). She then connects her preferred workflow to neurodiversity and ways of being and working in the field:

I’m learning a lot about myself since my ADHD and autism diagnoses. One of the things I’m learning is that a lot of my ways of working are actually disability hacks: as it turns out a LOT of my people are very visual and a LOT of my people have poor working memory. Instead of trying to change myself to fit the ways of working I think I should have, because other people, I should maybe instead celebrate that I have, by trial and error and very little help or encouragement from anyone, kluged my way into some best practices for my particular career and set of challenges. I should congratulate myself on the self-knowledge that got me to a place that I’ve devised a whole workflow that minimizes the disabling effects of my particular forms of neurodivergence and allows me to shine. (para. 5)

Morrison’s post suggests that workflows can be an inclusive and productive concept—that we have much to gain by considering how we work, what tools we work with, and how those preferences can help us think beyond a set of default, invisible, or unstated norms. Furthermore, she points explicitly to the lack of support writers have for developing, revising, and experimenting with diverse workflows. The genre of the blog post has been an important and productive space for conversations like these, but with this book we hope to bring these conversations to a more central place in the field—offering the workflow as a way to better understand how we approach writing tasks. We find the Terpstra-Sparks-Viticci circle helpful because of the way they’ve drawn an audience that’s interested in talking about and sharing mediated approaches to knowledge work. However, we think Compositionists are well poised to move such a conversation beyond talk of efficiency or productivity, instead considering questions of access, affect, and agency. We offer future directions for this work in the book’s final chapter.

Summary of Chapters

In chapter 1 we introduce and define the concepts of workflow and workflow thinking. We provide a narrative example of the concepts, and we contextualize them within early questions about writing process, which are concepts from which our participants seem to draw. We then connect workflows and process to early research in the area of computers and writing. In the 1980s and ’90s, research published in journals such as Computers and Composition asked questions about how the computer affected alphabetic reading and writing practices. Although the field now asks those questions of multimedia and networked software, we argue that the workflow affinity space today pursues similar questions about computational alphabetic composing spaces. Ultimately, we argue that a workflow-focused approach to writing offers a pathway to agency, creativity, and confidence with computing—a spirit that is very much in line with the lineage of digital and multimodal work in Composition Studies.

In chapter 2 we describe our methods and methodology. Drawing from theories that depict activity as distributed and mediated (activity theory, actor-network theory, distributed cognition), we attend to disruptions in activity (what our participants call “friction”) to trace the various actors and histories that are woven into people’s literate activity. Further, we argue that few contemporary studies of writing have fully considered diverse software applications as mediational means, instead concentrating on one particular application or on “the computer” as a whole. Through a focus on workflows, our case studies demonstrate the varying ways different applications mediate writing through their interfaces, data formats, affordances, and the trade-offs they require. Finally, in this chapter we introduce several key limitations of this project, primarily participant demographics. All of our participants are white males. We contextualize this problem within the broader space of computing, and we suggest how the disciplinary area of Computers and Writing—a technologically focused pedagogical community formed and grounded in feminist practices—might provide avenues for diversifying interest in and teaching about writing workflows.

Chapter 3 introduces the case of David Sparks and his practice of “cooking ideas.” Through our analysis of the various tools and means that Sparks has employed in this practice over the years, we examine how tools shape practices, how people shape practices, how practices shape people, and how tools shape people—all in one interpenetrated whole. Many of our participants wrestle with similar problems faced by writing teachers: how to balance between focusing on writing production and experimenting with new tools and practices. Through our analysis of Sparks’s case we argue that “workflow thinking”—that is, breaking up writing tasks modularly and experimenting with different tools and practices for each component—allows writers to discover creative alternatives and engage with their tools in more complex ways over time and not become overly distracted from the work they need to accomplish. Drawing from Prior and Shipka’s (2003) concept of “environment-selecting and -structuring practices” (219), we illustrate the ways Sparks’s workflow constructs, shapes, and channels his attention and mental states in ways he finds useful for engaging in his work.

Chapter 4 argues that one benefit of a digital workflow is automation—using computers to efficiently and reliably execute a series of steps. While “automation” for writing scholars might call to mind machine grading or plagiarism detection software, we argue that our research participants demonstrate how automation can embody the values of flexibility and metacognition, values promoted by key documents in our field (such as the “Framework for Success in Postsecondary Writing” statement). From this perspective, automation is a strategy for designing a writing process within specific situations in response to particular constraints. In this chapter we argue that automation is a productive art—a practice that results in a composed object (the script or program) that functions as a new actor mediating writing activity. Using the case of a script named SearchLink, created by one of our research participants, we examine the ways an automated writing workflow shapes this writer’s activity and experience and describe the functional literacies and expertise necessary to create and refine such a script. Often, “scripting” (or writing the computer code that executes a series of steps) is described as more accessible and more easily learned than full-fledged computer-programming, and we seek in this chapter to illustrate how scripting can serve as a means of tying together the literacies of writing and coding.

Chapter 5 introduces the case of Federico Viticci and examines workflows that explore the limits of what is possible on various computing platforms, arguing that “workflow thinking” can lead to experimentation and the development of new kinds of practices, texts, and goals. The chapter focuses primarily on how Viticci weaves together applications and scripts on his iPad and iPhone and often bumps against the limitations of these devices and their operating systems. A key argument among many interested in the future of computing has centered on whether mobile devices can support “real work” or whether they are merely convenient for “consumption” of media. Viticci argues that such devices not only support writing activity but that they can also support some kinds of writing practices better than conventional computers. This chapter argues that Writing Studies scholars need to better understand mobile computing platforms due to their increased prevalence (especially as the primary computing devices of minority and underprivileged students) and the ways they privilege different workflows.

Chapter 6 centers on workflow mapping, which is a visual and spatial way of exploring how writing workflows accrete over time. We outline the practice of mapping and then apply it to our own processes, using videos and illustrations to examine how our workflows have grown and shifted in response to environments, genres, work, preferences, and more. In doing so, we model workflow mapping as a metacognitive practice—a way of seeing and thinking through the arrangements of tools, affect, practices, and/or spaces. We then close by pointing to two genres—the software review and the workflow narrative—that can help to position workflow-related practices more centrally in the field.

1Disciplinary names are a tricky thing, especially for researchers of writing. In this book we use the term “Writing Studies” to refer to fields that study writing, which might include Rhetoric and Writing, Technical Writing, Computers and Writing, Business Writing, First-Year Writing, and more. We do, however, occasionally use different and more specific disciplinary names (such as “the multimodal turn in Rhetoric and Composition”) when speaking of a particular moment in a discipline’s history or of a text that addressed a specific disciplinary audience. Like Barry Maid (2018), we think that “Writing Studies” describes “who we are and what we study. It is also a term that is readily understandable to non-academics” (52). For more on this, see Bazerman’s (2002) “The Case for Writing Studies as a Major Discipline,” Heilker & Vandenberg’s (2015) Keywords in Writing Studies, and Malenczyk, Miller-Cochran, Wardle & Yancey’s (2018) Composition, Rhetoric, and Disciplinarity.

2We refer to digital writing syntaxes throughout this book. These syntaxes are ways of encoding a digital document for a specific use. For example, a document for the web is typically written in the HTML syntax, which has particular rules and requirements. We describe the HTML syntax and Markdown shorthand in chapter 3.

Chapter 1: From Process to Workflow

In Write No Matter What: Advice for Academics, Joli Jensen (2017) recommends that writers work from a project box—“an organized set of files that breaks your project into smaller sections and allows you to collect and contain key elements” (17). Jensen describes her project box quite clearly:

I’m old school and use a portable file hanging box, available at office supply stores for under twenty dollars. It has a lid and holds labeled hanging files. I like the tangibility of paper and the process of organizing sheets of paper into specific files. But you can create an electronic “project box” dedicated to your academic writing by creating a different username in your computer system for the purpose. You could also use a separate laptop just for your writing projects. The point is to have a way to open and close your project that keeps it organized, accessible, but clearly separated from your other commitments.

My book project files usually include Outlines (various overviews); Questions (that I want to answer through the project); Next Steps; References; Chapter X Notes (ideas and outlines for each chapter or section); Submission Plans; To Be Added; and the absolutely essential Ventilation File. But you can make whatever files you want, as long as they organize and contain all relevant elements of a particular project. (17–18)

Although Jensen doesn’t use the term, she is describing a workflow—a set of repeatable steps enacted with particular tools for accomplishing recurring tasks. When Jensen starts a new project, she creates a new project box with new hanging folders and files and new labels with the above-mentioned sections. All of her work happens in either the project box or in specific drafting files on her computer: “I compose on my laptop,” she writes, “and save written files there, but I organize my project using a real box, and it works for me” (18). Her workflow description, like many we’ve encountered and will describe in this book, is equal parts prescriptive (“The point is to have a way to open and close your project that keeps it organized, accessible, but clearly separated from your other commitments”), personal (“It works for me”), and malleable to another writer’s needs (“But you can make whatever files you want, as long as they organize and contain all relevant elements of a particular project”).

Much of the advice in books like Jensen’s echoes what writing researchers think of as process, and the bulk of her book deals with myths about writing and procedures for overcoming obstacles and blocks, all of which mirror the knowledge and pedagogies of a process-oriented approach to writing. And much like narratives about and research on writers and writing processes, Jensen doesn’t devote a great deal of space to describing the specific computing technologies she uses. A reader hoping to follow her workflow might set up a similar hanging-file project box or create a separate account on their computer. But what then? Do daily drafts leave the computer and go into the project box? Or is there an analogous project box folder on the computer? What about the second account method—what applications should be installed there? Where should files be saved? Perhaps Jensen is wary of prescribing too much, as each writer’s workflow is personal. Or perhaps she feels that mentioning specific computing technologies or procedures might quickly make her specific approach obsolete.

[image: Screenshot of the “Users” control panel in Mac OS]

Fig04. As part of her suggested workflow, Jensen recommends that writers make a second “writing” account on their computer to open and close their projects each day. This screenshot shows the Mac OS operating system “Users” panel with a similar configuration.

In this book we use workflows as a lens to examine the often omitted tools, material conditions, and activities of writing. Although the field of Writing Studies has numerous theoretical methods and lenses for considering the mediated and socially situated work of writing, we have few descriptions of how specific pieces of software and hardware mediate writing in practice. A focus on workflows highlights the importance of writing tools and allows us to consider how tools shape activity and, in turn, how activity shapes tools.

We find tremendous value in concepts like Jensen’s project box, but we note that many such accounts omit the mediational specifics, pushing tools and procedures to the margins. For many academics, knowledge work is grounded in “enterprise” software that is an institutional default and provided as a basic condition of employment. Enterprise writing software, which has historically been Microsoft Word and is now increasingly Google Docs, draws from a long lineage of word processors and typewriters. It uses the visual metaphor of the printed page, and it does a fair job of producing documents for print. But it also stands in as a transparent, one-size-fits-all writing technology. Returning to Jensen’s project box model, we see this transparency at work: She describes a highly personal system for organizing notes, documents, and folders in her hanging file system. But when she mentions the software-mediated act of writing, she simply says that she “compose[s] on [her] laptop and save[s] written files there” (18). The specifics of the laptop and the writing software and the file saving conventions are omitted, presenting computing practices as transparent—as “a kind of distortionless window, through which essential acts of reading, writing, and thinking are conducted” (Haas 1996, 22).

We offer the concept of workflow as a way to move personal and local computing practices into a form of disciplinary knowledge. To introduce and develop the concept, we focus on a specific affinity space (Gee 2004, 2005) in which workflow-minded writers develop, share, and teach their workflows. Although these writers see their workflows as highly personalized approaches to writing and computing, they’re eager to document and share that personal practice. They also study the workflows of others, hoping to learn about new software or approaches to minimizing the pain points in their process. These writers see their workflows as a means of finishing tasks and ways of imagining how computing tools might augment and creatively transform their day-to-day work. As researchers, we argue that workflows can further our understanding of and approaches to writing processes, and we develop that argument through what we call workflow thinking, or the act of reading knowledge work as modular and intertwined with technologies, and workflow mapping, or the personal examination of how writing preferences accrete over time.

What is a workflow?

The term “workflow,” although widely used in conversations and scholarship about knowledge work, is often deployed without a specific definition, resulting in an imprecision or vagueness about the term. As it is often used in Writing Studies research, “workflow” functions as a synonym for “process,” a general noun pointing to the steps for accomplishing a given task. “Workflow” is often aligned with business or computing jargon, and its proximity to that discourse points to connotations of labor, capitalism, and manufacturing. The Oxford English Dictionary (OED) definition nods to those contexts: “workflow: the sequence of industrial, administrative, or other processes through which a piece of work passes from initiation to completion; the passage of a piece of work through this sequence.” In that definition the OED foregrounds sequencing, positioning workflow within a chain of events that yields a specific outcome in industrial or administrative contexts. In this light, workflow might point to contemporary capitalism and the business push to replicate tasks, to distribute tasks among workers, or to industrialize a process so that manufacturing can proceed without the expertise of a single worker.

The business-centered definition of “workflow” is well exemplified from an information systems perspective. David Hollingsworth, writing for the Workflow Management Coalition (1995), defines workflow as “concerned with the automation of procedures where documents, information or tasks are passed between participants according to a defined set of rules to achieve, or contribute to, an overall business goal”—or, more simply, a workflow is “the computerised facilitation or automation of a business process, in whole or part” (6). Similarly, Wil van der Aalst and Kees van Hee (2002), in Workflow Management: Models, Methods, and Systems, situate workflows within the context of “business processes from the perspective of computing, or—to put it more broadly—information technology” (xii). For them, the tangible products of work are the results of a process, which consists of “tasks that need to be carried out and a set of conditions that determine the order of the tasks” (4). They note that “the term ‘workflow’ is used here as a synonym for ‘business process’” (xvi), and, more specifically, that “a workflow is defined as a network of tasks with rules that determine the (partial) order in which the tasks should be performed” (28). Many contemporary uses of workflow extend from this line of thinking, and those use cases range from print publishing to web content management to higher education administration. The workflow, in this regard, points to the streamlining of a particular business process, typically in search of an efficiency that benefits the institution, not the individual worker.

Among our participant group, however, we see a shifting use and personal reappropriation of the term. In these contexts, “workflow” functions as a personal process, rubric, and metacognitive lens. A workflow, for these writers, is a means of evaluating the components, processes, procedures, and technologies of their work. It is a lens through which they can look at their broader writing process and begin to analyze the connections, intersections, and fissures within the component parts of their work. And it is a lens that is fully intertwined in writing technologies. For example, a blogging workflow might involve drafting Markdown text in one software application, converting it to HTML with a script, then pasting that HTML into a web editor for the blogging engine. The blogger’s modular construction of process allows them to consider how writing technologies might change, shift, or rearrange each modular piece within the broader whole of their work or particular writing task. And the focus on writing technologies allows them to reevaluate each modular component within the context of available or other possible writing technologies. The circular and recursive relationship between these workflow elements—modular pieces and mediational means—allows writers to see the possibilities of tools and technologies and how the available affordances might reframe each modular piece and vice versa. One reframes the other.

[image: Screenshot of the Ulysses writing app export window]

Fig05. The writers introduced in this book prefer writing technologies like Ulysses, pictured here, that support modular and multiple means of moving through writing tasks. This screenshot shows the Ulysses export menu, where a user can export text to several formats, including HTML, ePub, PDF, .docx, and others.

From our participants’ practices we draw the concept of workflow thinking—the act of reading knowledge work as modular and intertwined with technologies. Workflow thinking allows our participants to break any given project into a series of shorter process steps—a perspective that is well in line with Writing Studies’ understanding of process and its typical pedagogical practices. Workflow thinking, however, foregrounds the mediated nature of that work. It looks at each task or component and asks a series of questions about the writing technologies and available affordances within that component: “Through which technologies will I accomplish this task? Why? What does a change in technologies offer here?” For our participants, a shift in these practices might afford them mobility, the removal of drudgery, new ways of seeing a problem, or new invention strategies. In each case, however, they can use this mediated and modular thinking to reevaluate when and how they approach knowledge work.

In this way, we want to emphasize that workflow thinking can be a personal reevaluation of the capital-minded, deskilling focus of workflows in industry or business contexts. As with most knowledge workers, our participant group operates within the discourses of personal productivity and efficiency, where industrial and corporate workflow values filter down and are appropriated by individuals. And yet their approach to workflows is not simply a personal version of a business practice. They use workflow thinking as a way to constantly reevaluate and iterate their writing processes on the criteria of productivity, yes, but across affective dimensions as well. They also use workflow thinking to find social connections and conversation in the sometimes isolating world of contemporary digital knowledge work. Although their workflows are intensely personal and cultivated for their specific projects and interests, they often break out and share the artifacts of their workflows—through scripts or apps—and narratives of writing workflows. This sharing may involve a simple blog post or comment on a podcast, or it may be in the form of a book or video series for sale. The workflow, for them, is part practice, part conversation, and part commodity.

This book offers workflow thinking as a counterpoint to contemporary discussions of digital writing technologies, particularly with regard to the increasing prominence of institutional software. As more universities sign on to site licenses for platforms like Office 365 and Google Apps for Education, and as more students and faculty become comfortable with working within those applications, writers risk a “cementing” of practice—a means through which writing tasks begin and end in institutionally sanctioned software because it is free, preinstalled, institutionally available, or seen as a shared software vocabulary. A lens of workflow thinking pushes against this, instead asking “What are the component pieces of this work?,” “How is this mediated?,” and “What might a shift in mediation or technology afford me in completing this?” In short, we see workflow thinking as a way to reclaim agency and push against institutionally purchased software defaults. This perspective has origins in early humanities computing (particularly in 1980s research on word processors), as we will more fully discuss later in this chapter.

We also offer workflow mapping as a complement to workflow thinking. Where workflow thinking imagines new composing possibilities, workflow mapping instead looks backward, asking how practices and preferences accrete over time. In the chapters that follow, we use workflows and workflow thinking as ways of reading and learning from our participants, but we close the book with workflow mapping because it is a personal practice—a journey through memory and metacognition. Although we developed the mapping concept during our analysis of the case studies that follow, we haven’t retrospectively applied it to them. We don’t see mapping as a simple post hoc heuristic; rather, it is a personal exploration that helps a writer see the potentials of workflow thinking through a deeper understanding of how their current practices and preferences have been shaped. We also see mapping as a generative space for future research. We discuss this in greater depth in chapter 6.

What does a workflow look like?

We think it might be helpful, in this first chapter, to offer a specific example of a workflow. Although we discuss the case of David Sparks in great depth in chapter 3, we present a brief overview here in order to ground and demonstrate what one workflow looks like in practice and what the concept of workflow thinking offers to a specific writer.

David Sparks is a lawyer, podcaster, blogger, and author of many technology books. He is someone who thinks and talks about writing, and his writing process is strongly grounded in technologies of invention and planning. “I think the planning stuff is almost the secret weapon of all this,” he tells us in an interview, suggesting that “you need to have some kind of system to start thinking and putting some thoughts down weeks before you start writing.” For Compositionists, Sparks’s focus on planning might call to mind Donald Murray’s (2009) discussion of prewriting, which “usually takes about 85% of the writer’s time” and “may include research and daydreaming, note making and outlining, title-writing and lead-writing” (2-3). For David Sparks, however, prewriting is a mobile and mediated practice that is enmeshed in software affordances. In our interview with him, Sparks described how he uses mindmapping applications to plan his written projects. Weeks before he starts writing narrative prose, Sparks collects his thoughts in a mindmapping app, assembling potential ideas and looking for connections among them. Sparks values the ability to capture these thoughts anywhere—“I really want the ability when a thought occurs to me while I’m eating a taco, that I want to add this to this motion, I want to be able to get to my iPad, get to my iPhone, and immediately write that down before I drop it out of my head”—so he uses mindmapping software that works on both his mobile devices and his desktop computer.

[image: Screenshot of David Sparks’s MindNode demo video]

Fig06. David Sparks often partners with software developers and produces videos that teach viewers how to use a writing tool. In this video, an introduction to MindNode, he describes the process of mindmapping.

After spending time with the mindmap, Sparks exports it to a more linear outline format, where he further develops each concept. Once he’s content with his plan and structure, Sparks moves to a writing application. He prefers writing applications that fall into the “distraction free” or “plain text categories,” such as Ulysses or Byword. Ulysses, which Sparks was using when we spoke with him, allows him to quickly produce web-ready text, and he can export his work in a number of formats—PDF, EPUB, a blog post, or even a Word doc.

Sparks diverges from most academic writers in his disinterest with Microsoft Word. He tells us, “I think that I’m definitely an outlier. I think most people in the world are just gonna open up Microsoft Word and start writing whatever they’re writing.” Like Sparks, we see Word-centric composing processes adopted by colleagues and students alike. Word is ubiquitous. It’s often an employer-provided piece of software, and many students receive free or deeply discounted licenses (subsidized through student fees). But it’s also an application that opens to a linear composing mode, much like a typewriter. It encourages the user to start by thinking in terms of sentences and paragraphs rather than the conceptual blurbs that Sparks prefers. But because the Word document file is a standard technology in educational and professional contexts, Word, for many, seems like an appropriate place to begin and end a writing task.

By thinking of his writing process as a set of modular steps, Sparks is able to ask how specific writing technologies might aid or augment that work. He understands, for example, that he likes to think through a writing project long before he starts assembling narrative prose. Mindmapping software, then, allows him to collect those ideas (what he calls, perhaps following Peter Elbow, “cooking ideas”) via its easy “idea capture” features. His mindmapping software provides visual tools for drawing links between ideas, and it allows him to sync mindmaps between his desktop and mobile computers. And because his mindmapping software allows for easy outline export (via OPML—or outline specific—files), he can quickly move a visual and spatial mindmap into a hierarchical outline form. Although his workflow involves multiple files and file types and applications, Sparks chooses applications that can hand off data from one program to the next, moving through stages toward a narrative draft.

This modularity also allows Sparks to try out and slot in new writing applications. When we spoke with Sparks, the writing app Ulysses had just released an iPad version, and Sparks was excited to try it out. “For the longest time,” he tells us, “if [a project] was like a book-length or research-heavy [project] it was [written in] Scrivener, and if it was short it was Byword, and now Ulysses has turned my world upside down, so I’m not sure exactly how it’s all gonna sort out. I’m currently writing my next book in Ulysses, and I’m gonna see how that goes.” Sparks seems to constantly audition apps—trying out new software, seeing what it affords, and asking how it might help him rethink his process. This is a common practice among our participants, and we detail it in each of the three case studies. These writers are constantly reexamining their processes, looking at the potential of mediating technologies, and searching for friction—places where they think there’s a better way to accomplish a task, where they find unnecessary steps in a process, or where they describe software as getting in their way. Workflows allow them to search for and eliminate friction, better matching writing tools to the writer’s affective preferences and creating new ways of seeing and doing knowledge work.

If Sparks had begun and ended in Word—if he hadn’t been looking at his process as a workflow comprised of multiple stages with multiple opportunities for mediation—he would have limited his ability to cook ideas. For Sparks, Word limits the imagination; it doesn’t offer the features and functionality he finds in other apps. (We would also add that, nearly twenty years ago, Bernard Susser [1998] argued that we don’t have a sound definition of what proficiency with a word processor looks like, and that critique still holds today.) Word, which often functions as a default writing space, encourages users to think of it as a one-size-fits-all tool. Or, to borrow David Sparks’s metaphor: starting and ending with Word would find Sparks working with only a microwave, when there is a broader world of cooking tools and temperatures available to him.

Critiques of Microsoft Word are a commonplace argument among researchers of computers and writing: “If only people would stop using Word, we could focus on markup languages and coding,” or “If only people would stop using Word, we could have better multimodal scholarship.” Although there’s some truth in the adverse effects of Word’s influence, we don’t want to cast it as a strawman. Word is—like all writing software—a writing technology that works well in some contexts and less so in others. But as we will discuss in a later section, Word’s ascent does align with the end of word processor research in Rhetoric and Composition. As Word gained market share and default status in the 1990s, computers and writing researchers stopped searching for and developing alphabetic composing spaces. The 2000s and 2010s saw tremendous growth in niche alphabetic writing applications, the majority of which haven’t had a place in Writing Studies scholarship. Writers like David Sparks, however, have noticed these changes, and they’ve gained a large audience by talking about writing technologies and workflows. We see these workflow conversations as connected to process theory in Composition, and in chapter 2 we examine how contemporary process research has informed this book and our methods. In the next section, we briefly introduce these connections through David Sparks’s cooking metaphor.

From Process to Workflow

Our participants, in both their interviews with us and their podcasts and published texts, often described their writing processes in significant depth. None of our participants were familiar with Writing Studies as a field of research (beyond a general sense of writing instruction as an occupation), but many had an understanding of process that aligned with work in the field. This might be best exemplified by David Sparks, who often invokes the metaphor of cooking when talking about mindmapping (something we would call an invention strategy). Although it’s possible that Sparks once read Peter Elbow’s (1973) Writing without Teachers, we haven’t encountered a blog post or podcast episode where Sparks mentions it, and he didn’t cite it during our interview. But it’s clear that Sparks’s approach aligns with Elbow’s concept of cooking and that through Sparks and Elbow we can begin to see how process and workflow are complementary terms.

Elbow offers the metaphors of growing and cooking as a model for thinking about the writing process. Growing, for Elbow, points to the macro-level change that happens when writers embrace multiple early drafts and see ideas again and anew. “Producing writing,” Elbow says, “is not so much like filling a basin or pool once, but rather getting water to keep flowing through till it finally runs clear” (28). Cooking, in contrast, “is the smaller process: bubbling, percolating, fermenting, chemical interaction, atomic fission. It’s because of cooking that a piece of writing can start out X and end up Y, that a writer can start out after supper seeing, feeling, and knowing one set of things and end up at midnight seeing, feeling, and knowing things he hadn’t thought of before” (48). Elbow, who was writing in the early throes of the process movement, uses cooking as a metaphor for the activity that happens when a writer lingers on a task. It is a micro-activity through which ideas are collected, assembled, and stirred together. “Cooking,” Elbow says, “consists of the process of one piece of material (or one process) being transformed by interacting with another: one piece of material being seen through the lens of another, being dragged through the guts of another, being reoriented or reorganized in terms of the other, being mapped onto the other” (49). More specifically, Elbow names two types of cooking: external cooking (or desperation writing) and internal cooking (or magic cooking). External cooking is the work of writing and rewriting and writing again; it’s a means for pushing through stuck points and finding ideas. Internal cooking, in contrast, feels magical. “It is somewhat mysterious,” Elbow writes, “but you are sitting on heat or acid and it is working on the material. You are writing and it is coming out well. Or you are not writing—sitting or walking around—but you can feel it bubbling inside. Things are going well. You can feel it’s not wasted energy even if you are not writing” (68).

When David Sparks talks about using mobile writing technologies to capture ideas, make notes, and outline drafts over long periods of time—what he calls “cooking ideas”—he is echoing Elbow’s internal cooking. As we will discuss in chapter 3, Sparks’s cooking process is centered in mediation and invention; it allows him to hold, challenge, and develop ideas as he works toward a draft. For Sparks, cooking ideas is a process of simmering, an act of keeping ideas boiling throughout the day. But in moving from process to workflow, Sparks’s cooking is rooted in mediation and writing technologies.

To follow the cooking metaphor, Sparks’s approach reminds us of the television show America’s Test Kitchen (ATK), where a team of chefs search for the perfect recipe or cooking equipment. “We wanted to find the best Bundt pan,” an ATK review begins, “so we bought seven 11- to 15-cup nonstick pans priced from $8.79 to $30.99 and used them to make our Classic Yellow Bundt Cake” (“Bundt Pans“). ATK operates under an assumption that cooking equipment affects the final dish and that there are important differences and variances across household kitchen items such as knives or pots or pans. By experimenting with several different kitchen tools and offering the pros and cons of each, ATK suggests that a home chef might improve their kitchen work through a more deliberate tool selection. We see David Sparks doing similar work for his audience of writers and knowledge workers, albeit within the broader frame of workflows. Sparks frequently auditions new writing software—testing the latest mindmapping, outlining, or distraction-free writing applications—and episodes of his podcast often include narratives or progress reports on his experiments with these tools. Much like the America’s Test Kitchen review suggests that your Bundt cake might have better ridges or a cleaner release with a specific pan, David Sparks often discusses how a particular piece of software (such as Scrivener, Ulysses, or Bear) might help the writer better organize or draft a writing project.

[image: Screenshot of America’s Test Kitchen “Bundt Pans” review]

Fig07. This screenshot, from America’s Test Kitchen “Bundt Pans” review, reminds us of the importance of tool evaluation and selection.

Workflows, however, aren’t about tools used in isolation or in perfect test conditions. Rather, a workflow is a habituated, mediated, and personal means of accomplishing something. Although each of our participants has developed a sizable audience by sharing (or selling) their workflows, they are each quick to say that workflows are highly personal and that their readers should determine what works best for them. In this regard, workflows align with writing process—they aren’t a linear set of steps that can be applied to any person or project. Rather, workflows shift according to the writer, the task, or the available technologies. Each participant’s workflow supports or augments their writing process, and the two concepts are intertwined. For example, a new software application might change a writer’s approach to invention, drafting, or revision, and a desire to change part of the writing process might motivate a writer to search for—or develop her own—new tools.

Before situating workflows within the context of word processing research, we want to offer a caveat. Just as approaches to writing process can be prescribed too narrowly, workflows might initially seem like a replicable procedure—a list of steps or ingredients that yield a desired result. We resist that reading, much like we would resist a narrow reading of process. Byron Hawk (2007), points to such limits of process pedagogy:

One of the main tenets of the process movement is that writing is generalizable. This belief leads to the examination of “expert” writers and the production of a general model that is meant to be applied to new writing situations. Once this reification process becomes a staple of student handbooks, the general model begins to function as its own law. Teachers begin to demand drafts, demand that invention be explicitly exhibited in writing, and continue to focus on the end product of the process and the implementation of many of the features emphasized in current-traditional rhetoric.” (208–209)

Hawk reminds us of the problems with the process model and the ways that decontextualized or best-practices-centered approaches to process can import many of the problems that the process movement hoped to address. We would offer a similar caveat about workflows. Throughout our work on this book, we have resisted the notion that any one of our participants should be an exemplar, and we offer the case studies in this book as a lens, not as a model to be strictly followed. Although some readers might find value in recreating the workflows we describe in this book, we don’t recommend that all readers try mirroring the specific workflows we describe. We wouldn’t ask our colleagues or students to outline a draft outside of a courthouse while eating a taco (following David Sparks in chapter 3), and we wouldn’t recommend that they write a bespoke script to gather hyperlinks from a web browser in the background (following Brett Terpstra in chapter 4). This isn’t a book about the perfect workflow, and we don’t prescribe particular workflows or define the steps that lead to an ideal workflow. Instead, we encourage workflow thinking: a way to see knowledge work and writing activity as modular and mediated by tools, and a means through which writers can dynamically develop their workflows and share them as a kind of knowledge.

In sum, what we take from these case studies, narratives, and practices is a specific lens for seeing the relationship between writing or knowledge tasks and the mediated possibilities for completing those tasks.

Process and Computing

Although workflows align and intersect with Composition’s approach to process, early process scholarship wasn’t particularly concerned with technologies of writing. Christina Haas (1996) connects this to the then pervasive “transparent technology myth,” which posits that “technology is a kind of distortionless window: Writing is not changed in any substantive way by the medium through which it passes. In this view, writing is writing, unchanged and unaffected by the mode of production and presentation” (34). Haas notes, for example, the general absence of tools or mediation in Linda Flower and John R. Hayes’s influential work on process theory, writing that “in general, the model treats technology as transparent: Material tools and artifacts only enter into the model in the most tangential of ways” (Haas 1996, 38). In general, the best-known works of the 1970s and ’80s process movement weren’t particularly concerned with writing technologies, despite the computer’s then-growing ubiquity in US culture. Chris Anson’s (2014) thoughtful summary of the process movement, “Process Pedagogy and Its Legacy,” underscores this point, with the only mention of tools or mediation occurring in Anson’s penultimate paragraph, pointing to the legacy of process in contemporary multimodal writing pedagogy: “Technologically rich writing courses in which students create multimedia productions are at least as dependent on process pedagogy as conventional paper-driven courses, adding elements of design, choice of medium, and the skills of technological manipulation” (226). Process, in this regard, is a macro concept or lens that can be applied to a number of writing practices regardless of mediational specifics.

Early computers and writing scholarship, however, showed enthusiasm for the potential connections between computing technologies and process-oriented approaches to writing. As Gail E. Hawisher, Paul LeBlanc, Charles Moran, and Cynthia L. Selfe (1996) discuss in Computers and the Teaching of Writing in American Higher Education, 1979-1994: A History, the arrival of computers in US classrooms (in the late 1970s and early 1980s) aligned with the field’s shift to process pedagogies. They write:

This entity called the Writing Process was generally understood to be a sequence—sometimes of “steps” undertaken sequentially, and sometimes of discrete “activities” undertaken in a sequence that was seen to be recursive. In its simplest, linear form, the process involved three stages/activities, often called prewriting, writing, and revising, as they were by Donald Murray in 1972, or rehearsing, drafting, and revising, as Murray later called them in 1980. (25)

Hawisher and her coauthors argue that Murray’s three stage process model had “a powerful effect on the early uses of computers in our field” (25), and they draw connections between this process model and early writing software. Prewriting, they note, influenced early writing software like Writer’s Helper, TOPOI, Mindwriter, and Prewrite (26–27). Similarly, the pedagogical changes brought forth by a process model that focused on writing and revision enabled a “new classroom, one in which not the teacher but the activity of writing was central” (28). These pedagogical shifts would align with computer-based classrooms, as “the already-established writing labs and writing workshops became computer-writing labs and classrooms, with teacher/editors conferring, one-to-one, with student writers” (29). Some facets of these early 1980s computer applications and classrooms might look similar today. Style and grammar checkers persist as part of commercial software suites and as stand-alone applications. Likewise, a number of software applications exist to help with invention-related activities. But perhaps the most significant difference between early process-focused computing and today’s contemporary applications is the roles of writing instructors in developing and selecting writing software.

In their history of the field, Hawisher, LeBlanc, Moran, and Selfe list countless early writing applications, including Prewrite, WANDAH, Writer’s Workbench, Homer, Creative Problem Solving, and others. Each of these applications was linked to scholars in the field who were either “self-taught programmers” or “designers and content experts [who] worked with hired programmers” (42). These Compositionists also shared “an enthusiasm for the new technology and frustration with the absence of software that could address the needs they identified in their classrooms or that could realize the educational potential they saw in the computer. Although the efforts of these first faculty software developers often went unrecognized and unrewarded, they were responsible for some of the best software developed for the computer-based writing classroom” (42). However, as we discussed at the start of this chapter, writing software in the 2010s tends to be an institutional decision rather than an individual one. A few exceptions aside (Eli Review and My Reviewers, for example, which both focus on student peer review, and VEGA, which is designed for academic peer review and publishing), writing researchers don’t develop much software today; instead, tools like Microsoft Word, Google Docs, and, occasionally, Dreamweaver have monopolized the space for alphabetic composing. As we write this, the instruction to “submit a document” generally means that the writer should send a .docx file, share a Google document, or attach a PDF file.

Workflow thinking offers a way back to the software agency and experimentation of the 1980s without requiring writing researchers to become software developers or to develop competency with programming languages. It offers a way past institutional defaults, and it provides the writer with a model for examining the mediated possibilities of alphabetic composing technologies and experimenting with different approaches to writing. Before we move further into this discussion, however, we want to briefly offer a few clarifications and caveats.

The Word Processor

In studying workflows, we have seen how many default writing technologies have gone unexamined within Writing Studies research. For decades, Microsoft Word has been our field’s most prominent writing technology. It is installed in computer classrooms, it is often given to students and faculty as free (or fee-supported) software, it is invoked in assignment sheets (Submit your draft as a Word document), it is a primary space for composing scholarship, and it is—via Track Changes—the means of editorial exchange. Its dominance, however, has led the field to take it for granted, with very little research on word processing or Word itself appearing after the late 1990s (notable exceptions include McGee & Ericsson 2002; Buck 2008; and Van Ittersum & Ching 2013). Almost twenty years after Cynthia Selfe (1999) urged the field of Rhetoric and Composition to “pay attention to the unfamiliar subject of technology—in sustained and critical ways, and from our own perspectives as humanists” (134), the technological default of Microsoft Word has seen little scrutiny from the field.

The multimodal turn in Rhetoric and Composition, in contrast, has generated a rich body of research on topics such as creating multimodal assignments, teaching multimodal pedagogies, and assessing multimodal work (Alexander & Rhodes 2014; Bowen & Whithaus 2013; McKee & DeVoss 2013; Palmeri 2012; Selfe 2007). That turn, however, hasn’t extended into the space of alphabetic writing software. Instead, much Composition scholarship demonstrates an assumption that digital alphabetic writing means using a word processor like Microsoft Word, or some other tool that mimics a word processor’s functions, like a text entry box on a web page. However, there are a great deal of differences between digital writing tools, and to many writers like our participants, these differences matter.

In contextualizing this book, we turn back to the initial surge of word processor research. Compositionists in the early 1980s had many questions about the potential of the computer, and those questions yielded a spectrum of work that explored the word processor. This era prompted experimentation, as writing teachers and researchers wrote software, tested and reviewed software, and shared narratives of what worked for them. Experimentation boomed through the arrival of hypertext, but interest in alphabetic composing applications waned with changes in computing, as audio and video tools and multimedia software became broadly accessible. MS Word soon dominated the word processor market, becoming a ubiquitous and transparent technology, and much research on computers and writing shifted to questions of internet-based and multimodal composing. In time, most writing researchers stopped developing writing software, and the era of institutionally purchased and commercially licensed software was in full swing.

In the following section we offer a brief overview of early word processor research. The early end of word processor research means that the field has overlooked significant changes in contemporary alphabetic writing technologies, and we situate our work as one of many possible projects with digital alphabetic composing at its center.

The word processor arrives

[image: Image of the first issue of the Research in Word Processing Newsletter]

Fig08. The first page of the first issue of the Research in Word Processing Newsletter, published in May 1983.

“Consider the great computer watershed,” the first issue of the Research in Word Processing Newsletter (May 1983) begins, “numbers on one side, letters on the other.” The editor, Bradford Morgan, continues:

The computer can manipulate and analyze both with equal ease. Indeed, the age of word processing in academic writing programs is just beginning to dawn across the nation, and more than a few institutions are awakening to the fact that revolutionary change in curriculum is being incubated. This newsletter is a resource for guiding that application. (“Why A Newsletter?”)

Morgan was right. The age of word processing was just beginning, and the computer would soon lead to tremendous change—curricular and otherwise—in how writing was taught, produced, and consumed. The newsletter’s first issue, which is mostly a five-page bibliography of word processor research, offers a picture of how clearly the idea of writing with a computer was wedging itself into the popular and professional imagination. Some of the bibliography entries include pieces from now notable authors or publications:

•Isaac Asimov’s (1982) “The Word Processor and I: A Question of Speed,” in Popular Computing

•Eleanor Berry’s (1982) “Writing with a Word Processor for Scholars, Poets, and Undergraduates,” presented to the MLA convention

•James Fallows’s (1982) “Living with a Computer,” in the Atlantic Monthly

•Frank Oreovicz’s (1983) “A Writing Instructor’s Best Friend: The Word Processor,” in Engineering Education

•Robin Perry’s (1981) “A Writer’s Guide to Word Processors,” in Writer’s Digest

•Tom Johnson’s (1981) “Four for the Future: Four Writers Discuss How Their Word Processors Have Affected Their Work,” in Writer’s Digest

•Helen J. Schwartz’s (1982) “Monsters and Mentors: Computer Applications for Humanistic Education,” from College English

For Morgan (1983), this broad array of work was indicative of coming change, and it was important for writers and writing instructors to understand. He writes:

For students and professors in a wide variety of disciplines, writing is—or should be—a primary tool for learning. The computer can help with all phases of the writing process, from the heuristic mustering of an idea-base to oft-neglected revision. It can provide a quantitative measure of a writer’s style—or allow a professor with a standalone system to offer detailed, student-specific comment sheets. The word processor not only saves time, conserves labor, and solves problems, but it also reinforces the traditional mission of writing programs.

Morgan’s editorial reminds us that for writers in the early 1980s, the computer was an unfamiliar technology but also one full of promise. Whereas some facets of and problems with writing instruction seem timeless (note Morgan’s nod to “oft-neglected revision”), the word processor was new, unfamiliar, and full of promise. Cynthia L. Selfe and Kathleen E. Kiefer, in November 1983, also acknowledged and created a space for the discussion of writing technologies:

Like most of you, Kate and [Cindy] have only recently come to appreciate the numbers of composition specialists who are interested in computers and their applications. In March of 1983 we met at THE FIFTH C: COMPUTERS, a special interest group held at the Conference on College Composition and Communication in Detroit. There, we found over two hundred people, representing institutions of all sizes and teaching at all grade levels, interested in the very questions we had been wrestling with at Michigan Technological University and Colorado State University. (1)

Kiefer and Selfe’s questions included “Can the computer be put to work in helping us teach Composition?,” “How do our writing students react to computers?,” “What software is available?” (and, importantly, “If none is appropriate, how do we write our own?”), and “What steps are businesses and the computer industry taking that will affect our teaching of writing in the next ten to twenty years?” (1). Their call would mark the start of a flagship journal in the subfield of computers and writing, and the work that followed would mark Composition’s ongoing interest in a broad range of writing technologies.

In the mid-1980s, there were many possible software solutions for writing. In 1984 alone, Computers and Composition articles mentioned Writer’s Workbench, Applewriter, Wordstar, Bank Street Writer, Commodore Word Pro II, Ace Writer, Word Pro 4, Megawriter, Peachtext, Atari Writer, Symphony, Spellbinder, Magic Window, Word Perfect, and more. The market for writing software was growing as “microcomputers” replaced mainframes and gained market share. “Although many writing teachers had discovered the uses of mainframe computers for their own writing,” Hawisher and her colleagues (1996) write, “it was the creation of the microcomputer that brought computers into writing classrooms in a major way. The microcomputer’s relatively low cost put technology within the reach of writing programs and writing instructors. When the two came together, there was no looking back” (41). Some writing teachers developed their own software, some partnered with programmers, and some turned to off-the-shelf solutions. For most, the opportunities of—and the lack of a precedent for—software prompted writing researchers to adopt new applications, ask critical questions of new technologies, and consider how software affected writers.

[image: Screenshot of the black-and-white interface for FreEdWriter]

Fig09. The Internet Archive’s Software Collection contains several 1980s-era word processors. FreEd Writer is one example of the many writing programs developed in the early 1980s.

A number of research questions at this time considered how the computer might affect writing and reading practices. In that thread, researchers often compared software-focused approaches against a traditional paper norm. For example, Michael Milone (1984) observes that “virtually every writer has faced the problem of what to do with ‘great ideas’ that simply do not fit the content of a paper. When composing is done by hand, the ideas are sometimes simply ignored and forgotten. . . . With a word processor, however, these thoughts can be preserved in a GREAT IDEA file” (7). Charles Moran (1984) tells the story of a friend who thought the word processor made him write too quickly. “With pen in hand,” Moran says, “he edited/organized before and while he wrote; now, with his word-processor, he edits/organizes after he writes. Word-processing has introduced a new step in his writing, and he is not altogether pleased with the change” (2). And Samila Nickell (1984) notes how the word processor shifted student attitudes toward revision. “When students came to my office,” she says, “with their word processed copies, they were eager to discuss ways to improve their papers because they realized that adding and deleting on the word processor is virtually painless” (14). Many of these researchers were well attuned to the material differences of writing with a computer: the plasticity of structure and the ease of revision, the limitations of small screen sizes, and the sometimes confusing input commands and interface design. Gail Hawisher’s (1986) meta-survey, “Studies in Word Processing,” points to and beyond those observations, suggesting that then future research might include lines of inquiry that included, for example, questions about writers who compose, rather than transcribe, at the computer; the possible limitations of screen sizes and editing modes; and the broader effects of computer use in the writing classroom (22–23).

The 1990s brought substantial changes in the study of computers and writing: growing interest in Computer Mediated Communication, such as chat rooms, MUDs, and MOOs; excitement about hypertext writing applications like Hypercard and Storyspace; the increase of desktop computer power and availability of multimedia software; and, of course, the birth of the World Wide Web. In 1998 Bernard Susser would point to “the rapid fall in the number of articles and presentations devoted to word processing” (348), arguing that “word processing did not disappear or become transparent but rather never appeared in any meaningful sense” (349). Susser drew this statement from the seemingly broad software category of the “word processor,” a term that wasn’t well defined and covered a broad swath of writing software. Additionally, much of this research, Susser argued, didn’t consider user expertise:

Although there must be many proficient users of word-processing packages in schools and universities, the evidence suggests that we have little grounds for claiming that a person writing on a computer is using a word processor in any meaningful sense. Writing teachers have not devoted much time to teaching the skills of word-processing packages, nor have they reached any agreement on what level of skills are adequate. (354–55)

Susser’s critique still rings true. Given Microsoft Word’s ubiquity and influence, it isn’t the subject of much contemporary pedagogical inquiry. (Exceptions to this might include technical writing courses—Carolyn Rude’s [2006] Technical Editing, for example, devotes space to writing with Word styles—and copyediting courses where Track Changes is an important professional literacy). This absence is particularly striking when we consider the institutional adoption and presence of Microsoft Word. Word’s availability, however, renders it as a transparent default in the writing classroom. In some fields the importance and ubiquity of Microsoft Office leads to a specific software literacy as a possible learning outcome and workplace function. We can’t imagine an accountant or statistician who doesn’t need an advanced proficiency with Excel, for example. But what is the analogous software literacy for the field of Writing Studies? Have we, per Susser, reached any agreement on what level of software skills are adequate?

Contemporary computing and normalized friction

The concept of friction offers one possible explanation for Word’s ascent and the general disappearance of word processing research. Friction is most noticeable when first adopting a new piece of software, as each task seems to take longer than it should. Once software is familiar and process is routinized, friction fades to the background. And once it seems normal, a specific use case isn’t frictional—it’s simply the way the software works. Over time, that friction melds into a user’s everyday interaction with the computer. (This is one way in which our participants deviate from typical computing patterns; they seek out and read for moments of friction.) And for many writers in the late 1990s, everyday use meant Microsoft Word. By 1999, Word’s market share had grown from a mere 20 percent in 1991 to 90 percent (Liebowitz & Margolis 2001, 180–81), and little has changed in the time since. Today, as we write this, Microsoft claims that “more than 1.2 billion people use Microsoft Office in 140 countries and 107 languages around the world” (Microsoft 2017). Microsoft maintains control of the enterprise and corporate space, and its only institutional competitor in the university setting is Google Docs, which looks like and functions similarly to Microsoft’s online version of Word. In corporate and education use contexts, the word processor is a relatively stable and familiar software category. As Matthew Kirschenbaum (2016) argues, “The reality today is that many writers use Word by default, and many of them use it with its default settings (by default). It is as though Word, having condensed the essence of word processing itself into its conspicuously foreshortened title, has become fully naturalized as the No. 2 pencil of the digital age” (237).

Word’s familiarity and ubiquity means that many writers can use it without problem; any perceived friction recedes to the background as a part of a typical use case. This familiarity serves a purpose, “as people prefer their technologies transparent: they do not like to think about the features of their word processors any more than they like to think about shifting gears in an automobile, and they prefer to look through a given technology to the task at hand” (Haas 1996, 25). The narrowing of the word processor market facilitated this perspective—moving (to follow Haas’s analogy) writing software from a manual to automatic transmission. Today many writers open Word, step on the gas, and go. Moving out of this mind-set, as Haas argues, “entail[s] looking at, rather than through, the literacy technologies we use every day. This will be difficult, and indeed not always practical. In the conduct of most work it is important to be able to treat technology transparently; after all, we have classes to teach, books to write, and children to raise” (23). Said simply: to study friction is to reintroduce friction into writing. Word became transparent and useful, and the word processor lost its luster as an object of inquiry.

Workflow as a way forward

Although we advocate for workflow thinking and believe that the workflow offers a meaningful contribution to the field of Writing Studies, we agree with Haas: transparent technologies serve a purpose, and sometimes we just need the interface to recede and help us get things done. We don’t recommend that writers jettison their preferred writing software without reason, and we don’t think that any particular piece of software is innately better or worse. We do, however, think that workflows offer a productive means of reconsidering and evaluating technologies—and of returning to the spirit of excitement and experimentation found in early computers and writing research.

This is best illustrated with a specific example. Early in our literature review for this project, we were enamored with Stephen Marcus’s (1984) description of “Invisible Writing with Computers”:

Our word processing systems run on microcomputers that have video monitors connected by wire to the keyboard/computer. We simply have students sitting next to each other exchange monitors, so that Student A’s monitor, still connected to Student A’s computer, rests atop Student B’s computer. Student B’s monitor rests on Student A’s computer. The monitors are angled slightly to discourage peeking. As Student A begins prewriting on a topic, the text appears in front of Student B. If Student A loses her train of thought, she types “???” whereupon Student B types a response such as “You were talking about. . . .” If Student A runs out of ideas, she types “XXX.” Student B may then suggest a new line of thought, or he might develop an additional perspective on A’s current thought. When the students print their respective files, Student A has the text, and Student B has the record of assistance. The two files together constitute a record of collaboration for further study and discussion and for use in Student A’s next draft. (124)

Marcus’s exercise aligns with many similar expressivist approaches to freewriting, such as automatic writing or writing with the monitor turned off. We were struck by this description of invisible writing, however, because of the perceived malleability of and comfort with the computer. Would we today feel comfortable moving or disconnecting monitors in our institutionally managed computer labs, where the computers are secured to desks and signs warn of not eating or drinking near the machines? Would we so willingly remove the familiar visual feedback of a writer’s own keystrokes appearing on screen—and would our students play along with this imposed friction?

Computers and writing scholarship began with creativity and experimentation, and contemporary research continues in that tradition, exploring facets of computing such as glitches (Boyle 2015; Hammer & Knight 2015), soundwriting (Stedman, Danforth & Faris 2018; Hocks & Comstock 2017; Alexander 2015), and game design (Ballentine 2015; Nielsen 2015; Colby 2017). But alphabetic writing technologies—word processors, outliners, mindmappers, and text editors, for example—haven’t seen the same level of inquiry or experimentation. To us, this signals a sort of “locking down” of the computer, a process through which writers are encouraged to use the computer in its default state, through institutionally sanctioned software and practices. Instead, we offer workflow thinking as a way to push against those norms—to encourage writers to rewire monitors or install new software or search for friction.

For participants in the workflow affinity space, searching for friction means identifying and eliminating moments when software gets in the way. These participants might recommend that writers step back from familiar software and consider how friction has become normalized in day-to-day use cases. For example, Brett Terpstra—whose workflows we discuss in chapter 4—said to us:

I think any current student should get a history book on what happened with the development of the word processor from Wordstar and Word Perfect up through what we have today, because it illustrates why format and portability is so important. If you want to be able to see your thesis in its raw format in a decade, you don’t want to write in Word, you don’t want to write in .docx, and I think once a person realizes that, they can start to explore the tools that work for them. (personal interview)

From Terpstra’s perspective, Word will appear to be a frictionless technology until it is no longer a readily available tool. Then, when Word files aren’t easy to open, friction will reappear. By stepping away from the familiar and searching for potential friction points, however, a writer can better understand how particular tools or formats shape and structure their work.

There is also a way to see friction as generative by purposefully introducing it to one’s process through difficult or troublesome technologies. This approach to friction departs from the efficiency-minded priorities of the writers we profile in this book, but it aligns well with the creative and inventive priorities of many writing pedagogies. This might look something like Anne Wysocki’s (2004) writing assignment that suggests instructors “give students a short (1–2 page) writing assignment—and then ask them to turn in the assignment written in crayon (any color or colors) on any paper” (27). Crayons, in an academic context, are pure friction: they are difficult to work with, they smear, they can look messy or unprofessional, and they subvert expectations. However, the friction imposed by crayons might help a writer better understand mediation and see their work in a new way. This friction can be inventive and productive, and it aligns with Marcus’s invisible writing exercise: swapping monitors won’t help a writer produce a polished draft, but it might help them generate ideas or see their work in new ways. It is purposeful friction.

In the following section, we suggest how workflow thinking might encourage these practices and how that shift might be productive for writers.

What workflows offer

In their introduction to The Essential Don Murray (2009), Thomas Newkirk and Lisa C. Miller write that Murray was “fascinated with the tools writers used—the right pen, the right-size notebook, and later, the right word processing program” and that “he was notorious for adding program upon program to his software, crashing regularly” (xi). Murray’s interest in notebooks and pens is a familiar one, exemplified by the shelves of designer journals in most bookstores. For many writers, a new notebook is the potential and the promise of writing—a way to see, feel, or perform textual production. And these material commodities of writing circulate through many spaces; premium pens and artfully bound notebooks can be a new lens on a difficult writing problem or a personal pledge to take seriously daily writing. But what of software? How many writers, like Murray, are willing to add program upon program to their writing software, even at the risk of crashing regularly?

We believe that a workflow-focused approach to computing tools and environments offers a pathway to agency, creativity, and confidence with computing, which is the spirit that has driven work in computers and writing research since the late 1970s. We note, for example, how William Wresch, in 1984, described the authors of chapters in The Computer in Composition Instruction: “These are people who are dedicated to teaching writing and who are looking for better methods. Their references to developers of early composition programs makes it clear they researched the work already done and saw what they thought were possibilities for teaching students in new and better ways” (2–3).

Workflows provide a similar opportunity: the chance to consider and think through one’s use of writing technologies and ask “What’s troublesome here?,” “What are new possibilities for this work?,” and “How might other mediated approaches allow me to see this work differently?” Through seeing knowledge work as modular, flexible, and adaptable, workflow thinking challenges the transparent technology model that dominates much of the contemporary computing market, and it encourages users to move beyond default solutions and configurations. In this regard, it echoes Stuart Selber’s (2004) call for functional literacies as a part of multiliteracy instruction, specifically Selber’s suggestion that instructional activities stress three particular functional areas: “understanding what computers are generally good at, using advanced software features that are often ignored, and customizing interfaces” (46). In studying and developing a workflow, a writer can search for the possibilities and limitations of a specific writing tool—enabling or disabling features, customizing an interface, or searching for an alternative approach. Alternately, a writer might choose to map their current approach to a task, asking how their preferences have accumulated over time and considering how a new tool might extend or limit how they approach a writing task.

Although intensely personal and often idiosyncratic, workflows are also replicable and shareable things. For the writers described in this book’s case studies, the shared and social aspect of the workflow offers a way into software experimentation. In documenting and sharing a workflow, a writer is saying, “This particular approach solved a problem for me” or “This tool or setting or sequence helped me to see something in a new way.” Other writers will take up that workflow, shaping it to their own needs and then sharing those changes with the original author or with new audiences. Over time, this social practice generates interest in particular writing tools or approaches to writing, and it mirrors what Cyndey Alexis (2017) found in her study of Moleskine notebook users—that “becoming a writer is composed of many instances in which one both imagines what writers do and performs similar acts,” and that “writers lean on chosen objects such as desks, pens, knick-knacks, and notebooks to begin to occupy a desired self and to practice it alone and, perhaps more importantly, for and with others” (49). While studying the workflow affinity space, we have seen how these writers are quick to examine the writing practices of others—adapting what works, discarding what doesn’t, and imagining how a slight tweak or different approach might change their work. They, like Murray, are often adding program upon program to their workflows, and they’re constantly asking how a new tool or tweak might change the way they approach knowledge work—as a solitary practice and a shared one.

Although the cases in the following chapters focus on writers who adopt a broad range of technologies, workflows aren’t limited to particular types of applications or use cases. In our years of teaching and researching, we have seen many paper-based and Microsoft Word–centric workflows. These are often personal practices that a writer picked up in school or in their early experiences in computing and that have become routinized and rendered transparent in the years since. And these fixed computing habits—which, we’ve found, are particularly prevalent in academic contexts—have prompted us to ask “What makes a workflow become entrenched and static?” and “What makes someone stop looking for new affordances?” If we believe that tools matter and that mediation has an affective importance for the writer, what are the implications of a static workflow—and, in turn, what are the potentials and possibilities of workflow thinking?

This book is our attempt to answer those questions and to offer workflow thinking as a productive lens for writers, writing researchers, and writing instructors.

Chapter 2: Sociocultural Theory and Mediational Means

In the previous chapter, we outlined the benefits of paying attention to writing workflows, to seeing how writers break down the tasks involved with writing and fit them to specific tools, enact them in specific practices, and link them together over specific histories and situated events. We argued that the field can develop more complete pictures of writing processes and people’s investment in them or frustrations with them when they are viewed as workflows. More than that, when writers explicitly consider their tasks from a workflow perspective, they invite creative and serendipitous approaches to assembling and reassembling their writing tasks, tools, attitudes, and environments.

This chapter argues that a sociocultural perspective on writing lays the foundation for defining and tracing writing workflows by widening our perspective past the moment of inscription and broadening the roles that tools play in writing. Drawing especially on the work of Paul Prior and Christina Haas, we describe how sociocultural approaches emphasize how people, tools, discourses, and practices develop together over time in ways that disrupt conventional accounts of agency, motivation, and cognition. Without such a perspective, “writing workflows” could be reduced to simple choices of one tool’s features over another or varying procedures that could each result in similar products or texts in the end. While choosing tools and tinkering with practices are aspects of workflows that we will focus on throughout this book, these aspects are inextricably linked with affective orientations, motivations, rich histories of tool development culturally and tool appropriation by individuals, and the complex mediation of consciousness and action distributed among a wide network of actors. As our case studies show, choosing one tool over another is not such a simple act, however much it might seem inconsequential or random to observers or even to writers themselves. Instead, these choices are the nexus of intersecting lines of histories, and they reverberate through the present to mediate writers’ use of these technologies and the practices in which they are embedded.

Calls for More Research on Writing Processes

As described in the previous chapter, we position the theoretical lens of the writing workflow as an extension of writing process research, one that attends more closely to the mediating tools involved in literate activity. Through this extension, we see this book as responding to recent calls other scholars have made to return to empirical research into writing processes. These scholars have narrated histories of the value of early process research and declining interest in such work in the field (Shipka 2011; Takayoshi 2015; Van Ittersum & Ching 2013). Each points to the turn in the 1990s toward exploring the social contexts of literacy as the reason for interest in process research drying up.

Jody Shipka has described two historical phases of research into writing processes, from the cognitive approaches of the 1970s and early 1980s exemplified by Flower and Hayes, to a “social view of process” that “tried to attend more closely to the situated, social, and interpersonal dimensions of the individuals’ and groups’ production practices” (32–34). This latter approach has since been criticized as “perhaps a bit too situated” (34) in its “readers, writers, and texts as independent objects” (Syverson 1999; qtd. in Shipka, 34–35).

Pamela Takayoshi (2015) traces declining interest in process research to the social turn, arguing that “since the social turn took hold in rhetoric and composition (indeed, took hold across disciplines), researchers expanded their lenses from looking at writing as a process, labor, or practice to look more broadly at literacy as it functions in social contexts” (3). Similarly, Van Ittersum and Ching claim that in the 1990s, “scholars became less interested in what was happening in the heads of writers and more interested in the social contexts within which they wrote” (n.p.). This expansion in focus, Takayoshi argues, has led to less interest in “empirical, data-based” methods in favor of “theoretical scholarship” (3–4). All four of these scholars point to a return to empirical methods as a means to rekindle inquiry into writing processes. Takayoshi, in particular, directs scholars’ attention to the digital tools and environments involved in writing: “Writing spaces are dramatically different than they were 25 years ago, and the field of Writing Studies has not yet in any sustained way paid close systematic attention to how this difference impacts processes and products of writing” (4).

We suggest in this chapter that attending to workflows provides the writer a means of encouraging the systematic attention called for by Takayoshi by directing attention specifically to the interplay between the tools, material conditions, and the activities afforded by them. However, we are wary of limiting the word “workflow” to simply meaning a focus on computer software. We see research into workflows as providing the means to examine contemporary writing processes without limiting that inquiry to activity in the head or to the contexts alone. In the next section, we describe how our concept of workflow is shaped by the sociocultural approach developed by Paul Prior and others, with special attention to Prior and Shipka’s (2003) concept of “environment-selecting and -structuring practices.”

Tracing Literate Activity with Sociocultural Theory

In describing various approaches to studying writing processes, Paul Prior emphasizes the many moments that happen outside of “the immediate acts of putting words on paper” (2004, 167), such as conversation with a friend days before, review of other related texts, the development of the tools and discourses the writer will use, or an observation and the resulting feelings that become the motive for composing the text. Why privilege that particular moment that words are being inscribed when so many other moments have shaped that one so completely? Seen from this perspective, even a quick writing task becomes difficult to fully trace, as it involves discourses, genres, and writing tools spanning years as well as the writer’s many lived experiences that shape their engagement in the writing task. Due to this complexity, Prior argues that writing “is not a tenable unit of analysis” but only a “starting point” from which to “trace the literate activity associated with it” (2008, 13). Literate activity, as Prior defines it, involves “reading, talking, observing, acting, making, thinking, and feeling as well as transcribing words on paper” (1998, xi). Instead of aiming to produce complete accounts of writing processes through artificially bracketing off specific moments or scenes of writing, researchers drawing from sociocultural theory have sought to develop more richly detailed accounts of literate activity by widening the scope of what matters.

Sociocultural theory is most often associated with the work of Lev Vygotsky, a Russian psychologist working in the early 1900s. Prior and Stephen Witte each offer accounts of Vygotsky’s “understanding [of] human consciousness as sociohistorically produced” (Prior 2006, 55), that it “develops historically through the individual’s engagements, via tools, in practical activity and through the individual’s interactions with others via language and other signs” (Witte 2005, 131). This focus on tools and their role in the development of consciousness makes sociocultural theory especially attractive and useful for our investigation of writing technologies and their role in writers’ processes. Prior provides a distilled overview of the approach: “Given Vygotsky’s (1987) emphasis on the genesis of tools (material and psychological) and people (learning/development) and Voloshinov’s insistence that language (indeed any type of cultural sign) is ‘a purely historical phenomenon’ (1973, 83), sociocultural approaches emphasize concrete chains of history and the complex ways temporality is folded into people, objects, environments, and practices” (2015, 187).

In other words, in this book we trace the development of tools and people over time to understand how they came to be tied together in a particular workflow at a particular moment in time. This means, for example, understanding how the history of word processor development and adoption throughout the 1980s and 1990s led to certain versions of Word and our participants’ antipathy toward the interfaces and feature sets of that software. It means understanding our participants’ varied writing tasks, how they learned to complete them, and the various combinations of writing tools they’ve used over time in similar or different contexts. It means tracing how the physical places where they write shapes their tool selection and vice versa. It means accounting for the ways older word processor interfaces (predating graphical user interfaces) are folded into the stark interfaces of the text editors our participants prefer and the role of nostalgia and aesthetics on those preferences.

[image: Screenshot of WordPerfect 5.1]

Fig10. A screenshot of the minimal interface of WordPerfect, version 5.1, released in 1989.

[image: Screenshot of Byword]

Fig11. A screenshot of the similarly minimal writing interface of Byword 2, released in 2013.

While all writers make use of many tools (including the language they write in, the concepts they write about, the writing instrument and medium, etc.), the writers in this study intentionally seek out new software and hardware tools to use, meaning that tracing all the connections between tool development and learning would be a much longer, and frankly more boring, affair. Instead of tracing everything, in this book we focus on concrete writing activities, as Prior suggests: “to move beyond chanting such lists of mediational means [tools] as a kind of sociohistoric mantra, we need to weave tools into specific accounts of writing, to give these silent tools a voice in the constitution of activity” (1998, 180).

One key aspect of the sociohistorical approach to tools is the focus on two kinds of development. Christina Haas (1996) describes these as “technology in process,” meaning the “process of use and process of development.” Studies that examine both kinds “entail examining not only the transformative power of tools on consciousness, but also how the tools themselves get made, and how they get transformed” (18). First, we can trace any individual’s use of a given tool over time. For example, one of our participants initially started using the text editor TextMate but was unimpressed by its minimal interface, thinking this implied lack of affordances. Over time he began to use its more advanced features, even building additional functionality into the application through writing and distributing plug-ins. Second, we can trace TextMate’s development itself. This could mean starting with the development of computer text editors and how they are different from word processors. It would involve tracing the development of TextMate itself, which stalled in 2007, leading many users (including the participant in our study) to use other applications. Beyond looking at single tools involved in an activity, Prior suggests several scholars have extended Vygotsky’s approach by also examining the “sociogenesis of functional systems” (1998, 188). A functional system is both “typified and fleeting” and “tie[s] together people, artifacts, practices, institutions, communities, and ecologies around some array of current objectives, conscious or not” (Prior et al. 2007, 19).

One of the benefits of the “historical-genetic” approach, Haas argues, is that it becomes “difficult to continue to posit computers, or any technology, as amorphous, omnipotent agents of change, suggesting instead that a given technology’s effects may be varied, elaborate, complicated, and far from immediate” (18). None of the writing technologies described in this study (or elsewhere) can be seen as providing singular answers to writing challenges. While our participants may frame some applications as “the answer” to certain challenges they may have faced, we see these as always partial answers that often bring their own challenges and are time-limited in their usefulness as the whole ecology of tools and tasks changes over time.

A particular challenge for scholars working from sociohistoric theory is maintaining a perspective on literate activity that keeps in mind the situated concrete actions of a writer (one who is, say, working with a particular text editor to compose a legal brief) as well as the dispersed histories that play a role in that activity (previous mindmapping and writing activity that led to a written plan for this brief, the previous times the writer has written legal briefs, previous uses of the text editor, previous writing activity in general, experiences with the client, etc.). Prior and Shipka (2003) demonstrate one approach through their research interviewing academic writers about how they have engaged in a specific writing project. They direct their participants to draw two pictures: the first depicting what the writing activity looks like (including places, resources, people, and feelings involved) and the second to “represent the whole writing process . . . from start to finish” (182). Prior and Shipka then followed up on the drawings in the interviews.

Through these “thick description[s] of literate activity” (185), Prior and Shipka offer accounts that stitch together the situated actions with the chains of historical moments that have shaped them, typically through a focus on the mediating role of tools and other objects. They describe a writer who does the laundry while revising articles so that the regular breaks to pull clothes from the dryer and fold them provide a time and space for mind-wandering. They show a writer who uses a card table to block their writing space as a “punishment” so that finishing the writing project results in the “reward” of being able to move freely in the space. They recount the many conversations one writer had with a friend at a bar that provided help in “managing affect and motivation” (197) while working on a dissertation prospectus. Rather than depicting literate activity as some kind of unique cognitive process or set of tools, Prior and Shipka argue:

Literate activity is about nothing less than ways of being in the world, forms of life. It is about histories (multiple, complexly interanimating trajectories and domains of activity), about the (re)formation of persons and social worlds, about affect and emotion, will and attention. It is about representational practices, complex, multifarious chains of transformations in and across representational states and media (cf. Hutchins, 1995). It is especially about the ways we not only come to inhabit made-worlds, but constantly make our worlds—the ways we select from, (re) structure, fiddle with, and transform the material and social worlds we inhabit. (181–82)

We seek to depict and trace literate activity in this way, through a focus on workflows. In our case studies of writers, we ask them to recount their histories with writing and computing, and we trace the histories of technologies through various means. Beyond this well-established sociohistoric approach, we follow Prior and Shipka in their attention to the ways writers engage in “environment-selecting and -structuring practices (ESSP’s), the intentional deployment of external aids and actors to shape, stabilize, and direct consciousness in service of the task at hand” (219).

Prior and Shipka’s naming of ESSPs provides a crucial theoretical structure for this book. While this section began with the identification of Vygotsky’s central insight as the fact that consciousness is not a stable entity but instead is produced historically through engagement with tools and activity, such an insight can be difficult to understand concretely. One might accept that a computer affords a different composing experience than a pencil, but ultimately one might feel as if their consciousness is not profoundly different as a result of using one or the other to write. This feeling, we would suggest, is more the result of common understandings of writing activity as predominantly the transcription of mental thoughts rather than close examination of what writers do and why. Examining why and how writers choose and create specific types of writing environments unearths many fascinating accounts of writers’ motivations, emotions, and levels of concentration. Sometimes writers struggle to put into words why they prefer to work in certain ways, ultimately landing on some variation of “This way feels right” or “This is just the way I do it.” Accounts by some writers of their writing practices have for decades depicted the ceremonial nature of their routines for “inviting the muse” or just working productively: working regularly at a particular time of day, using particular paper and pens, listening to certain music or requiring absolute silence, and so on. We might translate here the everyday phrase “getting into the right frame of mind” as pointing to the practices that actively “shape, stabilize, and direct consciousness in service of the task at hand” (Prior & Shipka 2003, 219).

In this book, our case studies focus on literate activity, on writing and computing practices rather than centering on specific technologies. While the technologies our participants use are interesting, provide valuable affordances uncommon in conventional word processors, and should be better understood by scholars in Writing Studies, they are not uniquely special in their abilities to help writers write in particular ways. As Christina Haas (1996) reminds us, “A practice account of literacy acknowledges these material tools and technologies; [but] also posit[s] technology as only one of a complex of factors that impinge on thinking and doing in context” (19). We began with curiosity about the tools and what they afforded (Markdown in particular), but we quickly realized that the more interesting story was the approach to technologically mediated writing activity these writers took.

In drawing on Prior and Shipka’s concept of ESSPs, we follow Van Ittersum and Ching (2013) in extending our inquiry beyond physical practices and into the realm of software. We lose a good deal of the picture when we ignore the various ways people choose sparse or cluttered interfaces, arrange their windows just so, or design additional software tools to prevent the need to switch away from a writing application to a web browser. Selecting and structuring interfaces plays a large role in our participants’ work, as we detail in the subsequent case study chapters.

Participants

Before we began this project, we were both readers of blogs and listeners of podcasts that generally focused on Apple products, writing, and productivity. It was this interest that led Tim to introduce himself to Derek after hearing Derek’s brief appearance on a Mac Power Users episode devoted to interviewing listeners, talking about how he uses software for academic writing. This personal interest became a scholarly curiosity when we both began focusing on Markdown, a writing technology and a common denominator between the many blogs and podcasts we were following.1 Derek initially wrote about Markdown bloggers as a community of practice, describing their relationship to distraction-free writing applications (many of which use Markdown to format plain text documents) (Van Ittersum & Ching, 2013). From here, we initially began planning a research project devoted to studying writers who compose in Markdown.

We began the project by identifying two writers who were prominently associated with Markdown, hoping that they could make introductions to two more writers and lead us to other participants in a snowball sample. While we were able to recruit two more participants to be interviewed, it was a challenge to recruit more. The first two writers we interviewed were David Sparks and Brett Terpstra, who provide two of the case studies in this book. As we analyzed their interviews and compared them to the other two, we saw more reflection and detailed description on their writing practices and their interests and motives for using certain technologies. We attributed their increased fluency in this area to their efforts to provide writing instruction, in the form of blog posts about using Markdown, self-published guides to using Markdown, creation of writing tools, and so on. In other words, Sparks and Terpstra served as links between our field and these technology enthusiasts. While they aren’t involved in the discipline of Writing Studies, they are interested in writing as a process that one can teach and learn. As we became more interested in focusing the study on these writers, we also identified Federico Viticci as another writer who writes in Markdown and offers writing instruction, in the form of a self-published manual on using the iPad writing application Editorial, as well as more informally in blog posts, email newsletters, and podcasts. We did schedule interviews with Viticci a few times and he signed our consent form, but, unfortunately, we were not able to connect with him to conduct an interview. However, we see his role as an innovator on the relatively new platform of iOS as an important perspective to include in the book. We have found several blog posts and podcast episodes where he addresses most of the topics we would have asked him about, although of course he does not directly answer the questions we would have asked (and did ask Sparks and Terpstra).

These three writers (Sparks, Terpstra, Viticci) are interconnected professionally in many ways and are part of a larger affinity space (Gee 2004; 2005) focused on enthusiasm for Apple products and productivity. Viticci and Terpstra have both appeared on Sparks’s podcast Mac Power Users many times (four and six times, respectively, at the time of this writing), Terpstra is listed as a contributor at Viticci’s MacStories, and Terpstra and Sparks have cowritten two books of tips for Mac users. While they all have different perspectives on writing and different tasks involved in their professional lives, their professional connections and co-participation in this affinity space more broadly means they often draw on and contribute to common resources and practices as they develop and work with their personal workflows.

As we began to identify and trace what it means to engage in workflow thinking and to devote time and energy to specifically creating, improving, and experimenting with workflows through our analysis of these writers’ activities, we found their connections and shared context an important advantage for the study. We could trace how different participants engaged with the same applications and how they put them to use in different ways. We could see how reviews or comments from one participant shaped another’s use.

Most important, we could see that a shared interest in workflows provided an exigence for these writers to document their workflows and thus offered more reasons to reflect carefully on their writing practices and tools. On the one hand, we do not hold up these three participants as exemplars, as role models for writing students or scholars. They have an enthusiasm for technologies that shapes their interest in tinkering with new applications and devices at a more frequent pace than other writers might need or want. Yet on the other hand, these three enthusiasts are documenting and teaching writing practices—activity that is at the core of our field, where we should be the enthusiasts. In the affinity space where these writers participate, a common practice is documenting and experimenting with workflows, and for these three that often means writing workflows. We see this style of engagement as a useful model to emulate more explicitly in our field. To be sure, such work takes place in different forms in conference presentations, workshops, classrooms, and even scholarship. Rather than calling for some radical break with the past, we argue that reworking some key concepts from the field could open spaces for discussion and sharing of practices that too often are taken for granted, individually and socially (see Horner 2015). We will return to this argument in more detail in the final chapter of the book.

Computation, Representation, and Inclusion

The benefits of studying these three connected participants, however, are tied to a significant limitation: All three of our participants are white males, as are we. Within the affinity space they participate in, there are very few nonwhite people, and few women are visible as podcast hosts and bloggers. This is likely linked to the affinity space’s proximity to the fields of programming and computer science, which, as Annette Vee (2017) notes:

As a profession, programming has resisted a more general trend of increased participation rates of women evidenced in previously male-dominated fields such as law and medicine. The U.S. Bureau of Labor Statistics reported that only 23.0% of computer programmers in 2013 were women. The numbers of Hispanic and black technical employees at major tech companies such as Google, Microsoft, Twitter, and Facebook are very low, and even lower than the potential employee pool would suggest. High-profile sexism exhibited at tech conferences and fast-paced start-ups now appears to be compounding the problem. (17)

Although we don’t have data about the audience demographics for the workflow affinity group, we can see how the group hovers near the traditional domains of programming and computer science. Conversations often involve programming or scripting solutions, and they tend to privilege concepts such as abstraction, systems approaches, and modular thinking that are taught within the domains of computer science. Within the affinity space, this extends beyond the podcasts, books, and blogs we’ve highlighted in our research. Many of the software applications that our participants use and celebrate are developed by white men, or have employees that fall into gendered categories of work. For example, Ulysses, a writing application that is popular within the affinity group and mentioned throughout this book, lists fourteen employees on its “Team” webpage: seven men and seven women. All of the women work in either marketing or customer service. The seven men, in comparison, are software developers and graphic designers. This labor composition seems typical of the computing industry in the 2010s.

Of course, as both Janet Abbate (2012) and Marie Hicks (2017) remind us, this wasn’t always the case; women once drove most of the major work in computing. And within the field of computers and writing, women were at the forefront of all important work: starting journals, publishing research, and writing software. Many of these women had to push against institutional norms and beliefs that computers weren’t for writers or humanists but were instead the purview of scientists or engineers—fields in which men were the dominant population. Women persevered, bringing computers to writing labs and classrooms, and they built a field grounded in inclusive approaches to computing and literacy.

We—Derek and Tim—have benefited from the guidance and generosity of female mentors, and throughout our work on this project we have discussed at great length the limitation of a participant group consisting of three white men. When we began this study by focusing on Markdown, we accepted this limitation because we could not find any other people who were as vocal and clear about why and how they wrote with Markdown. In the course of analyzing the data, however, we shifted from a clear focus on Markdown, to the workflows that Markdown affords, and finally to simply “workflow” as a concept. We have decided to remain with the data that led us to these arguments rather than searching out new participants for a study of workflows more generally, but we think further studies into the workflows of more diverse writers in different settings are important and certainly called for.

We are also dedicated to inclusive work and pedagogies, and we hope this book offers a practical contribution that can be broadly adopted across many learner populations and perspectives. We don’t want to speak only to young white men who are interested in the nerdy facets of writing technologies. Instead, we want to work toward an inclusive approach to technologies through which all writers feel comfortable and can find community in the creative use of and experimentation with their writing tools.

Finally, as we talk about the limitations of our participant group, it’s important to note that our participants are personally committed to similar goals. We have been reading, listening to, and generally following their work for years, and we have found them to be compassionate and generous people who have supported important equitable causes. All three, for example, have used their publishing platforms to advocate and fund-raise for App Camp for Girls. Although we remain mindful of and transparent about the demographic limitations of this study, we think it represents a broader cultural problem and not something tied to our participants or their particular affinity space.

Study Design

This study began with our interest in Markdown and exploring the motives writers had for using it. We left Markdown out of our research questions to keep them broad so that we could frame participants’ Markdown use within larger motives or practices that they might share with us. Our study, then, focused on these two questions:

	How can writers evaluate the increasing numbers of hardware and software writing tools and processes now available?

	What role do technical skills play in writing activity?

Following our approval by the Institutional Review Board in late 2014, we began interviewing participants via Skype and recording their interviews with their permission. Our interview protocol followed a semi-structured approach (Charmaz 2006; Selfe & Hawisher 2012; Selfe & Hawisher 2013; Spinuzzi 2013). There were eleven standard questions that we asked of everyone, but we allowed each interview to go in different directions depending on how participants answered the questions or what activities each participant engaged in (e.g., we spent more time talking about software development with Terpstra and more time talking about writing processes with Sparks). Although we were focused on Markdown in these interviews, we used the term “workflow” in our questions because this was the word that our participants used to describe their writing practices and tools. In using this term, we were looking for how Markdown fit with the various writing tools and practices they used. (See “Spotlight on Interview Questions” at the end of this chapter.)

For the chapters focused on David Sparks and Brett Terpstra, the interviews form the main data set for our analysis. We also reviewed blog posts and podcast episodes as a check on our interpretations, making sure these additional sources fit the patterns we saw in the interviews. For the chapter focused on Federico Viticci, we scheduled an interview on two separate occasions over the course of a year but were not able to connect. We then formed a data set from every blog post and podcast episode where he discusses his writing workflow.

After transcribing the interviews, we imported the transcribed data into an Excel spreadsheet, following Cheryl Geisler (2003). We independently analyzed the data segmented by turns by first using an open coding scheme (Corbin & Strauss 2008; Saldaña 2013) with constant comparison to identify initial patterns. After discussing the codes each of us had used, we identified “friction” as a key concept related to how and why these participants adopt new tools and practices. We worked to develop a clear definition of this term and then independently coded again. After this coding round, we discussed segments in the transcripts that we did not both code as “friction” until we reached agreement. Rather than employing an outside independent rater, we followed Peter Smagorinsky (2008) to “reach agreement on each code through collaborative discussion rather than independent corroboration” (401). In working to understand friction and its role in these writers’ adoption of new or different tools, we transitioned from focusing on Markdown and the writing processes it affords to thinking about “workflow” as a concept of its own.

After identifying “workflow” as the key idea in our data that we wanted to understand, we examined how descriptions of friction from our participants led to workflow design or refinement. We then sought to trace those workflows over time by going back to the participant’s blog posts and podcast episodes, looking for further explanation or description of particular workflows and the workflow thinking they exhibited in making them, checking that what they described in the interview was consistent across other data.

We thought carefully about how to represent the workflows within each case. Although the flowchart is a common means of representing workflows in industry and professional contexts, we deliberately avoided that kind of representation in our case chapters. Instead, we wanted to emphasize each participants’ workflow thinking as the focus of each chapter rather than packaging their workflow itself as a model for readers to learn and adopt (although we provide enough links to each participant’s publications that interested readers can follow these to learn the workflows). Additionally, we thought that depicting their workflows as diagrams would erase some of the rich context of friction that our participants were working against, especially because that friction provides the context from which their workflow thinking emerges.

We do find visual depictions of workflows to be valuable in other ways, as we describe in more detail in our discussion of workflow mapping in chapter 6. When writers themselves produce palimpsestic maps that depict the historical changes to their writing workflows over time, their maps are intimately tied to embodied experiences engaging in that writing activity, and they offer a reflective richness than isn’t seen in prescriptive flowcharts. Approached as a reflective practice, we see great potential in workflow mapping, and we hope that it, along with workflow thinking, will help others push this project in new and different directions.

Case Study

Our interest in the workflows of these participants led us to a case study approach in a trajectory described by Anne Haas Dyson and Celia Genishi (2005). They describe how researchers start from their interest in the “local particulars of some abstract social phenomenon” (2–3). As they explain, “The aim of such [case] studies is not to establish relationships between variables (as in experimental studies) but, rather, to see what some phenomenon means as it is socially enacted within a particular case” (10).

In this study, we set out to understand what writing with Markdown means to the writers we interviewed. We presumed that our participants were not going to be exemplars for the field of Writing Studies, that this study was not about proving how some new writing technology led to better results than the word processors common in our field. We agree with Christina Haas’s (1996) conclusions drawn from her analysis of Vygotsky’s work: “The effects of technological change (e.g., computerization) on writing are profound, but certainly not unitary, easily predicted, immediate, or consistent across contexts” (16). Rather than conducting experiments or tests with our participants, students, or others related to Markdown, we sought to develop a detailed picture of how Markdown fit within our participants’ lives. As our analysis has progressed, we have shifted to exploring how writers establish their workflows and how they make them meaningful.

While we are not seeking to generalize from our participants’ workflows in order to prescribe workflows that writers in the field of Writing Studies (scholars or students) might use, we do see some value in determining what aspects of conceptualizing writing activity as a workflow might be valuable for writers in our field. We don’t think Markdown is likely appropriate for many student writers, but thinking as carefully about one’s tools as the participants in these case studies may be warranted. In other words, we are looking to generalize from these cases in particular ways, similarly to Annemarie Mol’s (2008) discussion of a “trajectory”:

Good case studies inspire theory, shape ideas and shift conceptions. They do not lead to conclusions that are universally valid, but neither do they claim to do so. Instead, the lessons learned are quite specific. . . . It does not apply everywhere. This is not to say that its relevance is local. A case study is of wider interest as [it] becomes a part of a trajectory. It offers points of contrast, comparison or reference for other sites and situations. It does not tell us what to expect—or do—anywhere else, but it does suggest pertinent questions. Case studies increase our sensitivity. It is the very specificity of a meticulously studied case that allows us to unravel what remains the same and what changes from one situation to the next. (9)

Following Mol, we aim to use these case studies of workflows to contrast with the discussions of writing tools and writing processes in Writing Studies. The trajectory we embark on from these studies is to find ways for scholars, teachers, and writers in the field of Writing Studies to more explicitly invent writing workflows and to approach their writing activity with “workflow thinking.”

Spotlight on Interview Questions

Writing Process

1.Could you describe a recent writing project? How you went from the beginning to the finished project?

2.How did you arrive at that workflow/process? Has it been static, or do you change your workflow(s)?

3.It often seems like designing a workflow isn’t a straightforward, linear process. What’s your experience of this?

–Follow-Up: some people might use the word “tinkering” to describe that process. Would you?

–Follow-Up: Do you think in terms of cost/benefit ratios when it comes to “automating” or scripting writing tasks? If so, can you walk us through an example?

Markdown/Development/Scripting

1.What are the connections between writing and developing, especially when developing scripts connected to writing?

2.How would you describe your interest in or use of Markdown?

3.What tools/workflows do you use now? Have your goals shifted over time?

–Follow-Up: Why did you design your (tool, software, blog, workflow, etc.) as you did?

Distribution/Publication/Podcasting

1.Why do you share your technologies/workflows/reflections on writing?

2.What benefit do you think/know others get from your work?

3.Who do you write/design for? What kinds of interactions do you have with your audience?

–Follow-Up: It seems to us as if professional programmer tools are filtering down to non-programmers–e.g., Git, Markdown for non–web designers, professional text editors like BBedit and Sublime Text, etc. Would you characterize it similarly? Why?

4.Who do you think is driving the popularity/interest in “Writing software/technologies” (i.e., Markdown)?

Rhetoric/Composition

1.What should current students know about writing tools? What tools should they know about?

2.Should writing teachers know anything different?

3.What should writing teachers know about writing tools? What tools should they know about?

4.What should we have asked you that we didn’t?

5.Who should we talk to next? Can you help make introductions?

1. Markdown is a tool for converting plain text documents to many different formats. Markdown is also the syntax used to format the text in those documents. We describe it in much more detail in chapter 3.

Chapter 3: Cooking Ideas

Yeah, I’m a nerd, so I’m always looking for something more effective. —David Sparks

Writing with Computers

In his remarks at a Computers and Writing Town Hall session in 2001, Barry Maid articulates a fairly settled tension in writing instruction that we seek to reopen in this chapter and in the book overall: “My job, first and foremost, has always been to teach writing—not computers or software” (n.p.). While Maid goes on to articulate a nuanced and useful argument about how writers can best relate to new writing technologies, we can imagine others who might voice this claim as suggesting that technologies are trivial or extraneous to the “real” concerns of writers. More than simply a pedagogical maxim, such a position sees writing as an idealized set of activities (invention, composing, engagement with readers) that transcend the medium through which they occur. From this perspective, we don’t need to teach software or computers, because those objects don’t actually figure importantly into the activity of writing.

Maid, on the other hand, presents this claim in the context of teaching technical communication and feeling pressured to teach “the industry standard tool” by the many stakeholders involved. Teaching students to become experts in the advanced features of these standard tools (e.g., Word or RoboHelp) ultimately seems like folly to Maid because of the likelihood that students’ expertise in the various advanced features of these programs “would be outmoded in three months” (n.p.) after new versions of the software were inevitably released. Rather than focusing on the “standard” software of any given year, Maid describes classroom activities where students experiment with new kinds of software toward the goal of learning “how to ‘figure out’ a piece of software” (n.p.). Maid boils down his goals for students with respect to writing technologies to the following: “Students need to have enough information about the task and the potential tools to choose the tool right for the task. Then, they need to have enough information to figure out how to make the tool do what they need it to do. I accomplish this by talking with my students about what tasks different kinds of software do best” (n.p.).

While Maid was able to frame this more nuanced set of goals as synonymous with the claim that his “foremost” job was to “teach writing—not computers or software” (n.p.), we see little evidence in contemporary Composition scholarship or practice that others agree. As described in chapter 1, few teachers or students in Composition are deliberately “choosing” writing software (beyond perhaps multimedia authoring tools) at all, instead defaulting to Word or Google Docs. What are they missing out on? What might expertise in knowing “what tasks different kinds of software do best” look like in practice?

This chapter opens our examination of writing workflows with a case study of a writer who demonstrates that expertise. He works by day as a lawyer and has a significant side gig as a blogger and podcaster focused on software and hardware in the Apple ecosystem. Through this case study, we investigate the ways writing is mediated by tools and demonstrate how experimenting with and adopting various software tools and practices can still be understood as maintaining a focus on writing. The constraints Maid described nearly twenty years ago persist today: there are many software applications, advanced features, and workflows that knit them all together, yet writers (students or not) are better off aiming to “produce good writing” more than “becoming experts in a piece of software that would be outmoded in three months” (n.p.). Through this case study, we suggest a path around these constraints. We argue here that experiments with various software tools and practices can be done in the service of composing practices and goals when writers deliberately alternate their focus between experimenting and composing, through focusing on writing workflows.

We argue in this chapter that one key benefit of attending to writing workflows is that writers can explore different states of mind supported by the mediating influence of tools and practices yet resist the seduction of learning tools for their own sake (e.g., to use Maid’s example, learning RoboHelp’s features on their own terms rather than learning to use RoboHelp in the service of clear writing objectives). A workflow is crafted around an end the writer has developed that is separate from the user interface (UI) or user experience (UX) of any individual app.1 By always aiming toward their writing objectives, rather than toward the objective of simply learning X or Y application, writers who attend to their workflows can navigate between the rock and a hard place of learning tools on the tool’s own terms and remaining attached to a single application (e.g., Microsoft Word) while ignoring the affordances of other tools.

Sparks’s Workflow

David Sparks is an attorney and self-professed geek who has been blogging since 2007 and podcasting since 2009. He is also the author of technical guides on using Macs and iPads as well as many self-published guides on technical topics such as email, presentations, and going paperless. In these guides, his blog MacSparky, and on the podcast he cohosts, Mac Power Users, Sparks frequently talks about tools and practices for writing.

[image: Screenshot of the Mac Power Users podcast homepage]

Fig12. The Mac Power Users podcast began in 2009 and consists of discussion between the two hosts (David Sparks and Katie Floyd) on Apple-related technology topics, as well as “workflow” interviews with guests.

One of the central techniques Sparks discusses is what he calls “cooking ideas.” In our interview with Sparks, he jumped right into describing this practice when we asked him to walk us through a recent writing project. On “bigger projects . . . I start mindmapping them or outlining them first before I actually get to the text part.” This process starts “weeks in advance where I will open an outline or a mindmap and then I will go spend little spurts of time in there over the next couple weeks, even though I know I’m not gonna start writing for two weeks, the map will begin quite early.” This planning process is the “cooking” part:

It’s just been my belief that my subconscious mind does a better job of kind of sorting out how I want to put it all together. And so with a limited amount of active time on it every day, but probably the thing kind of percolating in the back of my head all day, I usually come up with a pretty thorough outline by the time I’m going to start writing the text. And once I get to that point, I export the mindmap or the outline just as simple text into a text file.

I’m very systematic about it. Like right now at any one point in this MindNode [mindmapping] application, I’ve got seven or eight different things cooking in there. I’ve got my day job, I’m a lawyer, I’ve got a big motion I’m going to be writing that’s due on April third. And so a few days ago I opened up a mindmap on it, and I’ve got some concepts in there already and it’ll start growing. And, you know, about a week and a half from now, I’ll have a nice full kind of mindmap of it, and then I can start dropping it into text, and then I can start, you know, putting words in there.

[image: Screenshot of MindNode mindmap]

Fig13. David Sparks shared this screenshot of MindNode in a 2013 blog post reviewing a new version of MindNode.

After mindmapping, Sparks describes converting the resulting mindmap to an outline and then opening the outline in a writing application like Ulysses or Scrivener. Rather than displaying text in a file as part of a single, scrolling document (as with Microsoft Word or Google Docs), these applications display an outline in a sidebar. The outline, however, is more than a visual representation of document headings; instead, each outline entry is a discrete unit—called a “sheet” (in Ulysses) or a “section” (in Scrivener). Sheets and sections can be rearranged, merged, or separated during the writing process, and the user can click on a sheet or section to focus on that part of the text. With Scrivener, users can split the screen into two window panes, displaying different sections of the outline/text at the same time.

[image: Screenshot of Scrivener interface]

Fig14. The interface of the writing application Scrivener, showing the section outline on the left and multiple writing panes on the right.

At this stage of his writing process (and Sparks explicitly describes it in stages, where he never goes back to mindmapping or outlining after he begins writing the text itself), Sparks offers a straightforward description of his writing activity: “And then I just start, you know, putting meat on the bones, for lack of a better word. . . . My only job at that point is the words.”

Sparks asserts that this straightforward composing process is enabled by the lengthy mindmapping planning phase:

And frankly the way I do things, because I spend so much time outlining and planning, I don’t find myself hitting writer’s block. I mean, maybe it’s because I don’t write fiction, maybe that’s a different thing, but I just don’t—to me, it’s like I’m kind of a lunchpail writer, it’s like, ‘ok, I’m going to sit down and I’m going to write this article for Macworld or write this legal brief or whatever’ and I just start doing it. But I have put in a lot of thought ahead of time for anything of consequence as to how it’s going to be structured, and even sometimes I’ll have even analogies and things I want to include are part of that mindmap.

This workflow involves many digital tools, but Sparks notes that he has been doing some version of it for years:

You know, it just kind of developed organically over the years. Even before I was using the text file stuff, I was doing the planning stuff since I was a kid. I’ve always realized that I’m not one of those guys that’s smart enough to sit down and start, you know, pooping out a bunch of words. I gotta really think about it. So that one has been around for a long time. In terms of the tech stuff, probably I would say I’ve probably been doing that now about seven, eight years.

While it may be possible to dismiss this example as describing a prewriting practice common to many writers using a variety of specific tools and implementation details, we argue in this chapter that our field could learn much more about these practices and the tools that are used. We see Sparks’s practices, his tool selection, and his adoption of tool features and constraints as useful in pointing to the benefits of thinking about workflows directly and constructing them deliberately.

Tool Selection

The literate activity around incubation and composing described in the previous section illustrates the modular aspect of workflows that we introduced in chapter 1. First, we can consider the cooking ideas workflow, or the whole umbrella process of storing and manipulating ideas in mindmaps, exporting to outlines, and composing in chunks/sections. This workflow contains several modular pieces that can be swapped out without generally changing the overarching workflow—namely, different mindmapping or composing applications can be used. Other aspects of the workflow are crucial. The Markdown writing syntax, for example, facilitates the transfer of structured and styled text from one app to another (a process that is often mangled by conventional word processors and other applications that use “rich” instead of “plain” text). Sparks’s writing practices are crucial as well, because if he writes outlines that are less detailed, he will be unable to compose straightforwardly, without writer’s block. And as described in a subsequent section, if he cannot easily capture ideas at any time and insert them into his mindmap (using the affordances of a mindmapping app on his phone), he is less able to write detailed outlines. (See the Spotlight on Markdown at the end of this chapter for more information on the syntax.)

One way to imagine the workflow is as two black boxes connected in a series. The first black box takes ideas as input and outputs a structured, detailed outline formatted in Markdown. The second black box takes that outline as input and outputs a composed text. Either black box can change internally (in terms of tools or practices) without affecting the writing activity of the overall workflow, provided it still produces the expected output.

[image: Diagram of Sparks’s black box workflow]

Fig15.Sparks’s cooking ideas workflow depicted as two black boxes in a series.

One larger point about this modularity is that it allows Sparks to continue experimenting with a subset of tools that fit the black box requirements without losing his focus on writing. Because of Markdown’s increased popularity over the years, many different applications produce and import Markdown-formatted text (as opposed to various proprietary rich text formats). Without such a well-defined workflow, changes in tools and practices could lead to larger disruptions at various points in the process. And yet even with these black boxes, experiments with alternate tools and the practices they afford can lead to significant changes in Sparks’s writing activity, because inside each black box very different things might be happening. In other words, the modular workflow isn’t so circumscribed that switching out components makes no difference at all. So how do we track what changes in writing activity and how they are being made throughout these experiments?

One of the aspects about Sparks that stood out to us in our review of his blog posts and podcast episodes before we began this project was his willingness to experiment with a wide variety of applications and workflows for accomplishing his writing and other work. When we talked to him, he had just begun using an application called Ulysses (which fit into the “composing” black box in figure 15), in part because its iPad counterpart to its Mac app had just been released, allowing him to easily sync text between Mac and iPad. He had preferred to use Scrivener on the Mac for many years for large writing projects, but at that time the app did not have an iPad version (it does now), so Sparks was looking to experiment with Ulysses and the iPad. As he noted, “For the longest time, for me, if it was like a book-length or research-heavy it was Scrivener, and if it was short it was Byword, and now Ulysses has turned my world upside down, so I’m not sure exactly how it’s all gonna sort out. I’m currently writing my next book in Ulysses, and I’m gonna see how that goes.”

[image: Screenshot of Ulysses]

Fig16. The Ulysses interface, showing the three panes containing the outline, the available sheets, and the text of a particular sheet.

His interest in different tools and willingness to shift platforms (from the Mac to the iPad) and explore what new practices may be available as a result of such a shift (e.g., more mobility, more flexibility of work locations) makes Sparks something of an outlier as a writer. He is productive and thus not crashing into the rocks of learning new tools for their own sake (e.g., the problem Maid seeks to avoid by not using advanced word processor features that change from version to version). Nor is he sticking with the same comfortable tools forever (e.g., supporting a decades-old obsolete computer as fantasy author George R. R. Martin does). In other words, Sparks seems to be willing to experiment with tools and develop writing workflows after seeing what affordances became available.

What we find so provocative about Sparks’s case is that it suggests there is a quality of invention involved in experimenting with applications. It’s not always possible to know what practices, mind-sets, or workflows will be afforded by an application before using it. Lists of features can be helpful, but actually using them brings along an embodied knowledge that can’t always be anticipated. Music producer Brian Eno discussed the value of making time for this kind of experimentation, in addition to more conventional production mind-sets, in a 2011 interview on the radio show Sound Opinions:

Now, anyone who’s been in a studio in the last ten years knows that there are—in fact, anyone who’s just looked into a music program in a computer, like Logic or Reason or anything like that, knows that there are thousands of thousands of millions of things you could do. So if you want to wander into a studio completely open-minded and just sort of do whatever comes up first, you’re probably going to waste a lot of time; there are too many options to explore that way I think. I mean what I do in the evenings late at night, when I know the phone isn’t going to ring, is exactly that. I sit around and I just try the tools that I’ve got and see where I go with them. And quite often I’ll spend the whole evening and nothing of any lasting musical importance comes out of it. I’m just really learning about my tools and practicing my familiarity with them. (DeRogatis & Kot, 2011)

Without this kind of learning and practice with new tools or features, it can be difficult if not impossible to just select the tool that best aligns with one’s task. Maid’s goals for students (including to “choose the tool right for the task”) were delivered in 2001 and perhaps formulated much earlier when there were fewer software choices and fewer features within them. At the time of this writing, there are so many different applications and online services aimed at, for example, collaborating on documents, that choosing the right tool means understanding a variety of competing feature sets and the different practices these tools were designed to support, the practices they can be modified to support, and the expectations that the participants involved bring to the collaborative activity. Playing around with these tools as Eno describes provides opportunities to learn more about what the tool can be made to do as well as what one’s expectations are for what might be useful for a variety of tasks.

Scholars invested in using computer technologies in writing classrooms have written a good deal about the value of exploring these tools. Typically, these discussions have offered an important critical viewpoint on the exuberant marketing copy and enthusiasm of early adopters. Dickie Selfe (2003), writing a few years after Maid’s comments, advised scholars, “Don’t simply engage in a technology exploration because you have heard of or seen interesting things happen in other teachers’ classes unless you and the students enter that digital space together, explicitly as explorers” (22). Writing nearly ten years later, Phill Alexander and his colleagues (2012) noted that they drew from Selfe’s advice as they developed their teaching with technology statements, working to avoid falling “into the traps perpetuated by advertisements and often by the lore of early adopters, which tell a tale of smooth transition, seamless integration, and emphasize the ‘newness’ of a particular tool” (30).

These criticisms of such tall tales of the ease with which new technologies can be adopted are useful and important. But these dangers should not prevent scholars from making the time for low-stakes experiments. Such experiments are frequently on display in contemporary accounts of teaching multimodal composition, yet we see less experimentation with tools for writing primarily alphabetic texts. The technologies Sparks and our other participants work with may be familiar to some in our field but rarely, if ever, appear in our research. We suggest in this chapter, and the book overall, that workflow thinking offers a way of recognizing the value of these experiments for understanding writing processes and innovating within them.

Of course, one might argue that Sparks’s writing workflow, and thus our frame for interpreting it, merely adds a high-tech gleam to the activities writers in our research have engaged in for decades. They work with invention activities, incubation practices, and composing rituals. Sparks’s fixation on tools, one might suggest, is nothing more than a distraction from writing itself. And certainly, as Sparks suggested in our interview (discussed in a subsequent section) and as another participant explained, exploring new applications can become a form of procrastination. However, when we examine the roles tools play in activity, and in writing in particular, we see that invention, incubation, and composing are shaped through and through by the material tools and technologies that enable them. While we think the tools Sparks uses are interesting because they are writing technologies not examined in our scholarship, ultimately we are not making an argument about their specific value or that Sparks’s use of them merits imitation. What does merit imitation is Sparks’s careful attention to how his tools shape his mind-set and allow him to work in ways that make sense for him, and his willingness to experiment to explore what is possible. To build a framework for understanding Sparks’s activity as workflow thinking, we turn now to mediated action theory.

Mediational Means

When Maid talks about helping students find the right tool for the task, he echoes a common frame for understanding tool selection. However, such advice becomes more ambiguous when one attempts to define the criteria for determining what makes a tool “right.” Should aesthetic qualities of the interface count? What about the number of steps it takes to accomplish the task? The number of devices on which the software can be used (e.g., laptop, phone, tablet)? In some teaching situations, we can artificially determine the task in such a way that the “right” tool becomes clear—the one that meets our teaching goals. But writers like Sparks and others in this affinity space have a variety of goals they are trying to meet. There is the obvious overarching goal of finishing writing projects. But there are many other goals as well.

For example, in our interview Sparks described several goals associated with his cooking ideas workflow. First he described the importance of syncing text across Macs, iPhone, and iPad: “I want to put it in something that makes it very flexible for me to move the text back and forth.” Next he described a brainstorming/incubation goal: recording ideas in a mindmap over several weeks. He then described a goal related to improvement: “I’m a nerd, so I’m always looking for something more effective.” Later he described a goal for the mindmapping process: “quick capture” of fleeting ideas into a mindmap while on the go (e.g., while “eating a taco”). Once he’s moved on from mindmapping to composing the text itself, he wants tools that “get out of the way. . . . I just want the words to show up.” More broadly, Sparks suggested that a goal is to continue experimenting and tinkering with apps and workflows in order to write about it for his MacSparky business: “And frankly, I write about this stuff, so, you know, I am at the sharp end of the stick on some of this stuff, admittedly.”

Trying to find the right tool for the task becomes more complicated when we recognize that there are varying goals the “right tool” must address. The concept of mediational means offers a useful frame for understanding how Sparks’s (and all writers’) broader goals shape tool selection and use and are subsequently shaped by the tools and their use over time. Jody Shipka (2011) argues that James Wertsch’s framework of mediated action is well suited for “tracing the situated and highly distributed processes by which texts are created, circulated, and consumed” (44). Drawing from the work of Russian psychologist Lev Vygotsky and others, Werstch (1998) examines “mediated action” in order to avoid becoming “too narrowly focused on the agent in isolation” by “recogniz[ing] the role played by ‘mediational means’ or ‘cultural tools’ in human action” (17). When we focus too narrowly on Sparks’s broad goals as a writer to the extent that we ignore his tools, seeing them as interchangeable or superfluous to the “real” task of writing, we are likely to miss the ways these tools inherently situate the activity “culturally, institutionally, and historically” (24).

Wertsch’s discussion of mediated action clarifies much of the above discussion about goals and tools. He argues that “mediated action typically serves multiple purposes” and that these purposes “are often in conflict” and that therefore “in most cases mediated action cannot be adequately interpreted if we assume it is organized around a single, neatly identifiable goal” (32). As in the case of Sparks’s writing processes, Wertsch notes that people may have immediate goals (his example is of an Olympian attempting to clear a pole in a pole vaulting competition) but also broader goals (such as “impressing a particular audience” or “irrational hatred of an opponent” [33]). Furthermore, goals may not even be solely associated with the individual and their thinking processes. Wertsch suggests:

For example, if we ask whether pole vaulting should be considered an Olympic sport or why competition and pride in individual accomplishment operate so powerfully in this context, we are dealing with goals whose circumferences extend beyond those concerned with individual efforts to get over a cross bar, and we are touching on issues that cannot be reduced to mental processes in the individual. (33)

Similarly, issues of productivity, efficiency, and quality are at play in Sparks’s workflow that extend beyond his own individual thoughts and intentions. Why does he want to be able to brainstorm ideas over several weeks while eating a taco or in other small moments? Because this work, he believes, makes his composing more efficient and more thoughtful later on. He may internalize and appropriate these goals to some extent, but goals related to productivity and efficiency are also operating (and probably originating) outside of his individual cognition.

In some contexts, these goals may seem in tension or even in conflict. Perhaps the most useful tool has an unappealing interface or comes with trade-offs (e.g., it provides useful textual organization tools but doesn’t have an iPad version). Wertsch explains that mediational means, as cultural tools, have goals “built into” them and that these goals may conflict with the “goals of the agent” (33). In Bruno Latour’s (1999) terms, we can identify this process as “translation” and note the drift between one’s original goal (use a variety of devices to write in multiple contexts and environments) and one’s final goal (write with one application on multiple devices but revise with another application only on the desktop computer), seeing how it was initiated by the addition of a new tool (the software) with its own (embedded) goals (88–89). In this way, a writer’s goal of seamlessly switching between many devices may encounter a short detour as she realizes that a new tool offers new possibilities but brings new requirements that may require new practices and workflows (e.g., brainstorming, outlining, drafting, and revising in separate applications limited to particular devices).

[image: Latour’s diagram illustrating translation]

Fig17. Latour (1999, 179) illustrates translation by showing how, for example, a person’s initial goal is thwarted in some fashion. This person takes up a tool, which has its own goal that the person must negotiate. Together the person and the tool arrive at a third goal that is somewhat different from each original goal.

As Latour’s concept of “translation” suggests, mediational means can push and pull people as they try to accomplish their goals. Drawing from Wertsch, Jody Shipka (2011) explains that “an action is simultaneously enabled and constrained by the mediational means or cultural tools employed” (46). For example, a writer may rearrange printed paragraphs on a table (see Roozen & Erickson, 2017) to gain a global view of the text, yet when working this way the ability to edit is constrained (in contrast with rearranging with a word processor). Where Latour speaks of “detours” and “translation,” Ron Scollon (2001) highlights Wertsch’s characterization of mediational means as “partial,” suggesting that a “mediational means never fits the action exactly. Only some of the characteristics may be called upon in any specific action” (121). During the paragraph arrangement exercise, the paper’s flammable affordances aren’t desired or used, for example. Scollon continues: “A mediational means affords some actions but this lack of exact fit to concrete actions means the mediational means also limits and focuses that action. Thus the mediational means is transformative of actions that are taken, by both doing and saying more and less than is intended by the users” (121). This aspect of “saying more” than a person might want could be illustrated by a new possibility afforded by the paper paragraphs: simply crumpling up the paper in a fit of frustration. This aspect of mediational means seems to particularly occur at the forefront with software tools, where so many features are often available that users can become overwhelmed with the possibilities beyond what they may have intended for any particular action.

Given this situation, Jody Shipka suggests, “It may prove helpful to think about the various ways individuals work with, as well as against, the agency of mediational means” (46). In most of the examples provided so far from Sparks’s experience, he is primarily empowered by the mediational means involved in his writing activities. However, he did describe how word processors got in his way and worked against what he was trying to do:

Well, I mean before I was doing the usual drill in Microsoft Word, or whatever the word processor of the day was—MacWrite at one point, and, you know, different word processors, where I would sit down and just start writing it there, which just never was right for me, because I would get distracted by all the bells and whistles. And frankly those word processors aren’t really a very good place to focus on your words. They’re page layout tools. That’s the thing. People don’t realize it, but word processors really—they’re not about words, they’re about page layout.

You look at Microsoft Word, it’s like getting in the cockpit of an F16. It’s like, I just want to write a letter, and there’s seventeen switches and two hundred buttons and font choices, and I just want to write a letter. It completely gets in the way of what you’re there to do.

[image: Screenshot of Microsoft Word]

Fig18. Microsoft Word’s Mac interface, showing the switches and buttons in the top row.

It is, in part, this experience of working against the agency of Microsoft Word and its complications that led Sparks to consider alternative applications and the writing workflows they afford.

Wertsch and others focused on mediated action emphasize how mediational means are used in the immediate moment to accomplish a task and are shaped by a history of prior uses of similar and different mediational means for a variety of tasks in many different situations. Sparks’s cooking ideas workflow is mediated in the moment by certain mindmapping applications and the devices he uses and by his rich history of writing, incubation, and invention using many different mediational means. His use of writing applications that provide a global view of structure (e.g., Scrivener) and more minimal interfaces (e.g., Byword and Ulysses) are shaped by his past use and rejection of Microsoft Word for composing.

Furthermore, mediational means bring with them a history prior to their use and appropriation by any one person. In other words, it’s not just Sparks’s own previous use of Word, Scrivener, and Byword shaping his current writing activity but also the histories of those mediational means in the world at large. Scollon (2001) explains:

A mediational means is simultaneously linked to a history in the world as an economic, political, social, and cultural entity—coffee is part of a world-wide political economy—and to a history for each person who has appropriated it. This might be my first cup of coffee or it might be something I have daily at this time. Because mediational means embed a history both in society and in the habitus of a person, mediational means inevitably embed the power and authority structures of society. (120)

It seems likely that it is not only the buttons themselves on Microsoft Word’s interface that Sparks and others interested in the category of applications now called “distraction-free writing environments” find so distracting (see Van Ittersum & Ching 2013). It is the formatting features they afford, which bring along writing processes aimed at a finished product, at drafting and polishing simultaneously. Furthermore, the application itself is freighted with its associations with corporations, standardized review procedures, and enterprise software development. These associations stand in stark contrast to the independent (and often solo) developers of most distraction-free apps and their much smaller user bases.

These scholars show the wide-ranging ways that mediational means shape people’s activity in mediated action such that their mental habits develop around them, and if the activity is performed routinely, even their bodies change in response to how the tools are used (sometimes leading to injury) (Owens & Van Ittersum 2013). Because a person’s performance relies so heavily on their use of mediational means, developing more expertise in any given activity is closely tied to their development of skill with specific tools. When learning a new activity, much of the process involves gaining skill with the mediational means (be they mental or physical). For example, a student learning to write recommendation reports is largely gaining skill with the genre as a mediational means. However, improving skills with a particular mediational means may not always yield the best results. Wertsch (1998) explains:

A change in cultural tools may often be a more powerful force of development than the enhancement of individuals’ skills. The irreducible tension between cultural tool and agent that defines mediated action means that, when considering how to enhance or change a course of development, the key may often be to change the cultural tool rather than the skills for using that tool. (38)

It could be, perhaps, that the student has been developing skill with the “research paper” genre learned in school, and trying to fit that into the requirements of the task, when using the new genre of “recommendation report” would produce a better outcome more quickly.

When applied to writing technologies, this assertion could quickly lead to superficial solutions, like replacing Microsoft Word with Google Docs and expecting leaps in student writing quality. To avoid such simplistic approaches, we need to understand what, exactly, a mediational means consists of as separate from any given object that may be employed as a mediational means.

Scollon argues that “in general, mediational means predate the user” (116), in that people don’t create a cultural tool out of nothing, but that they appropriate one with a history of previous use by others within situated contexts. Scollon then differentiates between “appropriation” and “use,” where appropriation is “development of a mediational means over time within the habitus as an aspect of practice” (116) whereas “use” “calls upon the unique, irreversible, and concrete object as used in real-time action” (116). The distinction between “appropriation” and “use” is mirrored by a distinction between “mediational means and object, the first of these referring ultimately to a class of objects and the disposition for their use within the habitus, and the second referring to the concrete objects with which a specific act is performed” (116). The difference between mediational means and object is a crucial one for our understanding of writing workflows. This difference has two main consequences that Scollon describes:

In the first place virtually any mediational means may be used for a wide variety of functions outside of their inherent or normative use. In the second place other objects with those same functions may be substituted within any particular action as that mediational means. The result is the fundamental multifunctionality and polysemy of any mediational means which can be instantiated with a rather wide range of material objects in any particular instance of social action. (128)

An example of the first point is that an ink pen can be used for “normative use,” such as to write an essay or a grocery list or draw a picture. But it could also be used as a sharp weapon. Or several pens could be stacked together to create a model of a cabin. This point is linked to the characteristic of mediational means as “partial,” the way they exceed any particular use to which they may be put.

An example of the second point is that one may swap a pencil for the pen and engage in the same form of mediated action while writing a grocery list. The mediational means for that social practice has remained the same (writing instrument) while the object has been swapped (pen/pencil). For other practices, though, such a swap may not be so seamless. Using a pen or pencil in drawing a doodle is likely no big change, but in sketching a portrait using shading and other techniques, the affordances of a pencil versus a pen lead to quite different drawing techniques. Further, if one were to swap a tablet stylus and tablet for pen and paper, the activity may start out similarly, with shading techniques following a similar path, but diverge as affordances of the tablet and software lead to drawing with layers, manipulating shapes computationally, and so forth. Switching from pen and paper to stylus and tablet illustrates Wertsch’s claim that new mediational means create “a kind of imbalance in the systemic organization of mediated action, an imbalance that sets off changes in other elements such as the agent and changes in mediated action in general. Indeed, in some cases an entirely new form of mediated action appears” (43).

So we have two interesting lines through which development takes place: introducing new mediational means and appropriating the same mediational means over time. As Scollon explains, repeated use of particular objects as mediational means over time leads to more complex appropriation of that mediational means: “Each use elaborates and complicates the structure of the mediational means and the habitus and therefore each use opens up the potential for more complex uses of objects as that mediational means” (135). We can swap the stylus for the pen, but we can also use the stylus many times over a week and learn to do more with it. This choice is precisely what workflow thinking is all about: being reflective about development and the possible paths one may take by swapping tools and learning more of the affordances of familiar tools.

Workflow Thinking

With this understanding that various objects can be deployed as mediational means, we can begin looking at Sparks’s workflow in terms of what mediational means he is employing and what objects function in those roles. We can see how he appropriates tools as mediational means and how different applications and devices can be used but also how these applications begin to function as different mediational means, shifting to new forms of mediated action and introducing new goals. In this way, we can see that maintaining some reflection on this process can be valuable, as it allows writers to stay open to new possibilities for activity but also accomplish the broader goals they have in mind. In breaking down his writing processes into separate components, Sparks is able to clarify what goals matter most for each and find ways to connect his various chosen tools. Further, as the following section explains, attending to workflows can help shape mental states via mediational means such that productive writing zones can be achieved.

Shaping mind

As seen above, Sparks works with multiple goals as he engages with his cooking ideas workflow. He is drafting a mindmap to serve as an outline, he wants “quick capture” of ideas, and he may sometimes want to experiment with a new application or an updated application in order to write or speak about it as “MacSparky.” He achieves these goals by using mediational means that he appropriates over time. These mediational means function as classes of objects, not specific objects. This indicates that the mediational means Sparks appropriates could be identified as an “iOS mindmapping app” and that different applications (e.g., MindNode or iThoughtsHD) could be used. Or, as described above, he might experiment with a new drafting app, swapping Ulysses for Scrivener. If substituted apps can meet the same features that have been appropriated as mediational means, then these alternate objects can function as those mediational means in Sparks’s workflow. In terms of mindmapping, as long as the application allows for quick capture and will export to the OPML file format or as a Markdown-formatted outline, Sparks can use it similarly. In this way, different applications can be used to achieve similar goals.

If different objects can function as the same mediational means, it may be tempting to conclude that particular applications do not matter much and that they can be judged merely based on their feature set. We see this conclusion as flawed for two reasons: First, because software rarely offers the exact same features and affordances and as these objects are appropriated over time, they may develop into new mediational means or lead to new kinds of mediated activity (as described in the previous section). Second, judgments about software features rarely cover aspects that relate to how the app “feels” when using it, how it supports one’s desired mental states for working. Wertsch and Paul Prior both address these affective evaluations of tools in their discussions of mediated activity. Wertsch (1998) described an Olympic pole vaulter who disliked using fiberglass poles because the spring of the poles was too much like a “circus trick” to him and made him feel “ridiculous” (44). Prior (1998) discusses people’s dispositions toward tools:“Central to appropriation is a person’s affective and evaluative orientation to a tool: Tools may be encountered, partially appropriated, and then rejected. In other words, people develop varied dispositions toward and senses of ownership over the psychological tools they encounter and (to some degree) appropriate” (181).

Running throughout MacSparky.com, the Mac Power Users, and many other blogs and podcasts by other people in this affinity space are accounts of individuals’ aesthetic and affective responses to software.2 These accounts often focus on the interface, such as whether it is “ugly as sin” or “attractive” with “great typography and color choices.” They also frequently use figurative language related to comfort and ease, such as referring to using an app by saying it “feels like slipping under a warm blanket on a cold night.”

Basing evaluations of software interface design and function on affective responses may seem like a luxury or privilege, as many writers must simply use what is required by their employer or what is provided for free by the operating system. For writers in technical and specialized jobs who must use custom software, their choices are limited. However, even in these cases, writers’ appropriation of their tools is shaped by their dispositions toward it, whether they experience frequent annoyance from unintuitive navigation of text fields or appreciate the lack of clutter on the screen. As for cost, every writing application in this space is priced for individuals and is significantly less costly than the annual subscription to Microsoft Office, and many have student or educational discounts. Writers who cannot buy software are left out of some of these deliberations between artisanal interfaces, yet again, the more general point about the role of affective responses to software in appropriation remains relevant.

These affective responses to software matter because writers use writing software to direct their activity, therefore their dispositions toward how that activity plays out shapes their motives, their evaluations of it, and their performance itself. Prior and Shipka (2003) describe writers as engaging in “environment-selecting and -structuring practices (ESSP’s), the intentional deployment of external aids and actors to shape, stabilize, and direct consciousness in service of the task at hand” (219). Thinking through Sparks’s cooking ideas workflow via ESSPs can provide a concrete example of what is at stake with this perspective. First, in attending to the agency of actors, as discussed in the previous section, the mediational means Sparks uses for this workflow push and pull him toward various ends and ways of working. Scrivener or Ulysses, in presenting the full project as a hierarchically organized set of text chunks, encourage Sparks to consider the global structure of the text and make it simple to rearrange sections, thus perhaps subtly persuading him to do so.

Second, looking at ESSPs as supporting “the production of environments” (228), we include digital environments along with physical ones, and in the case of Sparks and others who are working with mobile computing technologies, these overlap in important ways (see Pigg 2014). Returning to the “quick capture” aspect, Sparks wants to be able to record ideas when he is in any physical environment, even one that makes writing challenging, such as when “eating a taco.” In this case the digital environment for mindmapping must by synced accurately with the latest version of the mindmap that may have been edited previously on a computer or iPad and now will be added to via his iPhone. Its interface must quickly and efficiently support adding a new bit of text or “branch” to the map. For large maps, it must also support easy panning, zooming, and navigation, doubly so on iPhone screens as opposed to tablets or computer monitors.

Third, we turn to how ESSPs support writers in their efforts to “shape, stabilize, and direct consciousness in service of the task at hand” (219). One way to illustrate this aspect is through Sparks’s composing practices, which came as a surprise to us. We had known Sparks before our interview as an advocate for applications with distraction-free interfaces (e.g., Byword), but it turns out we had not entirely predicted how he related to those interfaces.

[image: Screenshot of Byword]

Fig19. Byword’s minimal interface.

One aspect of distraction-free interfaces is the simple graphical interface, which does away with the palettes or ribbons of interface buttons common on Microsoft Word or Google Docs. Further, such interfaces display text with minimal formatting, allowing for only one font, font size, and color. But for Sparks, “distraction-free” also has come to mean an application that “is going to get out of the way.” He refers to an iOS text editor called Editorial that offers essentially an integrated programming environment powered by the scripting language Python, an application that allows users to create or import what it calls “workflows.” Sparks says the application is “massively nerdy”:

You can create specific workflows inside the application, you can actually create mini programs to make the application do more than that, and there’s a lot I like about it, but the fact is I don’t use it that much. I use something like Byword or Ulysses, where it really is just a place to write words. I mean, I don’t want to have to get in there and do more with the application. I just want the words to show up, and I want them to appear on my other devices when I get there. So I almost am looking for something sort of basic to do this with.

[image: Screenshot of Editorial workflow]

Fig20. Editorial workflows consist of different steps (similar to the Mac app Automator). This screenshot comes from Federico Viticci’s original review of the application, showing a workflow for transforming link formatting in a Markdown text.

Given Sparks’s interest in automation and tinkering with tools that provide similar features as Editorial’s “workflows” (Sparks often writes on his blog about Applescripts or Automator actions for Macs, and he has produced a tutorial video for the iOS automation app called Workflow), it initially struck us as surprising that he didn’t use Editorial more with a suite of custom workflows for his legal or technical writing. For Sparks, however, the kind of writing he does with the cooking ideas workflow does not involve this kind of automation, especially in the drafting stage. There may be automations or scripts used during revision, proofreading, or production activities, but Sparks didn’t mention these in our interview nor in blog posts or podcasts, leading us to presume that he doesn’t see cooking ideas as extending there.

One explanation we could offer for Sparks’s preference for writing applications with distraction-free interfaces and minimal features would be that Sparks sees different workflows and their activities as supported by different mental states. During our interview (and during his podcast discussion of cooking ideas), Sparks explained his preference for working as he does with the reason that this is how his “brain is wired”:

The way my brain is wired, I’m not very good at just sitting down and starting a big writing project. It just never goes well. Instead I will start it weeks in advance, where I will open an outline or a mindmap, and then I will go spend little spurts of time in there over the next couple weeks, even though I know I’m not going to start writing for two weeks; the map will begin quite early. And it’s just been my belief that my subconscious mind does a better job of kinda sorting out how I want to put it all together. And so with a limited amount of active time on it every day, but probably the thing kind of percolating in the back of my head all day, I usually come up with a pretty thorough outline by the time I’m gonna start writing the text. And once I get to that point, I export the mindmap or the outline just as simple text into a text file. And then I just start, you know, putting meat on the bones, for lack of a better word. And I keep the thing in text. I don’t think about what the typography is gonna be or what the headings are going to look like or any of that stuff until the very end. And I spend the vast amount of my time writing whatever it is I’m writing into that text. And it just makes it really easy for me, because I can edit it on my phone, my iPad, or my Mac. And the only thing, my only job at that point, is the words. It’s not any of the other layout stuff. And once again, just because, you know, the way my brain is wired, that actually makes things a lot easier. So I go and I write the text. And sometimes I get it done very quickly, and sometimes it takes a long time. [laughs] You know, just like anybody else, I guess. And I write projects of varying length. I’ve written hundred-thousand-word books, and I’ve written thousand-word articles and everything in between. So that obviously plays a role in it as well. (emphasis added)

While the sociocultural theory Prior and Shipka draw on might disagree with Sparks’s characterization of his brain as stably “wired” in any certain way, his account exemplifies the aspect of “tuning consciousness” (228) via ESSPs. As Prior and Shipka describe it, these ESSPs “regulate thought and affect [and] channel attention and action” (228). Distraction-free software tools support the mental states Sparks understands as necessary or desired for drafting legal work or technical guides. We can even go further and suggest that ESSPs and consciousness shape each other through time in a way similar to how different events, mediational means, physical environments, tasks, and goals reshape activity. Rather than seeing consciousness as the stable agent guiding and directing activity toward the achievement of ends, we can see consciousness as produced through rich engagement with multiple and even competing goals; individual (or collaborative in other cases) selection, arrangement, and deployment of prefabricated mediational means; and lamination of roles and previous chronotopes such that no workflow is ever really fully separate. In other words, consciousness is not a stable thing that precedes any particular workflow but instead is made and remade through ESSPs, through setting up and engaging in workflows that produce states of consciousness. Workflow thinking, therefore—meaning deliberate attention to the ways tasks and tools can be fit together and reshape each other—is about understanding what states of consciousness are needed or desired and what workflows will reliably produce them. Neglecting this reflective work results in achieving desired states through chance or while being resisted by one’s tools.

The Limits of Tools and Workflows

Sparks typically restricts his evaluation of the usefulness of the software to his own case, his own needs for his writing tasks. But sometimes on the podcast, and when asked directly, he will generalize and say that the writing software he uses will help people do better work.

Derek: What do you think these things—are there specific things you could point to that they improve people’s—ways they improve people’s writing?

David: Well, it improves your focus on your words. And there’s only one thing that can do, is make it better. If you—and I guess I’m looking at it from a whole bunch of vantage points. I mean when you have a fluid organization like something like Ulysses or Scrivener gives you, it allows you to be constantly questioning the big picture about how the words should be organized or the sections should be organized. When you have a system that allows you to plan and organize your writing before you start writing the text, I think it helps you make a better product. And, frankly, when you have a system that refuses to let you fiddle with fonts and headings when you’re trying to write the words, the focus on the words is going to make the words better. . . . I mean, it’s just my opinion, honestly. I’m sure there’s people who are much better writers than I that open up Microsoft Word and they make brilliant stuff, but I think if given everything else equal, if you get somebody on a system like this, I think that they can do a better job of writing some good text. (emphasis added)

Through regulating thought and channeling attention (Prior & Shipka 2003) the workflow and the tools used support the writer in doing better work. The cooking ideas workflows encourage engaging in invention activities that people may be inclined to put off or ignore out of expediency or procrastination. As is frequently said in this affinity space, “your mileage may vary,” meaning that not everyone will find these workflows to lead to the same results. But Sparks, extrapolating from his experiences, sees significant value in being systematic about invention and concentration and using particular tools to achieve this.

Yet, as many in our field worry, sometimes tools do get in the way of good writing. They can distract us (as distraction-free software suggests), or they can require more time or attention that doesn’t feed back into writing activity. As described above, Sparks doesn’t use text editors that include automation and scripting features, because he prefers minimal environments that focus his attention on generating text. As he suggests later in the interview:

So scripting is super useful for a lot of types of writing, like, you know, emails and repeated things like in legal cases. . . . So I have a use for that, but for the real writing I do, whether it’s an article I do for the website or a legal brief or a book or whatever, that automation stuff doesn’t really do much good for me. It helps in the editorial process—sometimes I’ll find I’m using a term incorrectly, or I need to go through and search and replace and do some things like that—but I don’t know that those tools are all that useful when you’re really doing the hard business of writing. To me it’s like the technology got so advanced that it was getting in the way of people making good stuff. (emphasis added)

Here Sparks makes an interesting distinction between “the hard business of writing” and other tasks connected to literate activity. The “hard business of writing” requires a certain mind-set and therefore a certain workflow consisting of ESSPs that involve particular mediational means, physical environments, and timescales. Editorial work requires another mind-set (we might characterize it as careful efficiency) supported by a different workflow, one involving automated scripts that quickly catch common errors or change each term to another term without missing one (as one might do if searching and replacing manually).

Our participants in the study recognize as well that distractions tend to be idiosyncratic and may shift over time. Another participant in the study, Brett Terpstra (whose blog linking workflow is discussed in the next chapter), also talks about the hard business of writing and how applications can get in the way, although for him the distractions are different.

I spend more time exploring features than writing when I use Scrivener, and I think I find something new every time I use it—and that is friction. For a personality like mine, that is a death knell for actually getting any writing done.

I love people like the developer of Scrivener. . . . I love seeing the way their brains work and the features that they add—it’s just, it’s like going to the zoo for me. It’s like looking in at all the animals. Not the people, but the features themselves are like zoo animals, and I just want to walk around and see them all.

One key distinction between Sparks and Terpstra is their approach to managing writing workflows. Sparks suggests that once a workflow is assembled, he just writes without any more tinkering until the project is finished: “I do tinker with picking the software tools and figuring out the workflow, because that’s kind of my thing, but when I get into the writing, that’s what I do. I write. And I write in Byword or I write in Ulysses or whatever app I’ve chosen to carry this project. It’s just about the words.”

Terpstra, on the other hand, maintains a tinkering mind-set throughout a writing task.

I tinker a lot. I’m constantly looking for a better way to do things even if that means putting two hours into solving what should’ve been a fifteen-minute task. But the next time I do it, it’ll be instant. So as I run into any friction as I’m writing, I go build a tool to fix that friction. That’s why a blog post that should’ve been a five-minute just-write-it-out often ends up being three to four hours of making it work. But, yeah, it changes anytime something seems like it could be better. I don’t like the feeling of working around an issue instead of fixing it, at least not when it comes to like my own writing workflows.

Whether these are personality traits reflected in working habits, conscious decisions made by discriminating entrepreneurs, or some mix between the two is beyond our ability to analyze. Sparks has clear motives for writing—selling books, producing legal writing for his law practice, and writing blog posts to stay current with his audience. Terpstra has clear motives for searching out friction in workflows, since these searches may result in new projects to share on his blog or software applications to sell. While we are not looking to hold up either participant as a role model for writing scholars, teachers, or students, their separate approaches both have some value for writers to consider. Sparks’s approach makes straightforward sense—spend some time and effort developing a few writing workflows, and then leave them alone until the project is completed. Yet we are reluctant to critique Terpstra’s approach, as writers who might adopt it, in their sensitivity to some bit of friction in their writing workflow, could help to develop some new writing technology that could be valuable for themselves and others.

Giving deliberate attention to workflows, engaging in workflow thinking, we argue, can help mitigate the risks that the tools will get in the way or will become distracting in and of themselves. We see a crucial distinction between tinkering and workflow thinking—namely, the orientation toward goals. Brian Eno’s discussion of his nightly experiments, quoted earlier, points to the value of making space for tinkering, for more goalless explorations. But he also described tinkering in the context of saving it for the evenings and being more production-oriented in the mornings. Workflow thinking orients writers toward maintaining focus on specific goals (e.g., write a book, create a first draft, write for two hours today) and reevaluating tools based on their ability to help accomplish these goals. Different individuals at different times need to find their own balance between workflow thinking and tinkering.

At this point, it may seem like just finding and learning one tool that basically supports one’s writing well would be the most efficient and effective path forward. Perhaps it’s worth reconsidering the arguments about the limits of word processors that this project began with and covered in chapter 1. Sparks echoes these arguments clearly:

I think that I’m definitely an outlier. I think most people in the world are just gonna open up Microsoft Word and start writing whatever they’re writing. But my argument would be they could do a better job of it if they use some of these modern tools and kind of backed out the WYSI [What You See Is . . . What You Get] features, at least for the writing part. I do think that it makes your writing better.

Given the preceding discussion about ESSPs, however, we prefer to generalize beyond admonishments of Microsoft Word or even word processors as a class of software. What Sparks and many other proponents of distraction-free applications or Markdown syntax are pointing toward is the importance of workflows that “regulate thought and affect [and] channel attention and action” (Prior & Shipka 2003, 228). They are pointing to workflows that produce (and are produced by) mental states that support writers in whatever activity they seek to accomplish. For these writers, designing a workflow means crafting a digital environment responsive to physical conditions that supports and helps bring about concentration, focus, creativity, and many other states. Any tour through writing advice from the past one hundred years or so will cover some of the same ground: writers who have morning rituals, who use particular (physical) tools, who depend on specific brands of notebooks for incubation and invention. What we want to point to with these case studies is, first, the benefit of attending more carefully to the role of digital tools and environments and, second, the inseparability of these workflows for writing activity. Workflows aren’t activities that simply precede writing, make writing easier, or make it more enjoyable. Workflows may involve those aspects, but we are suggesting something broader and more foundational: workflows, as we define them here, are what writing activity is made of.

Conclusion

In addition to suggesting the term “workflow” as a way to capture this activity and perspective on writing, we argue that workflow thinking—that is, being deliberate about crafting workflows and experimenting with them over time—has clear benefits for writers. Each case study focuses on a category of benefits.

This chapter began by examining the problem of learning new writing technologies. How can we incorporate valuable new technologies into our (and our students’) writing processes without becoming enthralled by these new tools? We hope that our answer is clear after the discussion in this chapter. In focusing on the workflow one seeks to engage in, writers can keep their goals in mind, goals that are separate from any UI/UX demands that applications might make. Applications can be evaluated based on their fit to the goals that writers have developed. Further, writers’ goals can be reevaluated in light of the new affordances some applications make possible. If these new affordances pull writers too far astray from their goals, if they introduce too much dissonance in terms of conflicting goals, writers can make a deliberate choice to keep their original goal and abandon the application or tightly restrict their use of it. Or they can change their original goal in light of new affordances. When writers are clear and explicit about their workflow goals, they can evaluate them against translation (Latour 1999).

When writers are fuzzier about workflow goals and simply focus on production goals (e.g., wanting to get the document drafted without attending to any tools), they may be flummoxed when the tool does not perform as anticipated, causes friction or other undesirable mind states, or brings requirements they didn’t anticipate in their hurry to draft. Then, in a rush to complete the project, they find the first application that seems to have a feature that will address the issue, but this new application now makes demands of its own, which must be addressed if it is to be used (perhaps requiring text in a different file format or syntax). This focus on production goals, then, can lead to a general distaste for writing technologies as tools that mostly get in the way of writing. We hope the case study in this chapter has suggested the value of following the path of workflow thinking instead.

This discussion may also shed light on the popularity among writers in this study for applications that “do one thing well.” Rather than using single applications that seek to perform every function any writer might want (e.g., Microsoft Word), these writers choose to assemble several applications together—different applications for brainstorming, outlining, note taking, drafting, and revising—sometimes more than one within each broad category of activity. When attending to workflows closely, we presume it is easier to evaluate an application that focuses clearly on a few specific activities and offers features that support that activity in easily understandable ways.

Spotlight on Markdown

Markdown, created by John Gruber in 2004, is a simplified HTML syntax and is especially appealing for writers of prose. Before Markdown, Gruber published his blog using the Movable Type platform and wrote his posts in HTML. Explaining the origin of Markdown in an interview on the Mac Power Users podcast, Gruber says:

I knew HTML . . . so I had no problem writing [posts in HTML]. . . . And I had no problem with that technically, but eventually it grew tiresome, and it just felt like I was making work for myself, and I really thought that [HTML] made it hard to proofread my work. So what I was doing for all of my proofreading was previewing in the browser or [the text editor’s] built-in rendering thing and previewing it there. But then the thing I’m reading, which is previewed and hides all of the cruft of the HTML markup, then . . . if I see a typo, then I’ve got to switch to the other window and find where it is in that window, the source code window, and fix it there. And I thought there has to be a better way. (Sparks and Floyd 2015)

Gruber created Markdown to solve this problem, and he based his work on similar tools such as Dean Allen’s Textile and Aaron Swartz’s atx, which used simple plain text styles to represent HTML markup.

For example, styling text as bold or italics in HTML requires the use of tags:

We might use the strong tag to bold words, or the emphasis tag to italicize them.

As Gruber notes, these tags make proofreading difficult. Markdown, as an alternative, borrowed from the informal conventions of email and online chat, uses specific characters to stand in for tags, yielding text that’s much easier to read:

We might use the **strong** tag to bold words, or the *em* tag to italicize them.

After writing text in Markdown, the user would run that text file through a Markdown processor or script, which would transform the Markdown shorthand into fully formed HTML. Until the file is transformed, however, the user has a much simpler and more readable document. “I wanted it to be plain text,” Gruber says, “I wanted it to be relatively easy to write, but the main thing I wanted was for it to be easy to read. So that once you’ve written it, you can just look at your own thing that you’ve written and it reads completely naturally—not like you’re reading something that was written in code or in markup” (Sparks and Floyd 2015).

Today (and as we discuss throughout this book), Markdown is used in a wide variety of writing contexts, including mobile composing, technical documentation, text-based slide presentations, note taking, and so on. Gruber has resisted attempts to standardize Markdown, and there are now many variants, such as MultiMarkdown (for complex documents), Fountain (for screenwriting), and R Markdown (for writing about statistical data).

Gruber’s introduction to Markdown https://daringfireball.net/projects/markdown/ provides a general overview of the syntax.

1 While some in the computer industry may talk about a software application’s workflow, we emphasize that a writer’s workflow is never limited to the intended uses of any tool. In our usage, a writer’s workflow may incorporate an application’s “workflow,” but the writer’s workflow may also involve working against that application’s intended workflow. Tools, as we will describe in more detail in subsequent sections, can be used in varying unintended ways, although these uses may require significant effort or be extremely inefficient.

2 While aesthetic evaluations of software are not the exact same thing as affective responses, in most of the examples we have seen from people in this affinity space, they are tightly tied together. As Ping Zhang (2009) argues in an analysis of these concepts’ use in human-computer interface (HCI) research, aesthetics and affect “should be closely related to each other, especially from a motivational point of view” (2). As Zhang explains, aesthetics can be regarded as a way to achieve people’s desirable affective states. That is, the purpose of designing an artifact with high positive aesthetic quality is to induce high positive affect in the viewers/users, and the purpose of designing the artifact with high negative aesthetic quality is to lead viewers to have high negative affect. (6)

Chapter 4: Automating Writing

In his 2003 review of twenty years of Computers and Composition, Charles Moran describes what many wished computers would do:

A hope often articulated in the early volumes of Computers and Composition was that computers would eliminate what the authors defined as drudgery, both for student writers and writing teachers. . . . When someone characterizes an activity as drudgery, that act of classification confers low status on the activity. Drudgery is work that we wish would go away, work that we wish we could be freed from so that we might get on to other, more satisfying, more useful work. (345–46)

Moran points to other machines to which we delegate “low-status work”—the “dishwasher, lawn mower, vacuum cleaner, slicer-dicer, or rug shampooer” (346)—and notes how early research in Computers and Composition searched for an analog in the computer and word processor. The possibilities of automated work at that time often pointed to the drudgery of teaching or assessing writing, specifically “copy-editing, revising, and retyping” (346). From Hugh Burns’s TOPOI, to Bell Labs’ Writers Workbench, to Homer and WANDAH and Writer’s Helper and countless others, the field spent much of the 1980s developing microcomputer software in the hopes of eliminating, or at least reducing, drudgery. Although several popular writing applications were created by commercial developers, much of the development of writing software happened under the guise of English teachers. “Who are these people spending so many hours developing computer programs?” William Wresch asked in his 1984 introduction to The Computer in Composition Instruction: A Writer’s Tool. “First and foremost,” he answers, “they are English teachers. . . . They are not a group of computer hackers who suddenly decided to start creating programs in writing instruction” (6–7).

The vision of writing tools pioneered by early Computers and Composition scholars continues to echo in contemporary software. The spelling, grammar, and usage checkers built into most major contemporary word processors (such as Word, Pages, and Google Docs) call back to early writing software tools and many early automation efforts. Today, text editors and writing applications such as Hemingway, Write!, and Grammarly offer tools that can (to better and worse degrees) facilitate copyediting and revision. However, for the most part this work is no longer happening within the field—or even with the consultation of experts in the field. With a handful of exceptions, we are no longer writing teachers writing software, and we no longer research automation.1

[image: Screenshot of Write! App]

Fig21. Write!—like many similar apps—offers tools for note taking, distraction-free writing, productivity counters, and publishing to the web. It is not made by researchers in Writing Studies.

Automation, however, continues to live on in professional writing contexts. Examples might include the copyeditor who uses a Word macro to change APA references from sentence case to title case, or the InDesign editor who automates the conversion of typography elements through a bespoke in-house application. In these workplace cases, the writer isn’t using the computer to assess sentence variety or automate the teaching of a grammar construct; instead, the writer is using the computer to replicate a task—to do some monotonous work.

In this chapter we explore Brett Terpstra’s blog writing workflow, paying special attention to his creation of a script to automate the process of adding hyperlinks to a post. Through an activity-based analysis of his SearchLink computer script, we argue that automation is a productive art—a practice that results in a composed object (the script or program) that functions as a new actor mediating writing activity. In composing computer scripts (the software that produces automation), writers demonstrate the kinds of reflective and metacognitive awareness valued in the field.

Through the case of SearchLink, we can examine how the script draws on and contributes to Terpstra’s “just write” ideology, which privileges uninterrupted focus, attention management, and the affective dimensions of writing. We position Terpstra’s approach to automation as evidence of his workflow thinking. Whenever he is not able to “just write,” Terpstra experiences friction and seeks to better understand the task and identify new workflows.

Terpstra is especially known for reducing friction. In our interview with him, he described his career by saying:“I make a living finding those problems and selling people things that they don’t even know they need yet, or fixing friction that they just found out they had. And so I’m hyper-aware of anything that I think could be faster or easier or automatic.”

For Terpstra, this happens by reading for friction. In looking at a writing process and asking, “What could be faster or easier?” Terpstra imagines how a change in writing technologies might reshape his work. For him, this search is about getting to a place where he (or someone who uses his software) can “just write,” but reading for friction can also serve other purposes—exploring the possibilities of constraints or facilitating creative approaches to routine tasks.

Our approach in this chapter is to examine the friction Terpstra identified in his blogging workflow and how and why he eliminated it through creating and using SearchLink. As explained in chapter 2, this approach follows sociohistoric and actor-network theory in attending to “genesis and disruption” or “things in the making and things breaking down” (Prior 2008, 15). During such moments it is possible to see and follow the actors and motives that drive practices and activity in a way that is much more difficult when such practices are black-boxed and habitual. In order to fully understand what the SearchLink workflow means to Terpstra and how those meanings are formed, this chapter follows the actors by examining the technologies, people, infrastructures, and environments that played a role in the disruptions leading to the genesis of SearchLink.

Blogging Friction

[image: Screenshot of HTML for Daring Fireball blog post]

Fig22. Screenshot of the HTML source for John Gruber’s first (August 2002) blog post on daringfireball.net—before he developed Markdown.

Brett Terpstra has a good deal of expertise in web technologies, yet this expertise does not make working with them frictionless. In this section we briefly survey the history of blogging from a technical perspective in order to illustrate the various ways software and scripts have attempted to relieve this friction and to show where Terpstra’s blog writing workflows fit into this history.

In the web’s early days (ca. 1997), writing for the web introduced complexities beyond what writers working with word processors may have encountered. Beyond the rudimentary file management required by word processing, web writing involves creating multiple HTML files, organizing them in folders, and uploading them to a web server online. The difficulties of these practices—especially in pedagogical contexts—are documented in late ’90s scholarship (Mauriello, Pagnucci & Winner 1999; Gresham 1999). Furthermore, writing in HTML, instead of the familiar print-like environment of a WYSIWYG word processor, involves writing in HTML markup—typing angle brackets and other odd characters and remembering the abbreviations for common tags.

Early blog software removed some of these complications. Blogger and Pitas first appeared in 1999 (Blood 2004, 54; Walker Rettberg 2014, 9) and allowed writers to create blogs without setting up a server or managing files. Users could then write blog posts without knowing any HTML. As Blood (2004) remarked, “I sometimes wonder whether the new bloggers knew enough HTML to construct a link. Whether they did or not, Blogger was so simple that many of them began posting linkless entries about whatever came to mind” (54). Blood contrasted these “linkless blogs” to the “filter-style Weblog,” arguing that “filter-style” “could become an important new form of alternate media,” while the “linkless blogs” contained merely “entries about whatever came to mind. Walking to work. Last night’s party. Lunch” (54).

[image: Screenshot of the Blogger homepage from December 15, 2000]

Fig23. Screenshot of the Blogger.com homepage via the Wayback Machine (December 15, 2000). Blogger then billed itself as “push-button publishing for the people” that “offers you instant communication by letting you post your thoughts to the web whenever the urge strikes.”

While Blood implied that the ease of Blogger and similar tools led to more frivolous writing on blogs, Torill Mortensen and Jill Walker (2002) offer a different perspective. They describe the ways blog software shapes their writing activity, contrasting Blogger with Tinderbox, a hypertext authoring application. Rather than seeing the Blogger interface as discouraging or obscuring links (as Blood suggests), they show how the “blog this” button Blogger provided via its toolbar “eas[ed] the connection between online reading and writing—if you click the button while viewing a Web page, Blogger will automatically set up a writing space for you with a link to that page and space for you to write your comments” (254). They contrast this ease of composing and publishing a post while reading online with the “much more complex ways of writing and linking notes” (255) afforded by Tinderbox.

Although Blood positions Blogger as bringing perhaps too much ease to the composing interface, she frames the software as also introducing unneeded complexity:

In 1999, Weblog software automated a process that was so simple any Web generalist could do it by hand. Since then, toolmakers have introduced such complexity into the Weblog form that only a programmer is able to reproduce their results. Like a 1930s automobile mechanic contemplating a fuel-injected engine, I can only scratch my head. Modern Weblog technology accompanies each post with such a conglomeration of pings and scripts that I can never hope to keep up. (55)

While the process of hand-coding HTML pages to update one’s blog may be simple, even bloggers with technical expertise found compelling reasons to automate their blogs with software. In the early 2000s, software like Radio Userland and Movable Type provided similarly simple composing interfaces as Blogger but also let users host their blogs on their own server, either by producing a folder of HTML files to be uploaded to a web server or by installing the software on the server itself.

Initially, none of these blog tools offered WYSIWYG authoring tools in their interfaces, requiring that users still type HTML for formatting text. However, software such as Movable Type or Blosxom soon supported Markdown plugins, which converted text written in Markdown (a simplified HTML syntax) to HTML upon posting.

Removing the requirement of writing in HTML serves to reduce a good amount of friction for bloggers. Writing HTML, and reviewing HTML documents for editing and proofreading, could be tiresome. Consider the HTML link element, which a blogger might use frequently. It is cumbersome: it requires a URL, at least one attribute value (often more), and a seemingly empty “a” tag.

Digital Rhetoric Collaborative

Visually, the link tag disrupts and obscures the anchor text, and a paragraph filled with link tags is difficult to proofread and edit.

In Markdown, the long link element is replaced with anchor text in square brackets and a URL in parentheses:

[Digital Rhetoric Collaborative](http://www.digitalrhetoriccollaborative.org)

Writers who find the URLs distracting can optionally move them to the end of the paragraph or document:

The [Digital Rhetoric Collaborative][1] houses reviews of presentations from the recent [Computers and Writing][2] conferences.

[1]: http://www.digitalrhetoriccollaborative.org

[2]: https://candwcon.org/2018/

Beyond simplifying the addition and display of links and URLs in documents, Markdown allows writers to work around other cumbersome elements of the syntax (including the requirement of wrapping every paragraph with a “p” tag and simplifying emphasis and strong tags).

Both Movable Type and Blosxom used graphical interfaces that presented authors with text entry areas in which to compose their posts. Movable Type saved the posts in a database, while Blosxom saved posts as regular files in folders. Both tools output static HTML files to a web server. Many contemporary blogging tools with similar graphical interfaces, such as WordPress or Drupal, work dynamically instead, so the web pages are generated via scripts when users visit each blog page.

[image: Screenshot of the Movable Type interface for version 3.38]

Fig24. Screenshot of the Movable Type entry interface (version 3.38) with Markdown plug-in installed.

These dynamic tools have many affordances but also some important drawbacks. Their dynamic elements rely on software that opens one’s blog to attack by malicious code, which means bloggers must constantly stay up to date on the frequent security updates. Today there are popular blogging tools that eschew databases and work similarly to Blosxom in that they consist of a collection of discrete files authored in Markdown. However, these new tools, called “static site generators,” often have no graphical interfaces at all. Users create a collection of Markdown files and HTML and CSS (cascading style sheet) templates, then run a script that compiles these files into the actual HTML and CSS files that are then copied to a web server. Writing a new blog post with such a system means creating a new Markdown file and then running the script again, which will create or update the relevant HTML files that are then uploaded to the server.

In 2011 Terpstra moved from WordPress (a dynamic site tool) to Jekyll (a static site generator). As he noted in his blog post introducing his interest in switching, with Jekyll “the speed and stability increase is immense” (Terpstra 2011, para. 1). Over the course of the next year, he posted several accounts of the various scripts and web design techniques he was employing in building the new site with Jekyll. A year and a half later, though, as he reflected on the change, he remarked, “Over the course of building this new site, I’ve realized that I really don’t have many issues with WordPress, and Dreamhost has always been pretty stable for me. I just get antsy and want to try new things, so I’m giving this a shot” (Terpstra 2013, para. 2).

Terpstra’s blog follows the conventions of many blogs that focus on the same family of activities surrounding Markdown. There are software reviews, tips and tricks related to Markdown, the occasional post related to Apple software and hardware, and other technology-related topics.

One of the key features of these blog posts is that they often include links to other materials: other web pages or apps in the Mac or iOS app stores. In Terpstra’s blog, links to other web pages include links to blog posts written by others or older posts on Terpstra’s own blog, links to home pages for software applications, and links to Amazon products. Some posts (which appear annually) include dozens of links to software applications on the Mac and iOS platforms along with mini-reviews.

While Terpstra writes these posts in Markdown, and thus is able to use the more efficient and easier-to-read linking syntax afforded by it, it can become tedious to create these links when writing posts with dozens of links or writing several posts a week with several links each. To create each link, a blogger working with Markdown still has to locate the correct URL and enter it into the document. The most manual, straightforward way to do this would be to open a web browser and find the page one wants to link, either through a search engine or by navigating to a site and then locating the specific page within that site’s menus or organization. Once the right page has been found, one can copy the URL and paste into the Markdown document.

However, this task can also be automated in several ways. One method of automation is batch processing, or taking a series of tasks a person might accomplish at different times throughout a work session and instead completing them one after another immediately. Batch processing is a technique that predates computing, of course, but for tasks that can be accomplished with computers, batch processing speeds them up immensely. Before writing SearchLink, Terpstra created a script to batch process the copying and pasting of links from a web browser. To use it, a person simply opens each web page to which they want to link in separate tabs of the web browser window. Then they invoke the script, which copies the URL from each open web page, and they then paste that list of URLs into the Markdown document as a block of reference links. They can then add the links to the document by referring to the reference link name, either while composing or after the document is already composed.

Automation always involves trade-offs, and batch processing links in this way does as well. First, writers must know what pages they want to link before invoking the script. It’s certainly possible to paste useful links with the script before drafting and then manually seek out additional links if they become necessary. Similarly, it’s possible to draft the document, leaving placeholders for the links, and then collect them at the end of the session. However, efficient use of the script would seem to encourage locating all the pages ahead of drafting the document: this way links could be added while drafting without needing to leave placeholders that need to be filled in later. One workflow that works well with the script is a research phase, which might include drafting notes in a document and keeping an open browser window with tabs relevant to the project. Then, when the research is complete, all the URLs from the tabs are pasted into the document by the script and the document can be composed.

Such a workflow privileges a writing process focused on “putting words on the page.” Proponents of such a process see the goal of a writing session to be getting as much text written as possible without switching to other activities (like searching for a particular web page or locating and reading a reference text). We would argue that Terpstra’s interest in this process led to his creation of SearchLink and that his use of SearchLink continues to strengthen his commitment to this writing process.

SearchLink

While adding all the links for browser tabs can help a writer with “putting words on the page” without having to bounce back and forth between the browser and text editor, it does require going to the browser at some point to open all those pages. Even this bit of friction was removed in late 2012 with Terpstra’s creation of SearchLink. This script automatically adds web links to text through the use of a special syntax, no browser tabs required. “When you’re writing or blogging,” Terpstra writes on SearchLink’s homepage, “it’s time consuming to think about linking as you go. With these formats [provided by SearchLink], you can basically leave a note about what a certain phrase should be linked to and keep writing. When you’re done, run SearchLink on the entire selection and all of your ‘noted’ links will be updated [to web links]” (Terpstra 2016, para. 13).

[The Sweetland DRC](!g Sweetland Digital Rhetoric Collaborative) hosts blog carnivals, reviews of conference sessions, and a wiki about the field.

While writing the sentence above, an author might want to link to the Sweetland DRC website. Instead of stopping mid-sentence and finding the URL, they could use SearchLink to grab the link later. In this instance, the (!g) syntax tells SearchLink to search Google for the phrase that follows and replace it with the first URL found.

Basically, while they are composing, writers indicate where they want a hyperlink to appear in the text, and then they write a search query (e.g., the same series of words one would type into the Google search field). SearchLink uses that search query to return the URL of the first hit and creates the hyperlink formatted with Markdown syntax.

SearchLink offers two main benefits for writers looking to create text with hyperlinks. First, it allows writers to include link placeholders in their text as they write, so they don’t have to move back and forth between composing and locating web pages and copying URLs into the text. Second, it removes the need to locate web pages altogether by adding the URLs automatically, based on the result of the search query.

In exchange for these benefits, SearchLink
 requires some additional expertise from writers. First, writers must create the text using the Markdown syntax (a simplified HTML syntax) instead of a graphical user interface or HTML itself. Additionally, writers must remember the special syntax for search queries (e.g., typing !g before the search query text returns a URL from a Google search; !a returns a URL from an Amazon search). More important, writers must be familiar enough with the search services and the result they’re looking for so that their search query will return the link they want as the first hit.

For teachers in Writing Studies, SearchLink may initially seem like an amusing or interesting tool for other writers but not something to use or teach to students. For a web writing course, or one where students will blog, it might seem appealing, but the additional expertise required to use SearchLink may outweigh the benefits it provides. Learning Markdown and the SearchLink syntax may not provide much benefit for writers still learning HTML or adding only one or two links per text.

And yet, regardless of whether one wishes to learn to use SearchLink or not, we chose it as an example of automation because it illustrates three key aspects of automation. First, automated workflows mediate writing activity, sometimes even reshaping the task (e.g., Hutchins, 1995). SearchLink, as we explain in subsequent sections, changes blogging from a hypermediated (Bolter & Grusin 1999) activity involving shifts between web browsing and writing to a more immediate (Bolter & Grusin 1999) writing activity.2 Second, SearchLink requires significant expertise on the part of the writer using it, demonstrating the possibilities for automation to avoid deskilling people. Further, the different kinds of expertise required to write the SearchLink script and to use it are rarely, if ever, examined in the field of Writing Studies. Third, SearchLink illustrates how automated workflows and scripts can be commodified and distributed through open source channels. This is an aspect of service that our field has not fully embraced, leaving software design to software publishers or others.

Ultimately, we see Terpstra’s search for friction and the resulting automation as a helpful window into workflow thinking. Across our years of teaching, we’ve seen students and colleagues repeatedly bump into moments of friction (such as dealing with tedious file and folder structures or fighting against spellcheck and autocorrect), and we have watched as those students and colleagues attribute that friction to the finicky or arcane nature of computing technologies. But Terpstra’s SearchLink challenges that perspective, instead pointing us back toward Moran’s dream of erased drudgery and asking how the computer might minimize friction in writing. And Terpstra’s case helps us see how the act of reading for friction offers new ways of thinking about and working with writing technologies.

Automation

Before moving forward, however, we should first clarify and offer caveats. When we talk about automation, we aren’t arguing for a renewed focus on machine grading (Ericsson & Haswell 2006), the use of plagiarism detection services (Purdy 2005), or improving spambots. Instead, we hope to point the field back toward the spirit and sense of invention prevalent in 1980s approaches to computing. Furthermore, we recognize that many efforts to automate tasks in recent decades have sought to deskill humans or remove them from the task altogether. We hope to counter these examples with depictions of automation that increases the active potential of the people who employ it. We are encouraging a return to the possibilities of machines, to consider how software and scripts might help us not just eliminate drudgery but how they might also encourage us to reconsider our composing processes. Automation in this sense isn’t simply eliminating or streamlining tasks; it is working alongside the computer and software to reconsider how and where we invent and compose.

This is not to say that we are promoting automation in all writing tasks for all writers. In pointing the field in this direction, we want to extend the spirit that Charles Moran describes in his 2003 retrospective:

In Computers and Composition, we are generally upbeat, optimistic, enthusiastic, and forward-looking—more so than we are in other journals. Our hopefulness is refreshing and positive. I’d not want us to be anything other than what we have been and what we are. In the pages of this journal when a hope is dashed, as it often is by our research, we do not lose hope, but transform it: If this application of new technologies doesn’t help, then this other one will; if it doesn’t seem to work for this student population, then we should try it with this other student population; if technology doesn’t improve this aspect of a writer’s work, then we should try it on another aspect of the writer’s work. (344)

This spirit was pervasive in computers and writing scholarship in the 1980s, and we can see those results in the scholarship and software produced. That spirit continues in the field’s scholarship today but mostly in questions about multimodal and web-based spaces. It appears less so in the case of writing software and specific scripts and tools. Independent developers, however, have carried forward that optimistic spirit within the context of alphabetic writing technologies, building tools that offer automative possibilities and affective interfaces. In exploring their work, we hope to return to the possibilities of automation within the field of Writing Studies—not as a way to prescribe process but as a way to explore the generative possibilities of automation within the context of workflows.

However, writing about automation brings with it considerable baggage. The term has seen significant movement in the field, from the early promises of erasing drudgery, to the turn against machine grading and automated assessment, to the current questions about algorithms and institutional writing software. Today, automation in the early twenty-first century also calls to mind questions of efficiency, labor, and industry as we move further into a moment where more jobs are replaced with automated industrial solutions. In many popular contexts and conversations, automation is the erasure of a human and ethical world, a space where bodies are replaced with machines and a commercial push for profit values efficiency above all else. These are all very real concerns, and we don’t wish to diminish them.

There are models in the field, however, that demonstrate how automation can transform literate activity in beneficial ways. Johndan Johnson-Eilola and Stuart Selber (1996), drawing on Shoshana Zuboff’s (1988) distinction between automating and informating, show how hypertexts can often display aspects of each quality. For example, they describe how a hypertext maintenance manual might speed up a maintenance person’s navigation and retrieval of information (automating their use) and afford new activities, like allowing users to communicate with one another (informate). They then suggest a new distinction:

Although the automating/informating distinction offers a useful starting point, what becomes primary (from our perspective) is not the specific characteristics of any one technology but how those characteristics are taken up, channeled, defined, and defied by people. Because most hypertext applications possess at least some degree of informating capacity, our point is not that a certain type of hypertext generates information while another merely automates processes. For those technologies that informate, what is done with that information becomes central. In other words, does a specific hypertext primarily contract or expand communication processes? (124)

That is, while automated activities are too often situated in contexts that lead to decreased autonomy and agency for people involved, they might otherwise be situated in a manner that supports people in transformative and empowering ways. This is not so easily realized within complex infrastructures, so we don’t want to suggest that such a change is straightforward or easily accomplished. As Bradley Dilger (2008) proposes, we can begin with disrupting assumptions. He argues that breaking assumptions about programmers (that only special people can be programmers and that it is “exclusive to experts” [132]) can help support writers who can use automation techniques to develop new writing practices. Similarly, we propose that the writing activities of our participants offer some examples of how automation might be reclaimed for textual production within the field. Through our analysis of their work, we argue that attending to writing workflows can help us to better define and contextualize approaches to automation.

Writers participating in the Markdown affinity space frequently write and talk about automation in terms of their workflows. These writers seek to use automation to remove friction in order to accomplish tasks more efficiently, accurately, or with more focus. Friction, for these writers, is invoked when they say there’s a better way to accomplish a task, when they note there are unnecessary steps in a process, or when they describe software as getting in their way.

For example, David Sparks told us about how his readers often lose the download codes for the digital books they purchased from him and write to him requesting new ones. Rather than finding new codes and composing a reply to each reader “by hand,” he created a script (with Apple’s Automator application) that generates new codes and pastes them into an email template. This type of approach ensures accuracy (there’s no risk of incorrectly copying part of the code and pasting it in a message) and reduces the friction found in a monotonous task. David Sparks is often an advocate for automating tasks on his podcast, but he identifies Brett Terpstra as the “mad scientist” (Sparks & Floyd 2013) of automation and scripting.

Using SearchLink

Terpstra’s development and use of SearchLink demonstrates a combination of rhetorical and technological expertise, and the SearchLink syntax assumes proficiency with search engine queries and logic structures. For SearchLink to be a helpful tool, the user needs to have confidence that their query will yield the desired website, which means some queries are better than others. For example, !g Conference on College Composition and Communication would be more successful than !g CCCC, and SearchLink is most helpful when the user has this sort of knowledge. Although it would be technically possible for SearchLink to offer the user an interstitial or modal window of search results and prompt for a selection from that list, Terpstra designed a more seamless application—one that relies on, but also is faster because of, the user’s ability to craft accurate search engine queries.

SearchLink also supports linking practices beyond those of typical web browsing practices. To directly link to an application in Apple’s App Store, Terpstra would have to open iTunes, search for the application, and find the redirect link to that application’s page. SearchLink can create that link without opening iTunes. Likewise, Terpstra generates blog revenue through referral or affiliate links, and he can modify SearchLink so that it appends his affiliate number to Amazon or iTunes URLs. (For more information on affiliate links, see the Spotlight on Affiliate Marketing at the end of this chapter.) Without SearchLink, these affiliate values would require, at a minimum, substantial and tedious copy and paste work for each URL. However, through his knowledge of scripting and his awareness of his writing practices, Terpstra can extend SearchLink to generate any type of link needed for his web writing.

Terpstra has experience developing apps, and SearchLink directly draws from that experience; it isn’t a solution that a novice could easily build. It does, however, fit into a broader narrative in which Terpstra extends his skill sets and knowledge by developing solutions to problems and friction points that he identifies. That is, in order to build a tool like SearchLink, Terpstra has to (1) identify the problem or potential point of friction, (2) understand where that friction sits within his existing workflow, (3) know where scripts or applications can intervene within that workflow, and (4) develop a solution that fits within those confines. In doing so, Terpstra has to complete a metacognitive assessment, recognizing what he knows, what he doesn’t, and how he might learn and apply new technologies and practices. Each new project or script helps him better understand the potentials and boundaries of his writing technologies, shaping future activities and providing him with knowledge that might solve future problems.

“Just Write” ideology

[image: Screenshot of the SearchLink project page]

Fig27. Screenshot of the SearchLink Project Page, which says that SearchLink’s bracket format “allows you to just write.”

As we alluded to previously, Terpstra is a committed proponent of a writing process aimed at composing a large chunk of text without switching to other applications or research sources. His development of SearchLink reflects his adherence to this workflow. In our interview, he described his preference for staying in his writing app while drafting to avoid opening a web browser:

The reason it started [developing SearchLink] was my biggest frustration with blogging was that I was constantly having to go run Google searches, switch out of the app I was writing in, run the search, come back, paste the link, give it a title, and all the formatting and all of that was just becoming—I realized that half of my blogging time, and this was when I was writing for TUAW [The Unofficial Apple Weblog], and it was actually, time was more of the essence in getting the blog post out—and being able to just highlight text and have the link inserted without ever leaving my application was a huge, huge deal for me.

As Terpstra explains it here, staying in the writing application is more efficient; it saves time and helps him publish timely blog posts more quickly. Additionally, there’s another aspect to this kind of efficiency, a kind of conservation of attention or concentration. Such conservation is at the heart of the ideology underpinning workflows dedicated to “getting words on the page.” Terpstra refers to this kind of workflow as “just write.” As Terpstra describes SearchLink on the project page of his website:

SearchLink allows you to just write, marking things to link as you go. . . . When you’re writing or blogging, it’s time consuming to think about linking as you go. With these formats, you can basically leave a note about what a certain phrase should be linked to and keep writing. When you’re done, run SearchLink on the entire selection and all of your “noted” links will be updated. (Terpstra 2016, para. 2)

Although Terpstra doesn’t explicitly identify increased concentration (or decreased distraction) as a benefit of SearchLink, it doesn’t seem a stretch to infer that’s part of what he’s talking about when he says the tool lets users “just write.” In a blog post announcing an update of SearchLink, Terpstra claims, “If you write in Markdown and ever switch away from your editor to get a link and haven’t tried SearchLink out, you should. I can say with a good amount of certainty that it will change the way you blog, email, and write” (Terpstra 2015, para. 3).

While speeding up the process of adding links to a blog post draft does qualify as a “change,” we think that integrating SearchLink into one’s writing process could lead to more significant differences than just speeding it up. Drawing on Edwin Hutchins’s (1995) work on distributed cognition, we see SearchLink changing the activity of blogging by turning it into a “just writing” activity as opposed to a link gathering and writing activity. In other words, SearchLink shifts Terpstra’s mental efforts from link gathering in a browser to search query construction while composing. Even if he were to type the same search query into the document that he would use in the web browser, he does not have to switch applications, review the page of results, evaluate them, or click on the best link. Given psychological research into the costs of task switching on concentration (American Psychological Association 2006), such a shift seems significant.

In wanting to “just write,” Terpstra—like many other participants in our study and members of this affinity space—seeks an experience of flow (Csíkszentmihályi 1990) that minimizes the possible mediation or interruption of writing technologies and foregrounds his interaction with the text. In our conversation, Terpstra differentiated the act of “just writing” from that of tinkering or developing workflows, and “writing” often means generating text that will ultimately lead to a blog post. Writing, in this sense, is a focused labor, and Terpstra wants to eliminate the undesirable ways in which software might disrupt that focus—or flow. As he explained during our interview, he sees value in software that can support that focus:

The complications of writing are in research and structuring the order of information and then being able to manipulate and shuffle the ideas until you work it out into a document. And if the software that can make that frictionless for you provides just the options it needs to in order to accomplish that task, you’re concentrating on those more kind of philosophical points of writing and less on “How am I going to move this paragraph to another chapter?”

In computing spaces, this approach to flow is often linked to the reduction of distractions. In terms of software and software marketing, distraction and flow are often connected through user interface design features, such as minimal text editors and distraction-free writing tools—software with fewer UI elements, which is marketed as offering greater attention to flow and a greater sense of productivity (see Van Ittersum & Ching 2013). In reviews and publicity materials, these distracting elements are often tied to writer’s block: “Cure writer’s block with distraction-free text editor Byword,” one Macworld article suggests, while MakeUseOf.com says that you can “get over writer’s block with OmmWriter, a zen distraction-free writing app.”

[image: Screenshot of the OmmWriter homepage]

Fig28. The OmmWriter website says, “OmmWriter is your own private writing room where you can close the door behind you to focus on your writing in peace. Everywhere you go, you have access to a beautiful distraction-free writing environment where your authentic voice is free to go where it is meant to go.”

As David Sparks described in our interview, these distraction-free tools offer him tangible benefits:

Well, it improves your focus on your words. And there’s only one thing that can do, is make it better. And frankly when you have a system that refuses to let you fiddle with fonts and headings when you’re trying to write the words, the focus on the words is gonna make the words better. I mean, it’s just my opinion, honestly. I’m sure there’s people who are much better writers than I that open up Microsoft Word and they make brilliant stuff, but I think if given everything else equal, if you get somebody on a system like this, I think that they can do a better job of writing some good text.

Thinking of flow, we might also draw connections to the affective dimensions of writing, especially the desire to find or create a writing environment that meets a particular aesthetic preference. Distraction-free and customizable writing environments speak to this desire, as do the many blogs that showcase writing and working spaces. Further, when activities are viewed through the lens of “friction,” then automated workflows designed to reduce that friction create a sense of relief, a reduction of frustration.

Distributing Automation

This chapter has focused on the case of Brett Terpstra and SearchLink, but we don’t think that workflow automation should be limited to a particular type of computing or scripting behaviors. We also don’t want to offer Terpstra’s work as an idealized practice or suggest that writers should learn scripting languages and start programming. SearchLink is compelling to us because, like much of Terpstra’s work, it offers complex automation in an easy-to-install package. Any writer can install and use SearchLink without knowing the scripting languages that drive it, and SearchLink provides an approachable introduction to the power of writing-focused automation. (SearchLink does require familiarity with the Mac user interface and file system, a topic we will address in later chapters.)

Although applications like SearchLink are often created to solve user-specific writing problems, the distribution and adoption of those workflows generates professional credit and prestige for the developers. Terpstra’s “mad scientist” moniker comes from his experiments in scripting, many of which he gives away for free but that indirectly drive revenue for his paid, commercial applications and for his sponsored blog posts. On one of his appearances on the Mac Power Users podcast, Terpstra says, “I get letters every day—every day, at least three or four—from people that have a question or they just want to say thanks, and so many of them start with ‘Hey, I first heard about you on [Mac Power Users].’ . . . It’s amazing. So many people have discovered me through [the podcast]” (Terpstra 2017).

As we discussed in the previous chapter, David Sparks describes the Mac Power Users audience not as experts but as “students and educators and doctors and lawyers and people who own small businesses who are just trying to get better at this stuff.” Although Terpstra’s programming expertise places him outside of this general audience, his scripts and programs—many of which are built for writers—help him reach, interact with, and market to a broader computing public. Likewise, the listeners who write to Terpstra gain access to a professional programmer who develops tools for writers.

In the next chapter we discuss the case of Federico Viticci, editor in chief of MacStories. Rather than focusing on advertisements, Viticci monetized the MacStories website through “Club MacStories”—a subscription-based weekly newsletter with exclusive content. One popular segment of this newsletter is “Workflow Corner,” in which “each week we’ll help Club MacStories members with their iOS and OS X workflows. Submit your requests and we’ll try our best to come up with a solution” (“Club MacStories” n.d., para. 6). Like Terpstra, Viticci draws on his scripting knowledge to help users simplify tasks or work through computing challenges (particularly related to the limitations of phones and tablets). These efforts have both increased his professional profile and generated an audience-friendly revenue model for the MacStories website.

[image: Screenshot of MacStories]

Fig29. In this workflows article posted to MacStories, Federico Viticci shows readers how to build a clipboard manager for their iOS devices.

In both of these examples, workflows and automation technologies invoke a public, one that differs from traditional software distribution channels. Much like developers sharing and iterating open source software (a tradition that extends from the development of the UNIX operating system [Kelty 2008]), Terpstra and Viticci engage directly with the users of their workflows, and they often incorporate end user feedback or revisions into their projects. Their automation solutions are opinionated (often developed with their own practices in mind), but they’re also malleable and evolving, shifting with the needs of their audience and with the changes in their computing platforms. As an example of this malleability, SearchLink itself has been adapted by several people and discussed online. These users have implemented SearchLink within other software automation tools, allowing them to run the script in new ways and contexts. There is a plug-in for the Alfred launcher, a macro for Keyboard Maestro (which helpfully provides reminders for the SearchLink syntax), snippets for TextExpander (created with Terpstra’s troubleshooting assistance), an extension for the iOS Workflow app, and a plugin for PopClip. The developer of the iOS text editor Editorial even converted the original SearchLink script from the Ruby scripting language to the Python scripting language so that it could run in Editorial.

In this chapter we have sought to walk the fine line between seeing automation as a mind-set that creates opportunities for new writing practices and increased satisfaction with writing, and seeing automation as another opportunity to commodify decontextualized writing tips and tricks. Although Terpstra monetizes and markets several of his software products, he doesn’t present them as panaceas, and the development of each script begins with his own particular use case. His approach to automation is grounded in metacognition and in reflection on his own practice. This personal approach to automation, however, also introduces him to a broader affinity group—one where workflows, processes, and practices are shared and discussed. And within this affinity group, the ongoing conversations about automation show how we might productively theorize and apply automation within writing technologies.

This robust ecology of workflow creation, modification, and distribution highlights the scarcity of something similar within Writing Studies. Although the term “workflow” doesn’t have the same currency in academic contexts, there are parallels in textbooks, professional advice, and lore. In his book Net Smart, Howard Rheingold (2012) describes his complex web dashboards, through which he filters “Google News and Yahoo! News searches, Google alerts, hashtag searches on Twitter, blog posts from experts, and feeds on tags from Flickr, YouTube, and Delicious,” and Rheingold argues for the pedagogical value of building such information-parsing workflows, noting, “I know a sixth-grade teacher who had her students create dashboards instead of writing papers” (104). Closer to the field of Writing Studies, Cheryl Geisler’s (2004) Analyzing Streams of Language also provides models for what we see as research workflows. In the book’s preface, Geisler writes, “One of the most exciting features [of this book], formulas in Excel developed explicitly for the tasks of analyzing verbal data, will save you hundreds of hours of time in doing your analysis” (xiii), and “Techniques throughout the book provide you with step-by-step explanations for using these tools for your analysis” (xx). Workflows often circulate at a local or institutional level, perhaps through professional development workshops where instructors are taught to batch download and upload grades rather than inputting them one by one into Canvas or Blackboard. Some writers might also be familiar with Word macros, which provide another perspective on workflows and automation within traditional alphabetic composing.

[image: Screenshot of Word macro panel]

Fig30. Microsoft Word’s macro panel.

Although Microsoft Word might not seem like the most scriptable or programming-friendly environment, macros—programs that function within Word and perform repeatable functions—have been part of the word processor since the early 1990s. Early versions of Word featured a WordBasic programming environment, and a number of third-party advanced user guides offered writers a way into WordBasic—extolling the benefits of automation and offering tutorials on the automation of recurring word processor tasks. In many of these macro introductions, however, the macro is presented as something helpful and approachable, despite a user’s potential fear of programming. Brent Heslop and David Angell’s “Everything Microsoft Didn’t Tell You about WordBasic” (from PC Magazine, July 1993) illustrates these tensions: “Anyone can dive into WordBasic to modify macros or create their own, but Microsoft’s limited support of WordBasic, along with the stigma attached with programming, may have kept you from discovering this simple-to-use, powerful customization tool” (71).

This theme persists nearly twenty years later, now complicated by the growth from WordBasic to Visual Basic Applications (VBA), a much more powerful and complicated means of scripting macros. In chapter 32—the final chapter—of the Word 2013 Bible, Lisa A. Bucki introduces readers to the VBA macro:

Word macros are programs that you use to automate things you do in Word. At their simplest, macros can automate repetitive chores. At their most complex, macros are full-blown VBA (Visual Basic for Applications) programs that add features to Word. You can use macros to create shortcuts to features that aren’t directly available and assign them to the Quick Access Toolbar or to keyboard shortcuts. You can use a macro to perform a series of editing steps. Why are they called macros? Macro means big. In effect, a macro is a way of boiling a lot of instructions (something big) into a single command (something small). (para. 1)

Bucki positions the macro as something conceptually simple: a process for chaining together a series of small steps into a single executable action. However, macros are often presented as a power-user tool requiring experience or programming skills. Bucki’s book is a comprehensive guide to Microsoft Word, yet it saves macros for the book’s final pages, offering a caveat in a call-out box:

Providing a full grounding in macros, Visual Basic, and using the Visual Basic editor is beyond the scope of this book. If you’re a Word developer, you very likely know everything you’ll read in this chapter. This chapter isn’t for you. Instead, it’s for users who want to know how to get started recording and writing macros. Once you’ve gotten started, take a course or invest in a book devoted to Visual Basic. (para. 5)

Macros, as Bucki implies, exist in a space outside of typical word processor use cases. They draw on programming languages (Visual Basic, in the case of Word), programming syntax and structure, and on the user’s ability to (1) recognize that a scriptable problem exists and (2) know that Word provides a system for scripting a solution. And, as Bucki also notes, macros have long been vectors for virus distribution, and macro-enabled documents often come with a MS Word Security Warning—discouraging the casual user from exploring Word’s scripting potential.

[image: Screenshot of a macro warning alert in Microsoft Word]

Fig31. Screenshot of a macro warning alert in Microsoft Word.

Although macro use hasn’t found significant traction within the field of Writing Studies, macro use was briefly considered and encouraged during the late ’90s boom of word processor research. For example, in “What Works for Me” (1996), John R. Chamberlain presented macros as a way to simplify and streamline feedback on student writing. “I’ve found that a lot of the notes and corrections I write on student essays are for common mistakes,” Chamberlain writes, continuing to say:

Rather than writing these responses out each time, I store the typical things I say about topic sentences, thesis statements, concluding paragraphs, sentence fragments, etc., as macros. By using macros, I can give students abundant feedback about these issues without spending a lot of time writing the same comments over and over. This frees my time for offering additional comments that are more personal, thoughtful, and engaging for them and me. (219)

Word macros have a significant history and remain in use in many professional writing contexts, but they aren’t on the radar of the writers and programmers within the workflow affinity space that this book explores. There are a couple of possible reasons for this, and they’re worth noting. First, the workflows affinity space of this book is largely based on web writers, and those web writers are working with a specific set of UNIX-inspired or -related tools: UNIX hosting tools, web languages like Javascript, Mac OS shells, and so on. Many of these writers approach text through HTML, and this finds them scripting and automating tools that are closely related to the technologies of web publishing and web development. Likewise, many of these writers have abandoned composing in Microsoft Word, so it isn’t surprising that they have little interest in the function or possibility of Word macros.

Before we turn to those technologies of web production and automation, however, we want to note that Word macros provide another pathway to automation, and this avenue might be of interest to writing instructors who teach and work largely with Microsoft Word. For example, the Copyediting-L listserv offers editors a space to share macros and scripts that automate routine tasks. Paul Beverly’s Macros for Editors is a helpful model, providing hundreds of macros such as “AAnAlyse,” which verifies that indefinite articles agree with the following word, and “PDFsoftHyphenRemove,” which unhyphenates all words in the document. In this regard, many copyeditors use scripting to minimize the drudgery of copyediting and make more time for what they view as the more important parts of their work.

Conclusion

This chapter has sought to demonstrate how automation could serve as a useful activity for writers—and facilitate workflow thinking—by prompting reflection on writing processes and through shifting the focus of activity toward less frustration and more concentration. When software stops causing “friction” and starts supporting one’s work, writers can experience new relationships with their tools and their tasks. Furthermore, identifying tasks to automate can become an orientation to other activities beyond writing. This perspective has its problems and dangers, as we described at the top of this chapter, such as when automation seeks to displace people and their intelligence. We should remain critics of these efforts. Yet automation, as this chapter has illustrated, can be implemented in ways that support and extend people’s abilities.

In offering Terpstra’s SearchLink as a case for analysis, we hope to guard against decontextualized practices while adding automation as another possible means of workflow thinking. Just as the Markdown syntax was born in John Gruber’s moment of thinking “there has to be a better way,” we see the practice of automating writing as a means of productively expanding the possible within digital writing practices.

In the next chapter, we first explore workflows that seek to overcome the limitations of operating systems and computing paradigms through the case of Federico Viticci and his mobile (iOS) workflows. Such workflows can variously appear innovative and haphazard, like Rube Goldberg machines or as elegant workarounds. Sorting through such perspectives, and knowing when to engage in cutting-edge workflow construction, is a key practice the next chapter aims to explain.

Spotlight on Affiliate Marketing

[image: Banner ad for Amazon’s bounty program]

Fig25. Banner ad for Amazon’s bounty program

Although many websites generate revenue through banner advertising and advertising networks, affiliate marketing has grown in popularity, especially through small and product-focused blogs. Affiliate marketing predates the web, but it quickly found traction in early internet spaces such as Prodigy (Walker 2013). Today, Amazon is a huge driver of affiliate practices; a blogger can write about a product, include an affiliate link to Amazon, and receive a commission if the reader purchases an item from that site. Affiliate marketing is more or less popular in different spaces; some online forums ban the practice entirely, while some bloggers, like David Sparks, often render the practice in friendly and familiar terms: “Either way, if you are going to buy the MacUpdate bundle and want to help pay for the site costs, buy through the affiliate banner on the left and I’ll get $3 of the purchase” (Sparks 2008, para. 1).

The Wirecutter, a popular gadget review site, generates its revenue based on affiliate links and argues that the affiliate model is better than one supported by banner advertising, explaining:

All we can say is that the most important things to the health of this site are its reputation and its relationship with readers. Here’s why: We are going to recommend gear, no matter what, and we’re going to make our best efforts to recommend the things that we truly believe are worth the money. If we recommend something because we are biased or lazy and the pick sucks, you can return the piece of gear and we will make zero dollars. (Cheng & Lam n.d., para. 31)

The Wirecutter was recently purchased by the New York Times Company, which is perhaps a testament to the viability of this business model.

[image: Image of The Wirecutter’s description of its affiliate funding system]

Fig26. The Wirecutter’s description of its affiliate funding system.

Affiliate marketing provides another way of looking at the ongoing news cycle of the gadget blogger. To generate revenue the writer needs to explain and endorse products that the reader will buy, which creates a model in which there’s always a next new thing—a tool to upgrade or an application to switch to. Although the affiliate link deemphasizes clickbait stories and paginated article design, it still finds the technology writer enmeshed in practices of ongoing consumption.

1 While we are not aware of any projects aimed at creating a software-based composing tool involving people in the field, there are several projects designed to support pedagogy developed by scholars in the field. These include Eli Review, Marca, and My Reviewers. Additionally, scholars in the field are developing tools to support publishing, including Vega.

2 Jay David Bolter and Richard Grusin (1999) distinguish between the “twin logics of immediacy and hypermediacy” (5) in their analysis of their concept “remediation.” In discussing films that seek to help “viewers feel as if they were ‘really’ there” (5), they lay out the logic of immediacy, which “dictates that the medium itself should disappear and leave us in the presence of the thing represented: sitting in the race car or standing on a mountaintop” (5–6). Hypermediacy, on the other hand, “makes us aware of the medium or media” (34), such as in cable news, where multiple video streams and text crawls present a “real” worldview whose mediated nature is obvious. Importantly, both logics seek the same end: “the desire to get past the limits of representation and to achieve the real” (53). “Transparent digital applications seek to get to the real by bravely denying the fact of mediation; digital hypermedia seek the real by multiplying mediation so as to create a feeling of fullness, a satiety of experience, which can be taken as reality” (53). For writers creating blog posts, either logic may be preferred. Terpstra opts for the transparency afforded by SearchLink to avoid the mediation of web browsers and the temptations to explore other pages. Other writers may revel in multiple browser windows open at once, tiled across the screen, providing inspiration and guidance as they write their way through them.

Chapter 5: Writing on the Edge

“I wish that someone in 1895, 1897, or at least 1903, had realized the fundamental significance of the emergence of the new medium of cinema and produced a comprehensive record,” Lev Manovich (2001) writes in the Language of New Media. “Unfortunately,” he later continues, “such records do not exist. Instead we are left with newspaper reports, diaries of cinema’s investors, programs of film showings, and other bits and pieces—a set of random and unevenly distributed historical samples” (6). Manovich uses cinema history as a way to warn about the digital computer and his concerns about the direction of analytical work at the time—or “speculations about the future rather than a record and theory of the present” (6–7).

Many writing researchers have met Manovich’s call and examined a broad range of contemporary writing technologies, from the first word processors, to multimodal composing technologies, to social network services, to algorithms. Much of that work, however, is firmly centered in the world of desktop computing—a place where “computer” means a device with a screen, an attached keyboard, a mouse or trackpad, and a desktop operating system like Windows, Mac OS, or Linux. But from the mid-2000s onward, “computer” for many people has meant either a smartphone or a tablet device—a machine that runs a mobile operating system and relies on a touch or voice-based input system. With few exceptions (e.g., Swarts 2016), writing research about those mobile devices has focused mostly on the use of social network services (such as Facebook, Twitter, and FourSquare) or specific mobile features like GPS (global positioning system) and geomapping. We haven’t seen research about long-form composing strategies on mobile devices, and today “computer” or “digital device” still signifies a desktop or notebook computer.

An examination of software marketplaces tells a different story. Microsoft and Google both offer mobile versions of their word processors, as does the popular writing application Scrivener. Note-taking services like Evernote and Google Keep focus on mobile capture—taking notes with a mobile device and saving those notes in a synced text database. And the iPhone in particular has fostered a booming marketplace of phone- or tablet-based writing apps with names like IA Writer, Byword, Bear, Day One, and more. Additionally, mobile operating systems like iOS have offered innovations in computer accessibility through features like system-wide type scaling and voice-over narration. Despite growth in apps and accessibility, however, composing on mobile devices hasn’t been easy, and many desktop practices simply haven’t worked within the constraints of mobile operating systems.

In this chapter we look at the shifting writing workflows of Federico Viticci, a writer and creator of the influential MacStories review site, who has found ways to compose long-form texts on the iOS mobile platform (Apple’s operating system for its iPhone and iPad devices). Viticci’s approach is notable because he adopted long-form mobile writing during a time period when mobile devices were seen as vehicles for media consumption, web browsing, or producing short social media posts. Through workflow thinking, Viticci has pushed against those use cases, imagining new possibilities and finding ways to script, tether, and link together writing applications. His efforts show that one outcome of workflow thinking can be active transformations of one’s tools. While few writers may have Brett Terpstra’s expertise to develop new applications, many more writers could achieve similar ends as Viticci. Between chapters 4 and 5 it’s possible to infer some of the key differences between what is possible with workflow design and what requires full-on programming skills.

To show the extent of Viticci’s transformations of the default capabilities of the iPad and the applications he uses, this chapter offers a detailed examination of iOS and its iterations over several years. We acknowledge that lengthy examinations of operating systems (OSs) and their software limits aren’t typical fare for writing research. But we see something important happening here. It’s rare to encounter a new operating system with a significant user base (most writers and researchers today work on Windows or Mac OS, operating systems that are nearly forty years old), and rarer still to have accounts of a writer who is intent on bending a new operating system to meet their process and affective preferences. Federico Viticci offers us one such case.

In this chapter we explore Viticci’s approach to writing workflow design and to working with the many constraints of the iOS platform, including the affordances of the hardware and operating system, Apple’s secrecy about how those affordances may change in future updates, and a cutthroat software marketplace where customers are accustomed to free apps and developers have trouble generating revenue for niche writing software. In navigating these challenges, Viticci writes across many apps—moving text, automating operations, and scripting the actions in between. His approach is modular and frequently shifting, and his podcasts and blogposts reveal a writer who is always looking to reframe his process to accommodate the features or potentials of new software.

Federico Viticci

In 2012 Federico Viticci—an Italian blogger, computer enthusiast, and lead editor of MacStories—began treatment for lymphoma. Reflecting on that experience, he writes:

Three years ago, as I was undergoing cancer treatments, I found myself in the position of being unable to get work done with a Mac on a daily basis because I wasn’t always home, at my desk. I was hospitalized for several weeks or had to spend entire days waiting to talk to doctors. I couldn’t write or manage [my blog] MacStories because I couldn’t do those tasks on my iPhone and I couldn’t take my MacBook with me. I’d often go weeks without posting anything to the website—not even a short link—because I couldn’t do it from my bed. I began experimenting with the iPad as a device to work from anywhere and, slowly but steadily, I came up with ways to speed up my workflow and get things done on iOS. I promised myself I’d never let a desk set my work schedule or performance anymore. (2015, Hardware section, para. 2).

In the time since, Viticci has become a fierce advocate for iPad productivity and for the tablet’s potential as a replacement for the desktop computer. As he explained, during his cancer treatment:

My main goal was to find cohesiveness and coherence in how I could work from iOS—and especially my iPad—without ending up producing subpar content because of limitations in my workflow. I wanted to get rid of the notion that I needed a Mac for certain tasks, and (quite possibly to also prove this to myself, my colleagues, and my readers) I wanted to demonstrate that it wasn’t so absurd to think I could work from an iPad without compromises. (2013c, History section, para. 1)

During this time, as Viticci alludes, it did seem absurd to many that “real work” could be done with an iPad instead of a Mac (or other desktop/laptop platform). There were no easy ways to share files or data between apps, scripting and automation were not possible, and only one app could be visible at any time on the screen. Furthermore, the features and affordances of any given app were significantly reduced from what was available on Mac or Windows.

And yet Viticci was able to work around or transform these constraints in meaningful ways so that he did, and continues to, predominantly work from his iPad. Initially his efforts gained him some notoriety in the Apple-enthusiast spheres, as well as in the affinity space we have been studying, largely because it was so unusual for someone to try to use the iPad so exclusively for work. Typically, someone might refer to how they had found something useful to do on the iPad but that they were no “Federico Viticci.” As David Sparks said in his interview with Viticci for the Mac Power Users podcast: “It’s funny because you’re always the qualification whenever somebody talks about using the iPad. If you listen to any podcast, or even read some stuff online, they’ll like, I really like to use my iPad; I’m not, however, Federico Viticci. It’s always—you’re the qualifier” (Sparks & Floyd 2017).

In more recent years, however, iOS has developed in capability, Apple has begun marketing iPads as able to replace laptops, and it has become more common for people to describe their iPad-only workflows. In this new context, Viticci has established himself as a preeminent expert in iOS and how to work effectively on it.

Since early 2012, when he committed to using the iPad as a primary computing device, Viticci has described many writing workflows for researching, drafting, editing, and publishing text to his website. Rather than examining a single writing workflow in this chapter, we focus on Viticci’s workflow thinking as he crafts, tests, and adopts different workflows. His most challenging and high-profile writing task is his annual review of iOS (Apple releases a new version every fall), and he has typically described in detail his writing workflow for creating each review. His reviews are multimodal (involving screenshots, screencasts, animations, and a wealth of links) and collaborative (written by him and edited by others, with media assets created by him and others as well). They also involve scheduling considerations, as Viticci drafts his review during the months-long beta testing period for each iOS version so that his review is ready when the official version is released. He must negotiate which sections to write and polish by judging which features are complete and which are likely to change through the beta testing period, and he must quickly recreate his screenshots and screencasts using the final version of iOS when the beta period ends. Every year, Viticci considers the friction from the previous year’s writing workflows and tests out different apps and practices to see if he can address that friction. Furthermore, he seeks to incorporate any new features provided by the new iOS version into his review-writing workflow so that he can write about his experience of using them. By examining how Viticci employs workflow thinking to craft workflows that manage these demands, we demonstrate the value of workflow thinking as a starting point for transforming the constraints of one’s tools.

Viticci’s work on iOS, then, provides a window into an emergent computing platform and allows us to trace the coevolution of the platform and users’ practices. What we find most significant in Viticci’s case is how he commits to iOS and works consistently around its constraints. While many have judged the iPad against the capabilities of the Mac and find it lacking, Viticci more often judges the iPad against what he wants to accomplish and how. Examining this coevolution through the lens of “workflows” and “workflow thinking” focuses our attention on the choices Viticci makes as a writer and compels us to consider the role of affect more seriously than we otherwise might. Not every choice Viticci makes in reducing friction is solely about gaining or improving some functional aspect of his tools. Affect is often pitted against functionality in evaluations of users’ choices, where users who choose “prettier” or more pleasant interfaces are seen as shallower than those who choose more functionally capable programs with less aesthetically pleasing interfaces. As Donald Norman notes, this distinction “comes from a long intellectual tradition that prides itself on rational, logical reasoning” (2004, 7). Viticci’s case, however, shows us how affect and functionality can go hand in hand.

Viticci’s Writing

Viticci started his blog MacStories in 2009. Since then he has written regularly for the site and soon after was editing the work of contributors as well. The site has focused largely on software and hardware related to Apple computers, with much of that coverage leaning toward iOS features and apps, especially those for iPads.

From a workflow perspective, writing for the blog involves a few main tasks: research for articles, drafting articles, editing work from others, and publishing posts.1 Researching and drafting posts for a blog can involve many of the same tools and workflows that writers use when engaged in these tasks in other domains. However, publishing and some aspects of editing involve interacting with the blog content management system (CMS). In the case of MacStories, this means WordPress.

Managing and publishing content in WordPress can involve either its own web interface or dedicated apps. On Windows, Mac, or Linux computers there are flexible and functional options for working with content in WordPress. On modern browsers the web interface is a straightforward option, and there are a host of dedicated apps available, from those provided directly from WordPress to third-party apps like MarsEdit. It’s even possible to post to a WordPress blog directly from Microsoft Word. Furthermore, writers working on desktop/laptop computers can take advantage of the windowed interface to manage text editors, WordPress apps or the web interface, and other resources on the screen at once. While posting to a blog can be as easy as pasting in text from another app into the web browser (or even drafting it there directly), these apps support a great deal of additional complexity, allowing users to manage media libraries, add tags and other metadata to posts, and manipulate the URL slugs that define each post’s permalink.

On iOS, especially in the early years of MacStories, blogging with WordPress involved a less functional and flexible app ecosystem. As Viticci wrote in 2011:

The lack of great blogging apps for the iPad always puzzled me as a strange inconsistency with a device—and overall, a platform—that in the past year has proved to be more than a simple ecosystem for games and utilities. . . . The iPad was indeed quickly dismissed by many as a “media tablet” when it came out last year: but think about the musicians, the writers, the designers and the movie editors that did all those amazing things using only an iPad. Clearly, this isn’t just about playing games anymore. This isn’t about the passive interaction with content: it’s about the two-way relationship with consuming and creating content made possible by the 75,000 apps available in the App Store.

But then I look at bloggers, people like me, and I don’t understand why it is so difficult to rely on the iPad as a tool for working purposes. Let’s be honest: if you’re a geek and you happen to run a blog with lots of new posts added every day, you’ve had issues with using the iPad as your main work machine. We’ve all been there before: the soft keyboard takes a while getting used to, but it’s the lack of great blogging software designed specifically for the iPad that make us question the possibilities opened by this device as far as blogging is concerned. Getting down to my personal issues with the iPad and writing for MacStories, I identify three main problems: the official WordPress app isn’t that great (an [sic] euphemism); among the alternatives, several apps lack advanced functionalities like remote draft editing or custom fields; both 3rd party apps and the official WordPress one are terrible at allowing you to easily insert links, photos, and videos. We’re swimming in a sea of text editors, but as I said many times on Twitter in the past we need a more powerful app—something that combines the simplicity of text editors with rich features like media management and full access to the WordPress backend. I know, I’m asking for a complex solution, and quite possibly a software built for a niche rather than the Doodle Jump [a popular iOS game] masses. (2011, para. 1)

As Viticci suggests here, for writers the iPad very quickly offered “a sea of text editors” to choose from, giving them a number of options for drafting and note taking. But for writers looking to work with a blogging platform like WordPress, there were fewer options, and what was available had limited functionality compared to desktop/laptop computers. While he admits that a powerful WordPress iOS app might appeal only to a niche audience, such options already existed for Windows and Mac users. In order to work on the iPad, Viticci had to give up these more efficient affordances of the Mac software—even if he was able to gain the mobility and fun he found with the iPad. Rather than simply accepting these trade-offs, however, Viticci built a reputation by finding the best apps for doing complex work on the iPad, designing useful scripts and automations, and pushing beyond what most people saw as feasible or reasonable on the platform.

The Workflow app (acquired by Apple in 2017 and redesigned in 2018 as Shortcuts) offered Viticci a means of scripting complex tasks and sharing those scripts with an audience. In the Workflow app, Viticci could use a visual interface to chain together discrete actions and automate multistep tasks. For example, the workflow depicted in figure 32 takes text selected in any app and appends it to the contents of the clipboard. It uses three main blocks: the first grabs the text already on the clipboard, the second creates a text block that combines the clipboard text with the text selected in another app, and the third copies the newly combined text to the clipboard again. This workflow allows writers to select text from several different locations in a series and then paste it all in one combined chunk.

[image: Screenshot of an iOS workflow to append clipboard text]

Fig32. Using the Workflow app’s simple visual interface, a writer can automate multistep tasks. Here, the depicted Workflow appends selected text to whatever is currently saved to the clipboard. To do this without the Workflow app, a writer would have to select and copy text, paste it into a document, select and copy additional text, paste that at the end of the document, and then copy everything to the clipboard. This workflow replaces all of those steps with a single action.

However, apps like Workflow would not have been possible in early versions of iOS. The features of the operating system were more limited, and Apple’s policies for app interactions were more restrictive. Before turning to Viticci’s writing workflows in more detail, then, we first describe the context of his work on the iPad’s operating system.

Initial Constraints of iOS

To better understand the constraints that Viticci has worked within, we want to offer a brief bit of context about Apple’s software for mobile devices. A detailed description of a computer operating system is somewhat unusual in Writing Studies scholarship, but in this case we see it as warranted because of the ways iOS has enabled or constrained Viticci’s writing practices over the years.

With the development of the iPhone (2007) and iPad (2010), Apple Computer brought to market a new operating system, called iOS, built specifically for mobile devices.2 The norms of US computing and knowledge work often center on desktop computing, specifically the Microsoft Windows platforms. Campus computer policies and writing labs are often designed with the desktop or laptop computer in mind, and those technologies are centered on the desktop operating systems of either Windows or Mac OS. With the arrival of iOS, however, Apple introduced a new and swiftly adopted computing platform that diverged from the traditional desktop operating system in several ways. For people familiar with desktop computing, including Viticci, iOS disrupts common practices and assumptions about how the system operates. Further, it enacts stricter limits on what and how any given app can function.

First, nearly every desktop operating system centers on a “desktop” metaphor for the computing interface. Users can create folders on the desktop, save files on the desktop, change the desktop wallpaper, launch applications, sleep or shut down the computer from a menu on the desktop, and so on. The desktop is the primary point of interaction for the user; after the computer boots, the user sees the desktop and proceeds from there. For decades the desktop has been a foundation of desktop computing, as illustrated in the screenshots in figures 33–36:

[image: Screenshot of the desktop in the Mac Classic OS]

Fig33. The desktop in Macintosh System 6 operating system (released in 1988).

[image: Screenshot of the desktop in Windows 95]

Fig34. The desktop in Microsoft Windows 95 (released in 1995).

[image: Screenshot of the desktop in Ubuntu Linux]

Fig35. The desktop in Ubuntu 10.04, a popular variant of Linux (released in 2010).

[image: Screenshot of the desktop in the Mac OS High Sierra]

Fig36. The desktop in Mac OS High Sierra (released in 2017).

The desktop is typically a front-end visualization for the computer’s file system, and all files saved on the desktop are actually stashed somewhere in the file system. Despite being something of a digital mirage, the desktop is a powerful and, for many, familiar computing metaphor. With iOS, however, Apple removed the desktop and replaced it with a home screen (called a “springboard”) from which a user can launch only apps. This is a significant difference (and to some a limitation) from traditional computing patterns. While the home screen and the desktop are both places that users start, the kinds of actions available to users are constrained on iOS as compared to the desktop. All users can do is launch an app from a standard grid of icons, whereas a desktop allows more custom placement of app icons and file icons, meaning users can arrange materials meaningfully in space and directly open particular files.

Second, early versions of iOS didn’t allow for multiple apps to run at the same time—in the background or in a side-by-side display. Initially, iOS was a single-tasking platform. The side-by-side, multitasking display of applications has been a foundation of desktop computing for decades, and the arrangement supports many common writing and computing practices. Apple’s decision to make iOS a single-tasking platform was likely based on the battery and computing power constraints of early mobile devices, but it marked a significant departure from computing traditions.

Third, Apple “sandboxed” iOS apps, which means each application exists within its own fenced-in area—a metaphorical sandbox. Within its sandbox, each application can run any number of possible tasks or routines (as long as it stays within Apple’s rules for the platform). However, an application can’t leave its sandbox, meaning it can’t modify the files or conditions of another application. Sandboxing is primarily a security feature, and by preventing applications from modifying system files or other applications, iOS has been lauded for its focus on user security and minimal lack of malware (Mearian 2017). But sandboxing also limits the degree to which a user can modify the operating system with scripts or hacks. For example, in the early versions of iOS, sandboxing prevented a Markdown-writing app from directly opening a mindmap file created in another application. These restrictions disrupt the modular workflows that allow writers to create and edit Markdown text in a variety of apps, similar to Sparks’s workflow described in chapter 3. These restrictions were overcome when many apps adopted Dropbox as a cloud file system that every app could access, and Dropbox support became a key feature deemed necessary by many within this space. Furthermore, sandboxing prevented many forms of automation and scripting, since one app could not control or send/receive data from another app.

Next, Apple retains tremendous control over the iOS platform. Most desktop operating systems allow an administrative user to install and execute any applications the user chooses. On the other hand, iOS allows application installation only via the App Store (unless the device has been modified with a jailbreak), and those applications are all vetted by Apple and must adhere to Apple’s (sometimes vague) policies on application content, presentation, and interaction. Apple, operating under the mandate of unified design and user security, dictates which applications can and cannot run on iOS. In doing so, Apple also tightly controls the commerce of application sales and developer profits (for example, Apple takes a 30 percent cut of all sales, and it currently has no mechanism for paid upgrades, which has been a standard source of developer revenue for decades).

Finally, until recently Apple obscured the file system from the user. Unlike the traditional file metaphors of MacOS, MS Windows, and Linux, in which a user can access the file system and interact with the computer from there, iOS allowed the user to interact only with files from within an application. Steve Jobs forecasted this change in 2005 when talking about the file system on the Mac: “Eventually, the file system management is just going to be an app for pros and consumers aren’t going to need to use it,” because each app will manage its own data, like email or iTunes (Swisher 2010).

This change had two implications: (1) On iOS, a user couldn’t go into a central folder, see a list of files, and launch applications from there. Instead, the user had to launch Keynote to see their Keynote presentations, launch Microsoft Word to see their Word documents, and so on. And (2) the user couldn’t work from a personally meaningful file or folder structure. So the user couldn’t create a folder called “My Essay” and, within that folder, place relevant note files, image files, URLs, outlines, and so on. Instead, files were attached to specific applications and viewable only from there. A supporter of this move might view it as a welcome step away from the classic and sometimes confusing computer file system, but for users who were familiar and proficient with file management, this was yet another constraint to work around.

Like all applications and platforms, iOS is a shifting and iterative space. The platform has changed significantly since 2007, and many of these constraints have evolved as sandboxing has been relaxed, all apps have access to a shared file system, and scripting has been introduced in limited ways. However, we offer this background as a description of the computing context in which Viticci initially chose to write when he turned to iOS full time—and a space that many “serious” writers were quick to initially dismiss.

Viticci’s workflow history

To illustrate Viticci’s coevolution with the iOS platform, this section describes several key writing workflows and their changes as new applications and new versions of iOS brought new affordances and opened space for new practices to develop. In particular, we draw attention to the places where Viticci reimagined an iOS constraint in order to construct a writing workflow that felt better to him.

Initial forays into scripting

In late 2012, several months into his decision to use his iPad as his primary work computer, Viticci listed his “work” tasks as the following:

I have very specific needs when it comes to “work.” In an unordered list of importance:

•I need to publish blog posts to WordPress.

•I need to generate valid HTML for the Markdown I write my posts with.

•I want to visually preview the Markdown text to make sure the layout of the post is right.

•I need to upload images to our CDN [content delivery network].

•I need to convert images to another format and change their output quality.

•I need to upload images to Dropbox quickly.

•For articles that include iPhone screenshots, I want those screenshots to look [professional].

•Once I have the link to an image, I need to generate the proper img HTML for MacStories.

•Occasionally, I may have to download files.

•I generally create reminders for things I have to do in OmniFocus or Due.

•I bookmark links I find interesting with Pinboard.

On the Mac, these tasks are made simple by Sublime Text 2 and the Finder. As I’ve previously outlined, Sublime Text can be extended with some fantastic Markdown-related plugins; with the Finder, I can easily upload images from the Desktop to our CDN, I can access any Dropbox file thanks to the Dropbox app, and, when it comes to quick image modifications, I’ve come to trust Acorn and Keyboard Maestro to do the heavy work for me. (2012, Writing Workflow section, para. 2)

Implied in the final paragraph is that such tasks are not made simple on iOS. At this time, Viticci was using a text editor on iOS called Nebulous Notes that allowed users to create macros that provided some scripting features for repetitive tasks, but this was a far cry from the power provided by plug-ins for the Mac editor Sublime Text.

Luckily, Viticci found the app Pythonista, which allows users to write and run Python scripts on iOS devices. Python is a programming language that is often used for automation and scripting on desktop platforms. Many users were surprised at the features and power available in the app when it was launched, as scripting was seen to fall clearly outside the rule of Apple’s sandboxing framework for iOS. As Viticci described it in 2012:

Pythonista supports several modules of the standard Python library, but, due to limitations of iOS, it can’t support everything a desktop Python installation can. Aside from importing external modules and libraries—something anyone can do with Python on a computer—Ole [Zorn, Pythonista’s developer] had to come up with specific and clever ways to let Pythonista access data outside of its confined app sandbox. (2012, Pythonista and iOS section, para. 1)

With the affordances made available through Pythonista (and the clever work-arounds of its developer), Viticci found that he could accomplish most of the “work” tasks described above. For example, here is how he described a script he used to automate publishing an article he had written in Markdown on his website:

My most-used script is actually just a combination of simple Python and x-callback-url. It sends the contents of the clipboard to Notesy, which renders the Markdown and passes it to Poster—an app I use to publish posts on MacStories—as HTML. It takes less than 3 seconds to complete and return a new HTML post in Poster.

I write and edit in Nebulous, but I publish articles using Poster. As I was researching options to automate my workflow, I stumbled across the Notesy URL scheme. It seemed too good to be true: it supports x-callback-url and comes with an action to render Markdown and pass it to another app or the system clipboard. Essentially, given properly encoded text, Notesy can act as a “bridge” between apps to render Markdown to HTML—without forcing you to tap any buttons. (2012, Markdown to Poster section, para. 1)

One of the main complaints about iOS workflows during these early years was that many tasks required too many button taps to accomplish: tap to convert Markdown to HTML, tap to select the HTML content, tap to copy it, tap to open the WordPress app, tap to paste, tap to publish. With the script described above, Viticci eliminates several steps. It’s possible, of course, to consider his script an overly complicated solution to save a very small bit of time, or to see such a process as still less efficient than using a Mac, but as we will explore further in subsequent sections, such perspectives ignore the affective elements of Viticci’s iPad preferences. As he describes in the conclusion of the article on Pythonista, from most perspectives that favor desktop/laptop computing practices, his choice to use an iPad involves many compromises involving efficiency and features, and yet he still prefers it:

I don’t think iOS automation will ever be exactly like OS X automation. Pythonista has a series of limitations that, in comparison, running Python on OS X or any other desktop operating system doesn’t have. Hardcore Python users may not like this. At the same time, though, I also find working in Pythonista more intuitive, safer, and, ultimately, easier. Why shouldn’t I “compromise” if the end result is the same but I actually get more joy out of the experience? (2012, iOS Automation section, para. 3)

Writing and Scripting Together

In July 2013 Pythonista’s developer, Ole Zorn, announced the impending release of Editorial—a scriptable and Python-based writing application for the iPad. At the time of Editorial’s initial release, the iOS App Store contained multiple plain-text focused and distraction-free writing apps, many of which had been developed to fill the gap and address the problems of rich text production on the platform. However, Editorial added a few other feature sets: a full web browser and a visual editor for scripting its “workflows.” The web browser allows users to preview Markdown texts in rendered HTML, as well as to navigate to websites and then copy their URLs or text into text documents in the editor.

Editorial’s best-known feature is its visual workflow builder. Essentially, Editorial’s workflow builder allows users to arrange automated actions visually, much like stacking blocks. The different blocks provided by Editorial allow users to chain together different functions. For example, one could create a scratch-pad workflow to take any text selected in the document, cut it, and save it to a scratch file. Each time the workflow runs, the scratch file gets longer and each new bit of text is preceded by a date stamp. This scratch-pad workflow (as depicted in fig. 37) consists of five blocks using features provided by Editorial; users do not need to know Python or any other programming languages to create such a workflow.

[image: Screenshot of an Editorial workflow in iOS]

Fig37. An Editorial workflow for appending text to an ongoing “scratch” document.

Along with these blocks that accomplish specific tasks, users can add a Python script block, which allows users to type (or paste in) a complete Python script. Python script blocks allow users to create functions that extend far beyond what the developer has created. For example, Viticci made use of this block in his Markdown link workflow. This workflow allows him to copy the URL from a web page in the built-in browser and paste it as a properly formatted Markdown link in the text. The Python script step performs a complicated search-and-replace function for special characters like parentheses that might disrupt the Markdown syntax.

With Editorial, Viticci was able to automate writing and publishing tasks that were previously tedious and less efficient on iOS than on the Mac. Furthermore, the visual workflow editor provided a more accessible scripting platform than a conventional desktop text editor. While significant expertise is required to create and troubleshoot Editorial workflows, not to mention those that involve Python scripts, people without programming knowledge can create and use them. In contrast, developing plug-ins for the popular text editors Sublime Text 2 or Atom on Mac and Windows requires writing code in text files. This visual workflow editor and the features it afforded Viticci led him to claim that, with Editorial:

I have built workflows that, for me, make working with text on the iPad better than using Sublime Text 2 on my MacBook Air. When I’m on my Mac, I miss Editorial’s automation and editing features. (2013b, para. 2)

For the past 8 months, I have been writing for MacStories primarily from my iPad with Editorial. I’ve enjoyed it more than my Mac. (2013c, final paragraph)

With his extensive review of Editorial for his MacStories site,3 Viticci cemented his reputation as an innovator of working and writing practices on the iPad. Not only was he learning to use the iPad for his own work practices in a way he enjoyed, but he was demonstrating to others how to do so as well. As a journalist, Viticci embodies an interesting double motivation to push constraints on the iOS platform and create useful practices with innovative apps. First, he benefits directly from enhanced functionality and ease with his own writing. Second, he benefits from increased readership and the affiliate sales generated from links in his reviews and guides for software.

Viticci concluded his Editorial review by imagining how iOS might work differently to support even more integration with other apps and files.

I have to wonder about an alternate universe where iOS had more inter-app communication features and Editorial wasn’t limited to URL schemes to talk to other apps. I imagine that, somewhere in the multiverse, there’s a version of Editorial that knows how to bring up Drafts without a URL, or how to reference an Evernote note without using Python. In our universe, in spite of Zorn’s best efforts, there are areas of iOS that Editorial just can’t access, and that will remind you how there’s still lots of work to be done to make iOS an ideal platform for power users. (2013c, A New iOS section, para. 5)

Ironically, later versions of iOS would introduce much of what Viticci wished for, but Editorial would not see timely updates to take advantage of them. Ultimately, he would go through a period of frequently changing writing apps as different developers introduced new ways of interacting with iOS’s changing affordances. In a 2017 podcast, Viticci described this time between leaving Editorial behind and choosing Ulysses as a writing app instead:

For context, it had been at that point a few years of sort of wandering around between text editors because after the, you know, my old favorite one Editorial for iOS wasn’t getting any updates, it’s an app made by an indie developer and sometimes this happens, your favorite app stops getting frequent updates, so I had been wandering around between different apps. I tried IA Writer, 1Writer, I think I even went back to Byword at some point, and then I realized it [Ulysses] requires a deep change of mindset because it’s very different from the other Markdown text editors, but I could just use Ulysses for all my writing, whether it’s for MacStories or for Club MacStories; it’s an app that can contain all of the documents that I’m working on. (Viticci & Voorhees 2017)

 Ulysses, and the other writing apps Viticci used during this “wandering around” time, does not come with the flexible, customizable functionality that Editorial provides. However, the introduction of an app called Workflow (from here forward called Workflow.app, to avoid confusion with the concept itself), coupled with iOS’s increased flexibility, allowed Viticci to remake many of his custom Editorial workflows. Workflow.app in many ways resembles Editorial’s visual workflow builder, providing Lego-like blocks that interlock and offer different functionality. But where Editorial could run only its own internal scripts, Workflow.app could script and send output to many different apps.

For example, Viticci wrote and shared a Workflow.app workflow that creates an affiliate link for an app he is writing about—a workflow he can invoke in any writing app he chooses to use:

The first workflow I’ve built is a straightforward one: given an app’s name as input text, Workflow brings up a series of results, so I can pick one and create an affiliate link (in Markdown) to paste in a text editor.

The workflow can be used after selecting an app’s name in a text editor and hitting “Share” in the copy & paste menu to invoke the Workflow action extension. You can also run the workflow manually if you don’t need to call it from the extension. (2016b, App Store and iTunes Store Actions section, para. 6)

As iOS introduced new features (in the form of adding extensions that shared data between apps and introducing multitasking to allow two apps on the screen at once), Viticci was quick not only to incorporate them into his writing workflow but also to reshape his writing workflow around the opportunities afforded by these new features. Rather than simply looking for new tools that fit an existing way of working, or creating his own tools from scratch, Viticci demonstrates how workflow thinking allows writers to change practices and transform tools to achieve new and perhaps unanticipated workflows.

Developer Relationships

As the affordances for iOS have grown, Viticci has continued to extend his vision of writing beyond the possibilities offered by Apple and iOS developers. In his lengthy overview of the ways he uses his iPad Pro, published at the end of 2016, Viticci describes his collaborative writing workflow, based on sharing Markdown text through GitHub:

I bet most iPad users have no idea that document providers can be so flexible these days—in fact, I believe a lot of iOS app developers don’t even bother to add deeper support for document providers. But as [the apps] Working Copy, Textastic, and iA Writer show, it’s possible to work with the same version of a file between multiple iOS apps now—with a streamlined workflow that is comparable to a Mac. I wish more app developers and Apple itself would consider this. (2016c, GitHub and Markdown Editing section, final paragraph)

While Apple has provided the functionality for a “streamlined workflow,” users are still limited by which apps provide support for these features. Here, Viticci calls on developers and Apple itself to add these features to their apps.

Viticci does more than write abstractly to developers in his articles when wishing for certain features or affordances. When developers create new apps or develop new features for existing ones, they often invite users (either selectively or by letting a certain number of interested people sign up) to test the app during a beta testing period. Typically, these beta periods involve users finding bugs and notifying the developers, but there is also often conversation between developers and users about how certain features should work or what additional features would be useful (these conversations most often happen on discussion boards or the popular Slack chat service). As a journalist whose coverage of an app could make a significant difference to sales figures, Viticci is often invited to these beta periods and talks about what he’s been exploring on his podcasts or in articles (if the developer doesn’t require secrecy during the beta period). During these beta periods, it seems that he makes suggestions to developers about how certain features should work. It’s difficult to precisely pin down how much influence Viticci has on developers and their plans for their apps, but he has mentioned more than a few times such conversations. For example:

Today’s update to GoodTask brings a couple of features that I suggested to its developer a while back. The first one is a quick action to reopen a web link (or URL scheme) contained in a reminder, if any. This makes it easier to use GoodTask as a repository for links saved from Safari (perhaps through the Shortcuts extension). I like the way GoodTask automatically extracts URLs from the Notes field of a reminder, and this quick action speeds up the process of reopening links a lot. (2018, para. 2)

Other times he suggests which bugs are crucial to address:

I was more concerned by bugs that have made me question whether I could use Airmail as my full-time client. On two occasions, push notifications were delayed. . . . I can’t afford to miss new messages when I’m not at my iPad, so I reached out to the developers to ask about their notification system. (2016a, 1.0 Problems section, para. 3)

And some developers have pointed to Viticci’s role in their development cycle. For example, Pádraig Ó Cinnéide and Oisín Prendiville, developers of the Castro podcast app, referred to the release of a “Viticci beta”: “Like even today is official Viticci beta day, which—I don’t know if you’re listening Federico, but yeah, we have an official Viticci beta in our release cycle, which will happen today. And that means we’re now happy enough to share the app with Viticci and his ilk” (Ó Cinnéide & Prendiville 2018).

In addition to his relationships with third-party iOS developers (those who don’t work for Apple), Viticci has been invited to certain Apple events as a journalist. His first was for an Apple Watch preview event, coming days after publishing a fairly personal article about how he uses the iPhone and its fitness/health tracking features. This article was shared by Apple’s vice president of marketing, Phil Schiller, on Twitter, and Viticci subsequently embarked on his first trip to the United States to cover the Apple Watch event, a device positioned to extend the iPhone’s then nascent health and fitness tracking capabilities.

[image: Screenshot of a tweet from Phil Schiller]

Fig38. A tweet from Phil Schiller, Apple VP of marketing, sharing Federico Viticci’s article about the iPhone fitness/health tracking features.

Because of Apple’s secrecy about its plans and rationales, we can’t know if Viticci’s perspective makes much of an impact on their corporate design decisions or on any particular employee’s decisions in developing certain features or affordances.

Ultimately, we raise these relationships not to show that Viticci has the power to direct development of any app or the iOS platform itself but to illustrate his positionality with regard to his tools and workflows. Viticci is not a developer (despite his growing expertise with scripting languages like Python and Javascript), nor is he, though, playing the caricatured role of the passive user. He has staked out an interesting position as a writer not simply using the available features but actively experimenting with new possibilities and cultivating relationships with developers to push those possibilities further. As a journalist for a popular site, he has access to more developers than the average enthusiast in this space, but these opportunities for interacting with developers exist for users. We have both participated in beta programs for apps and seen our suggestions make a difference in an app’s features. This aspect of workflow—shaping the tools one uses rather than accepting their default design and use—reflects the field’s earlier history of experimentation and is an important area for renewed study and exploration.

Finding the Limits

Although Viticci has been able to work around many constraints on iOS over the years, the solutions are not always durable or sustainable. Sometimes a cleverly invented workflow is not usable in practice because it is too cumbersome, does not reliably work, or is simply more effort than it is worth. These efforts to push the system beyond its limits provide opportunities to more clearly observe the design intentions and affordances of the iOS platform and the apps one uses on it. Viticci’s most convoluted workflows often seem to violate Apple’s design intentions, pointing to areas where users like Viticci push back on Apple’s vision for how people would work with the platform.

One large area where we can see Viticci’s work-arounds start to reach their limits is in his use of URL schemes and the x-callback-url. Prior to iOS 8, sharing data between apps typically meant either manually copying and pasting data or saving files to a cloud service like Dropbox and opening them in apps that connected directly to that service.4 Automation under such constraints was basically impossible. However, iOS did include support for URL schemes, which allowed users to click on hyperlinks that, rather than opening a webpage, opened an app and performed an action. For example, the link tel://5551234567 would open the phone app and dial the number. Developers were allowed to create unique URL schemes for their apps, and Greg Pierce, the developer of the iOS app Drafts, proposed the x-callback-url specification, which provides “a standardized means for iOS developers to expose and document the methods they make available to other apps. Using x-callback-url’s source apps can launch other apps passing data and context information, and also provide parameters instructing the target app to return data and control back to the source app after executing an action” (Pierce n.d.).

In other words, using this specification, developers could implement a common way of defining how data would pass between apps using these schemes instead of each developer working idiosyncratically. So, for example, writing apps might define a way to create new files containing a specified bit of text. In the following examples, each URL scheme would open the app and create a new file called “myfile” with “my content” as the text of the file. Although the following three apps are created by different developers, the general structure of their URL schemes is similar. (In the examples below, the use of %20 characters indicates that a space between words is required, because URLs do not allow spaces):

Ulysses:

ulysses://x-callback-url/new-sheet?text=my%20content

1Writer:

onewriter://x-callback-url/create?path=/Dropbox&name=myfile.md&text=my%20content

Textastic:

textastic://x-callback-url/new?=location=local&name=myfile.md&text=my%20content

Apps like Drafts or Launch Center Pro distinguished themselves as central places for automating URL schemes, allowing users to craft programmatic ways of moving text between apps. For example, a user could write in Drafts and then (1) save that work in a text file, (2) generate a unique name for that file using the current time and date, and (3) export that file to Dropbox or a similar cloud-based file system—all in a single preprogrammed action. For desktop users, the act of naming and saving a file might seem like a routine task and not something worthy of scripting. But in the early, sandboxed days of iOS, moving and managing files was a challenge. Apps like Drafts offered a programmatic solution to those challenges, and in doing so they encouraged writers to consider how text might move through and across apps—facilitating a kind of workflow thinking.

Viticci published many clever accounts of his use of URL schemes to automate tasks like copying text from webpages and saving it to his research notebook as Markdown-formatted text along with the webpage’s URL. Yet his work with URL schemes moved closer to the absurd as he began experimenting with ways to chain multiple apps together so that invoking a single URL would result in many apps opening and performing different actions. One of the more amusing aspects of this process is how apps open and close automatically in a sequence on the screen. Because iOS did not allow apps to work in the background at this time, each app invoked by the URL scheme would open on the screen quickly, then be just as quickly replaced by another app, and so on until the URL scheme concluded.

Viticci pointed to this complexity in a blog post, writing:

Those who follow me on Twitter know that I’ve been trying since yesterday to see how many apps I could chain together in a workflow, mainly out of curiosity and as a “proof” of concept. First, I tweeted about a Mr. Reader -> Drafts -> Poster workflow that would take selected text from an article, convert its Markdown to HTML, and then send it to Poster; the workflow consisted of three apps chained together, but I knew I could try to accomplish something a bit more ambitious. I kept on experimenting with Drafts URLs, and eventually I managed to build a single workflow with 3 apps and 4 different tasks involved. I’m posting it here for two reasons: a) I believe it’s a quite useful workflow; and b) it can serve as an example of what Drafts can do when you understand how to properly link multiple apps together. (2013a, para. 4)

This workflow required five hundred words, four screenshots, and a screencast video to fully explain to readers. It is fairly complicated to create and understand and somewhat brittle, as memory limits on iOS devices could sometimes lead to problems as the apps opened and closed in succession. It seems clear that Apple, a company often associated with graceful and usable computing interfaces, did not envision such URL schemes as a functional way for users to automate complex knowledge work. Yet using these technologies, Viticci was able to develop practices that pushed beyond the ways of working that the device had been built to accommodate. Sometimes these practices were comical Rube Goldberg machines, but even these shaped Viticci’s vision of what an iPad could do, and perhaps should do in the future.

Workflow Planning

In attempting to push past constraints caused by the design or lack of affordances in the platform and particular apps, Viticci puts himself in a position to take advantage of new affordances made possible by apps or changes to the iOS platform when the opportunity presents itself. Not only does he develop a comprehensive understanding of the capabilities of the computing system, but he also develops a more detailed picture of his own processes and preferences. With this detailed picture, he is better primed to engage in workflow thinking, to plan to specifically adopt some particular features for a workflow, or to look for apps or platform affordances that could address some point of friction.

One of Viticci’s most pressing exigencies for assembling a functional and cutting-edge workflow is his process of writing a long-form review (40,000+ words) of Apple’s annual update to iOS. Apple typically releases a major update to iOS each fall, and they share early versions of that update (called betas) with developers who will add iOS’s new features to their apps. Viticci also uses these early betas, exploring Apple’s changes to iOS as well as prerelease versions of popular apps, so that he can publish his review immediately after Apple releases the new version of iOS to consumers. Viticci’s reviews are comprehensive, involve significant research and experimentation, and thus are complex writing projects requiring management of notes, images, tests, and text. Further, because he needs to test many of the new features of iOS, it makes sense to incorporate these into his writing workflow when possible so that his review can involve “real world” usage.

Before writing his review, then, Viticci typically describes some workflow planning as he considers different approaches for writing the review each year. These considerations involve the availability of new affordances, the presence of problems or friction, and affective responses. In 2018 he remarked that he had found a few pesky bugs in the writing app Ulysses, which he had been using for a year and a half, and that he missed his Editorial writing workflow. He considers adopting the updated version of the app Drafts because it might be able to accomplish the tasks he automated in Editorial:

I miss the traditional Markdown environment of Editorial, but I don’t want to use Editorial, because I don’t think the app is going anywhere at this point [i.e., won’t be receiving updates to incorporate new iOS features]. And I feel like for my review we’ve talked about this split process that I have of first the writing part and then moving [the text] into an editor, and I feel like maybe there’s, with Drafts cinco [the new Drafts version 5], maybe there’s a way to unify these two aspects and have a single environment where I can do both at the same time so that I don’t have to switch contexts and apps sometime in September. And this is the way that I used to do these reviews, actually. I used to write them in Editorial, like the same text editor for a couple of months, and it worked great and my life was normal and I wasn’t super stressed out, so maybe I should look into this again. (Viticci, Hurley, & Hackett 2018)

Although he hasn’t settled on using Drafts to write the review yet, he has already begun tinkering, creating custom actions that mimic writing workflows he’s used and liked with other apps:

And also I’ve been working on, you know, this action is based on the idea that I can keep separate notes and I can tag them with the same tag, but then I can also generate a single copy containing all of these notes, which is basically what Scrivener would say “compiling the draft.” I can do the same in Drafts cinco, thanks to Javascript. So I’m looking into that. (Viticci, Hurley, & Hackett 2018)

The previous year, in 2017, Viticci was using Ulysses to write his review and was planning to make use of one of its features to facilitate his editing and final proofing:

So I haven’t used filters much . . . yet. I plan to, because right now, as I said, I’m working on my review of iOS 11 and I’m taking advantage of the different formatting options of Ulysses to mark certain bits of the review as either “I’m finished” or “I need to double-check this later” or “this feature is broken right now, let’s see again in a future beta if it works.” And Ulysses, thanks to Markdown XL, they have different styles for certain types of blocks of text. So you can have like a comment block, or you can have like a raw code string, you can have—I forget what it’s called—like an annotation that you enter by typing double colon, and it creates like this special block of text. And because in my theme I set these special styles to have a unique color, when I open my draft, I see all these color highlights and I know visually, “Well, that means,” it means “It’s an image placeholder” or “That’s something that I should check later because it’s broken right now.” And what I want to do with filters is, I want to create a filter for each of these special text styles, so I can see, “Let me see all the features that are broken and that I should double check.” So I created a filter for the plus plus short code for comments, so I should be able to find—in theory, if it works in the way I expect it to work—I should find all the sheets that contain that information. So that’s what I plan to do. I’m pretty sure that Ulysses allows you to enter, to create filters based on text contents. (Viticci & Voorhees 2017)

In both his consideration of Drafts and his plans to use filters in Ulysses, Viticci identifies a key source of friction, a place where his process takes more effort than he thinks it should. For all of our participants, this desire to eliminate friction is a key disposition, one that generates the motivation to continue tinkering with workflows, to audition different apps, and to examine each new feature available in iOS. And while sometimes this desire to eliminate friction is associated with saving time or effort, it also seems that eliminating friction or having a frictionless workflow provides its own kind of affective reward. Viticci describes his disposition by talking about how much fun he has with exploring apps:

It is a struggle sometimes when you have these multiple options on iOS, and in a way it’s also the beautiful thing of working from the iPad, that you have so many options. For example, a few days ago someone told me on Twitter, “Hey, why don’t you use Notebooks instead of DevonThink?” And Notebooks is this very similar app, sort of a cross between Scrivener and DevonThink and Apple Notes. It’s sort of like a research tool, note-taking app. It does a bunch of things at once, and it has this—it doesn’t have the same search features of DevonThink, but it highlights the results in the PDF—it actually jumps the result and it highlights it for you, and it also lets you generate callbacks to documents. So I told this person, “It’s interesting; I should probably look into that,” and that’s the, maybe in a way a struggle. But also there’s virtually infinite potential; there’s always a better solution just waiting around the corner of the app store that’s probably waiting for you, and it makes it all more fun, in my mind. But, yeah, but sometimes I just think, “Maybe I should use something else, or maybe not.” And people, some people see that as being inconsistent; it’s like “Hey, so what do you recommend that we use?” And my take is, just experiment, if you have time, of course. Until you settle on a system that you’re absolutely certain, “This is the app that I want to use; this is the workflow I want to establish,” but until you’re not so sure about it, there’s no harm in trying. (Sparks & Floyd 2017)

David Sparks, interviewing Viticci for his Mac Power Users podcast, follows up on Viticci’s comments about how much more fun he finds the iPad than the Mac, suggesting that delight is a key motivator for this kind of workflow tinkering and experimentation:

I totally understand what you’re saying, and I’m glad you said it, because I feel like people underestimate the role of delight in computing and technology, and to me I feel the same. I feel like the iPad is more delightful to use. Now, is that because I’ve spent thirty years writing legal briefs on a traditional computer and in my head I associate the keyboard and a screen with a lot of work? Or is that because, like [his cohost] Katie, I watch a lot of Star Trek and I always dreamed of having this piece of glass I can work on? I can’t even quantify it, but I do find working on the iPad more delightful. And we hear from a lot of listeners, a lot of people who get it and love the iPad, and a lot of people who don’t, and they’re like, “Frankly, I don’t even understand why you would even want one of those things. I’m so much more efficient on my Mac.” And I think it comes down to that fun or that delight. If you feel that when you use the device, you’re willing to try and figure it out. And if you don’t, you’re not. (Sparks & Floyd 2017)

We see Sparks’s comments as pointing to more than just the iPad versus Mac debate, suggesting that affect shapes people’s workflows and their willingness to experiment with them. If writing with special pens and paper generates delight for someone, they will likely be willing to try to figure out how to use those tools to accomplish their tasks. What makes an application or workflow delightful to a writer? We suspect no single answer exists for that question; each writer connects with different aesthetic elements, different metaphors, and different feature sets.

Further, learning about writers’ affective responses and their causes remains difficult because affective responses include prelinguistic embodied elements. “The queasy, uneasy feeling you might experience, without knowing why, is affect,” writes Don Norman (2004, 11). Byron Hawk, drawing from Brian Massumi’s work, suggests that affect

operates at an a-subjective, pre-linguistic level. . . . Massumi’s affect is a bodily experience that “lies midway between stimulus and response”: it is that point at which the body is enacting multiple relations below its cognitive ability to perceive them; the body is “bathing [in] relationality” but not consciously accounting for every molecule of water (61). (2004, 843–44)

Viticci, along with Sparks and Terpstra, provides some rational reasons for his app preferences and workflow choices, but from this perspective, these reasons can be seen, at least partly, as post hoc rationalizations for affective responses made at an unconscious level. This is not to suggest that one’s tool choices are immune to rational deliberation and are somehow predestined by one’s affective response but only to highlight the research challenge posed by affective responses to tools. It can be difficult to explain why one prefers one interface over another, and yet, when questioned, answers can be generated. But do those answers tell us much about the bodily experience guiding writers toward or away from certain tools? How do affective responses, task requirements, and technological affordances work together to shape writers’ workflow preferences? Viewing the appropriation and adoption of writing technologies from the perspective of affect leads to many rich lines of inquiry that we see as crucial for the field to pursue.

Toward New Roles in the Field

While Sparks, Viticci, and Terpstra all find it fun to eliminate friction by tinkering, by writing custom scripts to automate, and by trying new apps, others may find their fun and delight elsewhere. While these three participants’ workflows and workflow thinking help us to identify the importance of this concept and approach to considering writing, we emphasize that we are not promoting their particular approach to workflow thinking and their disposition toward experimentation for all writers. Conceiving of one’s writing workflow as modular and considering how the various parts serve one’s ends do not necessitate trying new apps. One of our goals with this book is to abstract the concept of workflows out of this particular affinity space so that others will find it as useful as we have, so that others will share where and how they find delight with certain writing tools and practices.

While we don’t see our participants as role models for all writers, we do suggest that their efforts to document their tinkering and teach what they have learned could serve as models for scholars in Writing Studies broadly. Writing researchers with firsthand experience with many different writing workflows and who deliberately reflect on how the various components of the workflows shape their activity will be well positioned to understand others’ writing processes. Writing teachers who have personal experience with many different workflows involving new and different tools and practices will be better able to suggest tools and approaches to students who could benefit from them. It is likely, of course, that a good number of scholars and teachers in the field already engage in such workflow experimentation. The task, in this case, is to find more ways to make sharing the results of those experiments possible and worthwhile. We’ll have suggestions along these lines in the next chapter.

However, we don’t suggest that all Writing Studies scholars engage as deeply in pushing the cutting edge of technologies or automating their tasks as much as the participants described here. Instead, we turn to Bonnie Nardi and Vicki O’Day’s (2000) concept of “gardeners” within “information ecologies”:

Who are gardeners? They are people who like to tinker with computers. They learn the software a little better than everyone else around the office, they’re often good at configuring hardware, and they troubleshoot and solve problems when others are stumped. Gardeners like to help other people with technical tasks, as well as learn about computational things on their own. (140)

Nardi and O’Day describe gardeners as operating within local information ecologies, workers in specific offices helping their coworkers out. They are named “gardeners” because they “grow productivity” (148) for the office—for example, through writing scripts to automate tasks for others. While the discipline of Writing Studies may be at a different scale than an “information ecology,” as Nardi and O’Day describe it, we think there is value in considering the different roles people play regarding technology adoption, use, and diffusion within social spaces. At the Computers and Writing Conference one can find many “gardeners,” people who facilitate software and computer learning and use on their home campuses and who share that knowledge (much of it informally) at the conference. We want to imagine a new role, one patterned after Viticci’s boundary-pushing engagement with the new platform of iOS. These innovators seek new affordances, develop new practices, and imagine new possibilities. Writing Studies could do more to support and cultivate people who choose to adopt this role and share their efforts with the field. We make specific suggestions along these lines in the final chapter.

1 Managing the business likely includes several more tasks and workflows, but for the purposes of this chapter we will be focusing on the writing workflows.

2 The chief rival for iOS on mobile phones and tablets is Google’s Android. While it has a huge market share (80 percent as measured at the end of 2016), participants in our study don’t tend to use Android devices because of their interest and investment in the Apple ecosystem. Android, as a competitor, certainly has some impact on iOS’s development, but it’s difficult to be precise about how each might influence the other.

3 Viticci expanded this review and offered it for sale on the iBooks store as well.

4 With iOS 8, Apple created extensions that allow users to send data (including text, images, and files themselves) between apps easily using the “share sheet.” While Viticci and others still make use of URL schemes in addition to extensions, users without the knowledge or expertise needed to customize URL schemes can make use of extensions to do a great deal more on iOS 8 than was possible in earlier versions.

Chapter 6: Workflow Mapping

We have envisioned this as a book for writers. More specifically, we’ve hoped that the methods and narratives discussed will inspire writers to look more carefully at their tools, environments, and dispositions. But many writers—especially those working and teaching within higher education—are wary of such calls when they relate to writing technologies. We see this as the product of many complex factors: Most schools and employers offer a sanctioned and familiar writing technology (currently, Microsoft Word), and learning a new technology means moving outside an institutionally supported system; adopting or changing a technology—especially a computer-mediated one—can introduce initial complications and pain points; and time spent learning something new (or even considering how or why one might adopt something new) is time not spent on the actual work of putting words onto the page or screen. And a discussion of writing technologies can tap into a broader sense of vendor fatigue—a sense that all these new tools and technologies get in the way of simply doing the work.

These are all reasons why we aren’t going to close this book by suggesting that you try the apps Ulysses or OmniOutliner or buy a Baron Fig notebook or any other specific writing technology. Instead, we want to step back and recommend a broader practice of meta-awareness, encouraging writers to consider why they have chosen particular writing technologies or practices, how those technologies and practices shape their process, and what a change to those practices might offer.

In chapter 1 we argued that workflow thinking offers writers a way to rethink and reevaluate how they approach knowledge work. In this chapter, we introduce workflow mapping, which provides a visual, spatial, and reflective means of examining a writing process. Where workflow thinking is a future-focused approach, workflow mapping focuses on current and past practices. Through mapping, a writer foregrounds the role of mediating technologies, asking why they’ve chosen to use those technologies and how they shape the writing process. The map can function as an analytical heuristic (we could, for example, map David Sparks’s workflow), but here we position mapping as a personal, reflective practice—a means of facilitating workflow thinking.

In this chapter we define and contextualize workflow mapping, which we situate within discussions of writing process and the types of composing activities introduced in chapters 3, 4, and 5. We also dive into our own writing practices, using maps as a way to examine our practices and affective preferences. Through videos, images, and narratives, we model mapping and take an autoethnographic approach to our own practices. In doing so, we hope to offer a pedagogical counterpoint: although workflow mapping can work as an instructional exercise, it must begin as a personal practice. We wouldn’t recommend that anyone try to teach or demonstrate mapping without first examining their own practices.

Finally, this chapter concludes with recommendations for two workflow-focused scholarly genres. Both workflow thinking and mapping point to the possibilities of new composing technologies, but new composing technologies aren’t often the focus of academic inquiry. We suggest that two genres—workflow narratives and software reviews—can position writing technologies more centrally within academic conversations and practices. Although the chapter ends with a broader call for the prominence of writing technologies within the field, it begins with the much more personal act of mapping, asking how technologies function in personal practice.

Workflow Mapping

Workflow maps are visual, spatial, and reflective considerations of the roles of tools, technologies, and mediation within a writer’s process. They are a means of developing workflow thinking, and mapping helps the writer consider how she develops and iterates on a writing process through writing environments and technologies. At first glance, a workflow map might look similar to the organizational flowcharts and diagrams used in business contexts. Those business-centered genres align with what Patricia Sullivan and James E. Porter (1997) describe as a modernist mapping exercise: “The assumption of a modernist mapping strategy is that the map represents information about an existing and static reality. Such maps are used more for organizational and representational purposes than for heuristic ones” (79). A corporate flowchart might match that description, acting as a prescriptive visualization of how a task should move from origin to completion. Although that flowchart might help a business to quickly produce more units of a product, it isn’t a helpful model for writers. Instead, we see workflow maps as an instance of Sullivan and Porter’s “postmodern mapping”—a term that points to mapping as “one tactic for constructing positionings of research that are reflexive” (78). Rather than describing a static reality, postmodern mapping centers on a map that “can be judged, we think, on what it allows, what it blocks, what else might be pictured, how it freezes time, and how it allows time to escape” (80).

“Mapping” can be a troublesome term. Maps are ideological texts—documents that “are seen as complicit with social-control mechanisms inextricably linked to power and authority” (Barton & Barton 2004, 235). However, as Carolyn Rude (2009) reminds us, mapping—used thoughtfully—can be a productive metaphor: “Maps show spatial relationships and provide directions. Paths through geographies, systems, and buildings can be hard to represent through words alone. Maps encourage movement and exploration and the breaking down of boundaries. Maps identify spaces and call for attention: To ‘put it on the map’ is a way to emphasize an issue, idea, or program by giving it a space” (178). By mapping their workflows, writers can make space for metacognition, and they can examine and emphasize how mediated practices work within—and change across—the writing process.

An Example

In chapters 3, 4, and 5, we pointed to how writers move across applications and file formats. Our participants often describe that movement as related to efficiency or frictionless composing; they want to effortlessly move text from one tool to the next, minimizing redundancy or perceived drudgery. At first this might appear to be standard computer science practice—the desire to simplify or automate as many tasks as possible. But we think there’s a more important takeaway here for writers. The shuttling of text across composing technologies encourages workflow thinking. It pushes against the common practice of writing in a single app without making a deliberate choice about how that app’s features match one’s preferences, and it facilitates the modular approach to writing that we’ve discussed in this book. Let’s consider a fairly simple example:

Writer X is introducing a visiting lecturer. She will need to speak for only two or three minutes, but she expects a large audience and wants to carefully compose her remarks and read from a script. While drafting her introduction, she does a few things: She reviews the lecturer’s CV, she pulls some of her favorite quotes from the lecturer’s work, and she jots down a few personal anecdotes. Then, in a notebook, she outlines and drafts an initial version of the introduction. She reads it aloud a few times, making sure she can strike the right tone, and then she types the draft in a word processor. Finally, she chooses an easy-to-read font, increases the type size and the line height, and prints the document.

When we map this example (see fig. 39), we can see how the writer moves across artifacts and writing technologies, working toward a final draft that meets the expectations and conventions of a formal public speech.

[image: Workflow map for drafting a speaker introduction]

Fig39. The workflow map helps us to see how the writer moves across a number of composing spaces and technologies as she moves toward a complete draft.

Even in this simple example, the map helps us to see the writer’s movement across artifacts and composing technologies as she produces a conventional double-spaced document. By mapping her workflow, we can engage in workflow thinking, and we can see that her process has much in common with that of Sparks, Terpstra, and Viticci—despite the fact that her writing technologies initially appear to be less specialized. Workflow mapping draws our attention to movement across technologies and spaces, and it helps us see how a writer chooses to adopt or abandon particular writing technologies at various places in the writing process. Through the act of mapping, we can also imagine how additional or different writing technologies might encourage new and creative approaches to writing tasks.

By mapping workflows, and by seeing process as existing within a continuum of writing technologies and practices, writers have the opportunity to look carefully at their practice, asking questions like: How portable is a particular piece of text? How do I take and save notes? Are my notes and drafts preservable—and would it be useful to return to them in the future? And how might my current preferred technologies encourage or discourage practices of saving, organizing, and returning to text?

Mapping pushes against (or discourages) seemingly simple notions of how a writer works with technologies, challenging the idea that a writer opens a notebook or application, starts writing, and ends writing at a later point. Instead, mapping helps us to foreground the many embodied and affective practices at work, and it situates process within mediating technologies, histories, practices, and cultural contexts. It encourages metacognition, and in doing so it brings writing technologies to the foreground.

Mapping also draws attention to moments in the writing process that might be otherwise obscured. To better illustrate this, let’s return to the above example. It’s a description of a purposefully simple writing task, and it is the sort of genre in which an informal process description might erase mediating technologies. But a workflow map can tell us much about the processes and possibilities of composing even simple texts.

Our writer began by reviewing the speaker’s CV and publications, looking for poignant and quotable excerpts. She could collect those quotations in the notebook where she’s drafting her introduction, or if she preferred to work digitally, she could collect them in a document draft of the speech and write around them as she composes. But by looking at the map of her notetaking process, she can ask: Could these notes be used for other writing purposes in the future? Would I benefit from keeping a paper commonplace book? Or a database of quotations? If so, what methods of collection and organization might work best? Through mapping, the writer can examine how different technologies might change her reading practices and how they can be woven into her writing practices.

[image: Workflow map for drafting a speaker introduction with DevonThink added.]

Fig40. Here the writer adds the DevonThink database application (noted through the app’s icon of a blue nautilus shell) as a digital commonplace book. The map helps her see where the database might fit into her process, and the faded remnants of a notebook help her see how past practices inform new ones. There’s also a minor shift in the arrows marking movement across technologies. Although the database facilitates preservation and recall, the map shows how it might limit flexibility.

Because the map focuses on writing technologies and modularity, it highlights the movement of text across mediums, software, and files. It also draws attention to the changes in labor (or friction) incurred by moving the text into and out of new spaces. Through mapping, the writer might ask: What would I gain by using a commonplace book? How might it change my thinking—or future projects? Does that trade-off warrant a change in approaches? Mapping helps the writer think through the implications of these decisions. But it also draws attention to the possibilities of new technologies. Suppose, for example, the writer stumbles onto a newly released application that is designed specifically for storing quotations. Her map might help her imagine where this application fits into her process—and how it might then shift her approach to composing. Her map also supports serendipity: by thinking through her workflow and its gaps, she is prepared to imagine exactly where this application could fit into her process—and how it might then shift her approach to composing.

Mapping can also draw attention to opportunities for the circulation and reuse of a particular text. This can happen at the personal, individual level: a writer might move discarded parts of a draft into a new “cutting floor” database, hoping that castaway paragraphs might spark a new idea in the future. But mapping can also draw attention to circulation and reuse beyond personal process. For example, introductory remarks are often a disposable text—sometimes scrawled on the inside covers of conference programs or on the backs of previously printed documents. But in prompting questions about reuse, the map can draw attention to how other readers and writers might encounter and reuse these documents. When the writer prints her remarks in a double-spaced large-size font for easy reading at a lectern, she might also decide to print additional copies for audience accessibility—or to also export the document in a HTML file that could be digitally posted and shared. Because the map draws attention to the movement of text across applications and files, it encourages writers to see how that movement might extend into multiple artifacts that serve the needs of varied audiences and types of circulation.

Workflow mapping in context

As we’ve documented in this book, the writers in the workflow affinity space are quick to adopt new writing technologies. They’re also hesitant to work with a single tool. Rather, they often rotate through technologies and move drafts across different composing spaces as the text approaches a final form. Mapping encourages this, and its metacognitive facets prompt the writer to ask questions about the histories of these decisions: “When did this practice begin?” the writer might ask. Or, “How did I develop this practice—and how is my approach to new tools guided by the ways I used past ones?” In this way, layers of past maps echo through the drawing of new ones. These layers remind the writer of how past practices continue to inform and shape each new mediated act of composing.

Writers’ workflows are mutable: they change in response to new situations, new writing tasks, and the availability or use of new technologies. In other words, creating a workflow map is not necessarily about crafting a personal “best practices” document that will henceforth dictate how one approaches a writing task. Instead, we see workflow maps as generative documents that help writers think through how they might align their expertise with certain writing practices and tools, their environmental preferences and constraints, the task and its constraints, and other factors for a given or prospective recurring writing task. We have found such maps to be especially generative in our own practice when we make explicit the trade-offs between factors and focus on friction points that could be resolved through alternate arrangements of tools, preferences, practices, or spaces.

For example, a writer poised to begin composing their dissertation may craft a workflow map to depict:

•what devices they will use to compose;

•what physical spaces they will compose in;

•what software they will use to compose; and

•how digital files will be saved, backed up, distributed for feedback, and revised over time.

As this writer works through these considerations, they may explicitly recall or simply be shaped by past experiences working with file management, writing complex texts, and using various writing technologies. Of course, it’s likely that this writer has not yet written such a lengthy, complex text before, so there are no certainties here, and the map may have to evolve as they run into constraints in practice, software, or spaces that were not encountered in writing other kinds of texts. This particular writer may have found Google Docs useful for writing seminar papers in their PhD program, but they may also recall that in writing their MA thesis they found Microsoft Word to be a little frustrating in terms of organizing and managing such a long text. The memory of this friction could lead the writer to look for alternative writing software or practices for managing organization within Google Docs or Word. They may also be shaped by historical associations with spaces—looking to use a favorite local coffeeshop or library nook for drafting but willing to do editing and revision anywhere that is convenient. In creating the map, this writer may also find that they don’t have enough expertise or information to craft a good file backup and versioning plan. In reviewing their previous writing tasks, they find a hodgepodge of practices:

•one seminar paper is represented by several files in a folder, with names such as “rough_draft.docx,” “version_1.docx,” “smith_draft_to_advisor.docx,” “final.docx,” “final2.docx,” “final2proofed.docx,” and “final2proofed_newbib.docx”;

•weekly reflection papers for one seminar are saved as single files in Google Docs;

•a collaborative conference proposal is saved as three separate files in Google Docs, each with their own automatically saved version histories.

This writer, in crafting their workflow map, realizes this area needs some attention in order to develop an effective strategy for the dissertation.

[image: Workflow maps showing a Word document leading to a Google document leading to a question mark]

Fig41. In making this workflow map, the writer sees movement between MS Word and Google Docs (represented here by their application icons) but isn’t sure how to think about file management and backup.

Another writer may find in crafting the workflow map that they need to wrestle with trade-offs introduced by different writing technologies and practices. This writer has chosen to use Scrivener because of its affordances for organizing long texts in small chunks, as well as being able to store research, drafts, and notes all in the same file. Yet, in crafting their workflow map, this writer realizes they will need to send drafts to dissertation committee members more often than they have in previous writing tasks (e.g., a seminar paper might get one round of review with the professor but not several).

[image: Workflow map showing a Scrivener document leading to an advisor and back]

Fig42. This simple workflow map, showing the movement from a Scrivener file (represented by its app icon) to an advisor, points to challenges with the Scrivener file format. How will the writer share the document? Does the advisor use Scrivener, or will the writer need to export to a different file format? And how will the writer incorporate feedback and notes into her copy of the Scrivener document?

Sharing a document out of Scrivener involves exporting the main text to a separate file, typically a Word-compatible .docx file. Reviewers will then put comments on that file and return it to the writer. But how will the writer then incorporate those notes into the Scrivener file, where they want to keep working and where they want to keep all notes and material related to the dissertation? The writer uses the exigence of completing the map to think through the available technical and practical options:

•keep the reviewed Word files separate and open in another window while addressing the notes in the Scrivener file;

•transfer the comments from the Word file to the relevant sections in the Scrivener file by copying/pasting the comments from Word into Scrivener (which also has a comment feature);

•import the commented Word file into Scrivener, which converts the Word document into a Scrivener sheet with Scrivener comments on it (yet creating a duplicate of the text already saved in Scrivener in the form of the writer’s original draft); or

•convert the commented Word document to a PDF and then import to Scrivener, where it will retain its formatting.

Unfortunately, none of these options seem like perfect solutions for this writer. She ultimately decides that she will import the Word file and let it convert to Scrivener format and explicitly mark it as a duplicate reviewed text. But she makes a note for herself in the workflow map that if this seems to be troublesome in practice, there are other solutions that can be tried.

[image: Workflow map showing a Scrivener document leading to Word to an advisor and back]

Fig43. The writer has decided that she will export her Scrivener project to a Word file for advisor feedback. This solves the sharing part of her workflow, but the new map signals a possible point of friction: how will she bring the Word comments back into the Scrivener file?

These examples of writers’ workflow maps return us to our methodology for the study overall: tracing “environmental-selecting and -structuring practices (ESSP’s)” (Prior & Shipka 2003, 219), which “highlight people’s situated agency, their tuning to and of environments, their making of artifacts of all kinds,” often for the purpose of “externalizations meant to regulate thought and affect, to channel attention and action” (228). While we have named these texts “workflow maps” to highlight the “workflow thinking” we see represented and encouraged in them, they can also be understood as maps of literate activity, following Prior & Shipka’s definition of it:

Literate activity is about nothing less than ways of being in the world, forms of life. It is about histories (multiple, complexly interanimating trajectories and domains of activity), about the (re)formation of persons and social worlds, about affect and emotion, will and attention. It is about representational practices, complex, multifarious chains of transformations in and across representational states and media (see Hutchins 1995). It is especially about the ways we not only come to inhabit made-worlds, but constantly make our worlds—the ways we select from, (re) structure, fiddle with, and transform the material and social worlds we inhabit. (181–82)

The sample maps above (and the maps following the videos below) illustrate these various aspects of literate activity in several ways. First, they represent a bridge between histories of previous practices across activities and future desires for practice (moving from seminar paper to dissertation in the above examples). The map as a whole, and often each point on the map, represents an assemblage of “durable activity systems, individual tools, or specific material-semiotic encounters,” each of which fold together “multiple histories” (Prior & Schaffner 2011, 54). Although further research is necessary to determine to what extent writers making such workflow maps specifically and explicitly recall these histories and think through them, we suggest that the map represents them whether through conscious deliberation or not. Additionally, besides representing varied histories folded together, these maps “premediate” (Grusin 2004) future practices as well, as writers work through future constraints and trade-offs and imagine their activity.

Next, in documenting the “representational practices” and their varying transformations across time, media, and devices, these workflow maps serve as further reminders of the distributed aspects of our thinking. Not every map will document each transformation to the extent that an interested literacy researcher might, but even these differences offer insight into the writer’s understanding and motives for the workflow. Practices that are folded together into a single point on the map figure differently in a writer’s understanding than those that span several points. For example, consider a map that depicts composing with an icon of the writing application and depicts file backup using several images and words to represent a complex process. Both activities involve various steps and affordances of their respective apps, but the author of the map collapses these in one area (composing) and details them in another (backup), suggesting perhaps the extent to which they have been internalized or habituated.

Finally, these workflow maps can serve as a means of supporting writers in making their material and social worlds more conducive to writing. As generative texts (rather than prescriptive procedures handed down from above) these maps support writers as they search for ways to exert agency within the constraints and trade-offs in which they work. The writers in the examples above use commercially available software applications, but by crafting their workflow maps to take into account their preferences, the tools’ affordances, and the task constraints, they demonstrate a distributed agency. We see the agency that arises from this mapping process as separate from a blanket admonition against letting tools determine one’s working practices or the unbridled enthusiasm of early adopters. In our conception of workflow mapping, writers acknowledge that the affordances of tools sometimes require that writers bend their preferences and that sometimes new tools require too much bending to be worthwhile.

Mapping our workflows

As we developed the concepts of workflow thinking and mapping through our analysis of the case studies in chapters 3, 4, and 5, we also considered our own practices and histories with writing technologies. In the videos and maps below, we share those histories of workflow thinking and produce maps to represent some of our current writing practices.

Derek’s Workflows

File management is an often overlooked aspect of writing with computers. Most word processing applications require users to explicitly save discrete files somewhere in their file system hierarchy, and even applications like Ulysses that don’t work with separate files require writers to perform some kind of organization of text fragments. As the example of the dissertator above illustrated, many of us fill folders with a haphazard collection of different files named similarly but typically not following a systematic pattern. My own frustration with this practice led me to version control software and the practice of keeping a narrative, intentional log of discrete changes to my texts.

During my graduate school coursework, I went through a few different writing software phases. I started off using Word but then quickly became enamored with the open source movement and switched to the OpenOffice word processor. Later, after I grew frustrated with that application and quit using it, I couldn’t open files I had created in OpenOffice using Word, and they weren’t indexed in the desktop search application I was using. This experience led me to think more carefully about the longevity of my files and the various trade-offs involved in nearly any computing practice. When I began writing my dissertation, then, I was primed to develop some new practices for file management. I was also returning to seminar papers I had written, looking for good ideas to use in my dissertation. Looking through coursework folders with their collection of files with random names led me to devise a more standardized practice for the dissertation.

[image: Workflow map showing a Word document dated 2006-06-07, leading to a Word document dated 2006-06-08, leading to a folder named “my compiled dissertation”]

Fig44. My first attempt at file management was creating a new file every day with a well-defined naming scheme.

I began by saving each day’s work as a new file. Word’s “compare document” feature let me choose a file from early in my drafting and compare it with the current version to see all the progress I had made and to verify that I hadn’t cut something that would turn out to be useful. By the time I had finished the dissertation, though, it seemed a bit like overkill to have folders filled with thirty or more files, with no telling what the differences were or where important changes had been made.

When I was putting the finishing touches on my dissertation, I experimented with using version control software to store a record of the changes I was making. Basically, version control tools allow users to create a snapshot of a file (or set of files) and attach a brief message to that snapshot. These snapshots are called “commits.” Later, users can review the messages in chronological order and see exactly what additions or deletions were made to the file at each point. I experimented with a few different kinds of version control software but ended up using only the basic features: creating a narrative log of the changes I made to a text over time. I found that having this log led me to feel freer in making large-scale revisions and to cut text without worrying if I would regret it later (since the text could be restored easily using the version control software tools).

[image: Workflow map showing a computer pointing toward a set of documents that say “commit” and then a document that says “commit log.” Behind it, the previous map is visible.]

Fig45. Instead of saving new files every day, I moved on to using version control software. These tools let writers create a descriptive log of each meaningful change in a file and store the additions and deletions along with that log message.

In tandem with my move toward version control software, I became more convinced of the value of saving my texts in plain text file formats. In large part, this is due to many of the benefits mentioned by participants in this study and was largely influenced by my engagement with their texts, podcasts, and tutorials. Most important, version control software offered more affordances when using plain text files instead of Word files, including the ability to see the exact file changes right in the commit log instead of having to using the unwieldy “compare documents” feature in Word.

However, before I dove into writing in plain text for all of my research writing tasks, I briefly used the writing application Scrivener. I was interested in working with the outline metaphor the application uses to organize text and found I could keep up my version control practices using its built-in features. Working with snippets of easily moved text instead of writing digital “pages” was a revelation, and I found working with rough and drafty text much easier. However, when I began working with a coauthor on a new project, I couldn’t find easy ways to collaborate synchronously with Scrivener. I stopped using Scrivener, but I wanted to keep writing in the ways that Scrivener afforded. Luckily, plain text file formats make it simple to open the same file in many different apps, so I was able to experiment with a wide variety of apps without disrupting my writing practices.

[image: Workflow map showing depicting three different options: a Word document and commit log leading to a stop icon; a Scrivener icon leading to a stop icon; and an icon for the Atom text editor, a commit log, and an image of an advisor.]

Fig46. This workflow map depicts the roadblocks I encountered with various combinations of tools. First, I was not able to take advantage of version control features while using Word files. Next, I was not able to collaborate with coauthors while using Scrivener. Lastly, I have found that I can use the Atom text editor, along with the Git version control system, to write with a coauthor while meeting all of my technical and affective writing requirements.

Ultimately, I landed on using the Atom text editor with a few special plug-ins designed to make it pleasant to write Markdown text instead of computer programming languages. With Atom I could arrange the window in the same way as Scrivener and approximate the outline format that I found so useful. Further, I could use built-in Git version control tools to collaborate with my coauthor.

Tim’s Workflows

My interest in organizing and using files comes from years of disorganization during my high school and undergraduate education. I had notebooks and binders and the means of making a paper-based workflow, but I could never pull it together—I was perhaps too fragmented or too messy or too distracted. At the same time, however, I was developing a keen interest in the computer’s hierarchical file structure, and I can remember making deeply nested DOS folders on the family computer. I considered these separate activities and didn’t see how one could inform the other.

[image: Sketch of notebooks and a computer directory structure]

Fig47. In the above map, my two interests—computing and writing—are disconnected.

After starting grad school and searching for any technology that might help me keep up with the rapid pace of reading and writing, I found Ethan Schoonover’s Kinkless template for the OmniOutliner application, and the method really worked for me: Each thing-to-do is a project, each project is comprised of tasks, and each of those things gets a hierarchical entry in the outliner. Given my years of traversing the computer file system, I saw a clear connection between the Kinkless system and the digital folder structure.

[image: Sketch of notebooks with arrows pointing to a computer screenshot]

Fig48. Ethan Schoonover’s Kinkless template for OmniOutliner helped me to see how the computer could assist with personal organization, generating a link between my interests in computing and knowledge work. In this map, I can see how my interest in the Kinkless template replaced (but was also informed by) my interests in tinkering with the file system, which is represented by faint shadows in the map.

The Kinkless organization system was limited to project and task management, and it didn’t help me organize reading notes or drafts. But it did inspire me to start searching for other possibilities. When I found VooDooPad, I saw a lot of possibility in the personal wiki. I liked the idea of linked pages, and it was satisfying to see how daily work could accumulate into a large hyperlinked database.

[image: Workflow map with icon for the VooDooPad application added]

Fig49. As I started writing with VooDooPad (represented in this sketch by its app icon of a cartoonish voodoo doll on a clipboard), it linked into all of my work—texts, binders, and organizational software. The personal wiki was a place to collect everything.

When VooDooPad became too cumbersome, I moved into DevonThink, which did much of the same work but offered many more features: deep databases, rich tagging structures, and easy information collection. I took the linked logic I learned from VooDooPad and moved my work into DevonThink databases.

[image: Workflow map with DevonThink icon at center]

Fig50. When I found the personal wiki too constraining, I turned to DevonThink (represented here by its blue nautilus shell icon), which offered a much more robust personal database. It also occupied a more central place in my process. As my workflow map changes, the outlines and shadows of past choices show how they still linger in and inform my workflow.

The move to DevonThink, however, helped me to better see how affect drives many of my writing preferences. I simply didn’t enjoy writing in DevonThink—it looked too sterile, too “computery.” I started searching for other apps—something that could build on DevonThink’s database logic but also offer a better composing space. I found Evernote.

Evernote is often called an “everything bucket”—an application that encourages the reader to stash all sorts of files and information in it. Evernote could hold my notes, my drafts, and my research materials, as well as personal documents and photos. It was also one of the first apps with phone-based capture, and I would take pictures of whiteboards from meetings or handouts from classes and stash them in Evernote. Everything went into Evernote.

[image: Workflow map with Evernote at center]

Fig51. Soon, Evernote (here represented by its green elephant logo) was at the center of my process—replacing DevonThink and VooDooPad but still informed by those practices. In this map the iPad has taken the place of notebooks but does much of the same work.Soon, Evernote (here represented by its green elephant logo) was at the center of my process—replacing DevonThink and VooDooPad but still informed by those practices. In this map the iPad has taken the place of notebooks but does much of the same work.

As I mentioned in the video, I didn’t love writing in Evernote, so I modified a script that allowed me to access all of my Evernote documents via a text editor that I liked for writing (Sublime Text). This was the first time I had tried to get two apps to interface with each other, and it was my first introduction to modular work via scripted computer affordances. I was soon using the store-everything features of Evernote with a simple text editor as its interface.

[image: Workflow map with Sublime Text added]

Fig52. Sublime Text gave me a writing interface I liked, but it added additional complexity to my workflow.

In the years since, I’ve moved to Scrivener and Ulysses—applications that support writing long texts in discrete chunks.

Today, I rely on a “collection” metaphor for my reading and writing, a practice that I can trace back to my experience with DevonThink. I use a writing application (at this moment, Ulysses) that operates as the central collection point for all text in my life. Everything goes into the Ulysses inbox. From there, texts are organized and stored in different projects and folders, all of which support writing in small chunks. Ulysses also allows me to export text in a number of different formats, so a syllabus section might start in Ulysses and be later exported to HTML for posting to the class website. Or a new paragraph for this book might begin as Ulysses Markdown and later be exported to plain text that can be saved to GitHub so that Derek can read and respond to it. I can use Ulysses as a starting point, and through Ulysses I have built a writing environment that meets my current affective preferences—and through which the visual appearance of a draft on my screen can be different from the final artifact produced. I still like the idea of a central repository (like an everything bucket) for all the text in my life, but I’m now working with one that allows for a customized drafting environment, easy export, and a visual organization of projects.

[image: Workflow map with Ulysses at center]

Fig53. Ulysses allowed me to continue with a set of computational practices I’ve developed over the years, but it replaced many different apps, offering a simpler (and less app-intensive) approach.

Through these narratives and maps, I can see how my writing practices ebb and flow over time. I notice how past practices inform current ones, and I can imagine places where new applications might fold in. These practices aren’t static, and I’m sure my workflow will change by the time this book is in press. But that’s also part of the pleasure of workflow thinking—imagining how practices can change over time and considering how new technologies might offer a new perspective on familiar problems and tasks.

Workflows and scholarly genres—Ways forward

Throughout this book we have argued that attention to workflows can help us to better understand and highlight the role of mediating technologies in a writer’s process. But how do writers learn about new technologies, especially in an academic context? How can we see or share use cases for new tools without wading into marketing materials or suffering through vendor sales presentations?

We conclude by pointing to two possible scholarly genres—the software review and the workflow narrative—that can help to center workflows within the disciplinary conversation around writing. These genres aren’t entirely new: The software review has much in common with the book review and briefly appeared in Computers and Composition in the 1980s, and the workflow narrative often appears in conference presentations and on academic blogs. However, by moving these genres more centrally into our scholarly publications, we can both foreground and preserve them—calling attention to the importance of mediating technologies within the study and teaching of writing.

The Software Review

“Let’s face it,” Stephen M. North argued in 1992, “reviews are the small change of academic writing” (348). North was writing about scholarly book reviews, a staple but somewhat messy fixture in most academic journals, noting, “Book reviewing can be—and is, for many academic (and nonacademic) enterprises—the occasion for vital, visible, memorable exchanges: the print equivalent, say, of the salon and/or the street corner, current and accessible. Book reviewing is not that for us—or, to the extent that it is, I would argue, it is so mostly in spite of, not because of, the way we handle it” (349).

Today, many of North’s observations about book reviews still hold: publishers want their books reviewed in academic journals, but book reviews carry less professional currency than research articles; book reviews are often written in a shorter time span than research articles and are subject to less editorial scrutiny; and, unlike trade reviews, academic book reviews are often published months (or years!) after the initial release of a book. However, book reviews offer important contributions: they draw attention to notable books, they put authors in conversation, and they mark current debates and discussions in the field. Despite their small professional currency, book reviews remain an important mainstay in most professional journals.

Software reviews, on the other hand, are mostly the purview of trade journals and tech blogs. This wasn’t always the case. The earliest issues of Computers and Composition, for example, featured many short pieces about writing software, such as Muriel Harris and Madelon Cheek’s (1984) “Computers across the Curriculum: Using Writer’s Workbench,” Isaiah Smithson’s (1986) review of “The Writing Workshop,” and Barry M. Maid’s (1986) review of “Prewrite.” In 1987 the journal published Lee Roger Taylor Jr.’s “Software Views: A Fistful of Word-Processing Programs” under a “Software Review” banner and continued that with Robert Boston’s (1990) “Review of Collaborative Writer.” By 1992, Johndan Johnson-Eilola’s “Structure & Text: Writing Space & Storyspace” was published under the more general “Review Essay” banner, after which the software review genre mostly disappeared from the journal. Bradford Morgan’s Research in Word Processing Newsletter, which was published throughout the 1980s, also featured the occasional software review. By the late 1990s, however, the software review no longer had a home in Rhetoric and Composition’s professional publications.

There are a few exceptions worth noting. The recently launched (January 2018) journal Research in Online Literacy Education has a tech reviews section, but it is focused on teaching technologies. The Kairos PraxisWiki occasionally publishes software-focused pieces with an emphasis on practical use (and often pedagogy), such as Aaron Beveridge’s (2018) “The Markdown Movement: Writing’s Influence on Markup” and Steve Marsden’s (2017) “Using Evernote to Encourage and Monitor Student Research.” Mostly, however, the PraxisWiki pieces focus on broader pedagogical practices and tangentially considers the software related to them. Similarly, the blog Profhacker often posts about new writing or research software, but these posts are typically quite short and draw attention to an app rather than seriously consider how that app might function in a range of composing contexts.

Instead, we argue that the software review can serve an important professional function—one that aligns well with workflow mapping and thinking. As an example of what these reviews might look like, we point to Serenity Caldwell’s (2018) review of the iPad. Caldwell’s review is composed on the iPad, and her review shows her doing a range of work across several apps: drawing, writing, manipulating video, opening files, and more. Her review also includes a technical note describing the software used in and the process of composing the review. In Serenity’s hand-drawn review, we gain an understanding of what the platform can do, but we also see how she uses it. The review is both technical (in terms of examining functional literacies) and rhetorical (asking what a user can produce with the tool).

John Siracusa’s annual reviews of the Mac operating system—published on the tech blog Ars Technica from 1999 to 2014—offer another possible model of the software review. Siracusa’s reviews are notable in the tech community because of their length. “Long form doesn’t even begin to cover it,” Ars Technica senior editor Lee Hutchinson wrote about Siracusa’s reviews, as “a Siracusa review could stretch to a [Content Management System]—breaking 30,000 words and beyond.” In his reviews, Siracusa would painstakingly detail every change, tweak, and revision to the Mac operating system, leading users through a comprehensive tour of what happened when they updated their Mac.

Some parts of Siracusa’s reviews were explanatory or descriptive, noting how the software had changed over the previous year:

Notification Center changes its appearance, animation, and purpose in Yosemite. It still slides out from the right edge of the screen, but it’s now a sheet of dark vibrancy that overlaps the screen rather than pushing the entire screen image to the left. A tab bar at the top switches between the interface’s two functions: displaying notifications and showing an iOS-style “Today” view. Everything that’s not a notification (e.g., the widget used to send an instant message or write a tweet) has moved into the Today view. (2014, Notification Center section, para. 1)

Siracusa would describe changes in the software, but he would also contextualize the logic behind those changes for the reader. For example, in describing how Apple’s Safari web browser started hiding a website’s complete URL (and showing instead just the domain), Siracusa wrote:

This leads to the second reason to bring the iOS-style address bar to Safari on the Mac: simplicity. Though we technology enthusiasts may consider URLs an integral and well-understood part of our Web browsing experience, the vast majority of people have little interest in URLs beyond the one part of them that is commonly understood: the domain name. Everyone knows what google.com is, but few people know or care about the alphabet soup of text that may follow the domain name. If you accept this premise, the iOS-style design follows naturally. Rather than adding elements to the address bar or trying to visually differentiate the components of the URL, Apple has chosen to reduce the visible address to the one part that people understand—which also happens to be the one part that matters when it comes to avoiding URL-based phishing attacks. (2014, Safari section, para. 1)

Siracusa would also use his review as a place for critique, consideration, and speculation. In the following excerpt, he considers MacOS’s adoption of transparent interface elements:

Apple has taken great pains in Yosemite to ensure that any content that does show through transparent interface elements is extremely diffuse and indistinct. But the aspects of the background that do show through—mostly color—are often magnified. Inevitably, I find myself searching for a reason. Why is it important for me to see any aspect of what’s behind the front-most active window? Why risk reducing both the usability and attractiveness of the UI? To what end? (2014, Philosophy section, para. 1)

Siracusa’s reviews were expansive, thorough, and critical. In later years, Ars Technica packaged them as ebooks, allowing subscribers to read them offline in multiple sittings and file them as reference material. Although Siracusa stopped writing the reviews in 2015, many tech bloggers have continued the genre. Federico Viticci’s MacStories blog often publishes long-form reviews of Apple software, such as Tim Nahumck’s (2018) review of the iOS writing application Drafts, which offers more than ten thousand words of examination and reflection about a single iPhone writing application. Nahumck’s review walks the reader through the application’s interface, explores the advanced features, and contextualizes the app within several specific writing scenarios. It is part instructional manual, part model, and part inspiration.

Although we can find many examples of these long-form software reviews on tech blogs, there isn’t a parallel in the field—and we think there should be. Writing Studies–based software reviews don’t have to dwell in the technical details like reviews in a trade journal or tech blog might; instead, reviews of writing software by writing specialists could critically consider the application and its potentials for writers and writing teachers. These reviews could examine the functional affordances of writing tools, critically read the design, and consider how the app might fit into personal workflows. And they could do so by drawing on disciplinary knowledge and theory.

More important, the software review could do what the book review already does for published scholarship: situate artifacts (in this case, writing technologies) directly within our disciplinary conversations. The review would position writing technologies as an object of inquiry, as something central to our disciplinary expertise about writing, and as something to be explored, shared, and discussed.

The Workflow Narrative

The workflow narrative is a common genre, and readers of this book might have already encountered it in blogs or conference presentations. The workflow narrative typically presents a contextualized and personal approach to dealing with writing tasks, project management, or some other facet of knowledge work. These narratives often begin with an exigence (I wanted to plan a new article while waiting for car service at my local mechanic) or experience of friction (Each semester, I find myself creating the same folder structure for new classes) and then move into a rich description of the problem solved and the technologies and practices that were used in doing so. The narrative provides specific examples of how to use writing technologies in applicable practices, and it directly connects to workflow thinking by encouraging the reader to imagine how that technology might fit into their process.

These narratives also present a workflow as shareable knowledge. Workflow narratives are often filed under “lore” or are read as a “what works for me” documentation, perhaps because of their seeming similarities to the frowned upon what-I-did-in-class-today pedagogical genre. We want to push against that. Workflow narratives can provide us with concrete data on how writers use technologies in specific contexts and practices to accomplish a goal. They also model technology use and they expand our understanding of what is possible with a given writing tool. And like the software review, these narratives can help to reposition writing technologies as a central point of disciplinary focus and expertise.

For example, the Omni Group (a software development company) collected workflow narratives as part of its Inside OmniFocus marketing materials for the OmniFocus application. OmniFocus is a complex project management tool, and the narratives help users see how the app functions in day-to-day work contexts—showcasing personal hacks and how-tos. In her Inside OmniFocus post “Spending Time on What Matters,” Polina Burkart narrates how to organize daily tasks with syntactical priority markers:

Don’t fall into the Amazon trap. What is the Amazon trap, you ask? That’s when you need to order a new Brita filter and spend an hour reading reviews on Amazon because it’s so important that you order exactly the perfect filter. Think about the diminishing returns on your time, and aim to spend more (80%) of your time and energy on what matters and less (20%) on the Brita filters in your life. To help me with this, I order my tasks by importance and amount of time/energy to complete. I use the contexts @!, @!!, and @!!! to help me prioritize and not fall into the Amazon trap.

@!: Tasks that will take a relatively short amount of time or minimal energy. @!!!: Tasks that will take a significant amount of time or that will require quite a bit of focus/concentration. @!!: The in-betweens. I usually can identify what really should go into @! and @!!!, and then everything else goes into @!!. (n.d., para. 5)

Burkart is describing how she uses the OmniFocus “contexts” feature, which was originally designed to mark the physical spaces in which work occurs—at home, at the computer, at the office, and so on. Users, however, have found new ways to bend that software feature, and Burkart’s energy-based system of @ symbols and exclamation points helps users imagine new ways of organizing tasks and to-do lists.

Workflow narratives are common genres in academic blogs, and we could point to many examples, such as Raphael Kabo’s (2018) workflow for writing academic documents in Markdown or Daniel J. Vreeman’s (2015) tutorial for using Scrivener to write scientific papers. The blog and forum-centric nature of the genre has many upsides, most notably that it encourages a sort of give-and-take conversation. In discussion threads and comment sections, many of these narratives feature lively conversation about the process, with other users asking questions and offering their own modifications. However, we argue that the workflow narrative should also have a home in professional journals, a space where it can be more centrally located—and preserved within—the disciplinary conversation about writing.

By making room for these narratives in our scholarly publications, we can help move them beyond lore and into shareable disciplinary knowledge. This comes with several benefits. These narratives, for example, highlight the specifics of labor and the work of writing technologies within it—modeling disciplinary practice and demonstrating the work of writing (and knowledge) technologies. They help others see how we do our jobs—from drafting an article to running a committee meeting—and show how writing technologies are woven throughout that work. They also provide historical accounts of how writers use technologies. For example, academic journals from the 1980s show a market that was teeming with word processing software. Today, however, accounts of those technologies tell us little about what they looked like or how they were used. Workflow narratives can capture accounts of writing technologies and preserve them for future readers.

Conclusion

At the start of this book we argued that specialists in Writing Studies don’t regard their personal mediated preferences and practices as a shareable form of knowledge beyond the level of the individual narrative. In this closing chapter, we’ve offered a metacognitive practice (workflow mapping) and scholarly genres (the review and the narrative) that can bring additional awareness to the tools and technologies that writers use. When combined with workflow thinking, these approaches offer subtle shifts for those working in the field of Writing Studies—a way of pushing the mediated specifics of writing beyond lore and into a more central place in the discipline.

Our goal isn’t to celebrate a specific technology or to encourage the adoption of a specific tool. In fact, we’re wary of anyone who says you must use a particular tool to accomplish a task. But we’ve spent years following the workflow affinity space of Sparks, Terpstra, and Viticci, and we’re persuaded by their approach: one grounded in a mantra of “What are the possibilities here?” By beginning with this question, they invite creativity and exploration while also acknowledging that different writers prefer to work in different ways. Similarly, we hope that the broader practices of workflow thinking and mapping can help writers better imagine their work across a variety of tools and spaces—from notebooks, to whiteboards, to custom computer scripts—as well as learn about, be creative with, and mindfully adopt a broad range of writing technologies.

We also, at the start of this book, pointed to the messy histories and connotations of the word “workflow”—a point worth returning to in this closing section. We hope that this book has made the case against workflows as deskilling or industrial-focused and has instead repositioned them as a personal practice grounded in mindfulness and craft. That kind of mindful inquiry happens throughout the workflow affinity space, as evidenced in blogs, podcasts, and discussion boards, and we have much to learn from it. But we also acknowledge that Sparks, Terpstra, and Viticci have a certain set of goals and interests. They often chase states of flow or efficiency or frictionless work—values that echo computer science and computer-adjacent industries. In expanding the audience for workflows, we hope that other writers can push against these perspectives and show how workflows can be adopted and used in different ways with different priorities.

The enthusiasm for writing technology in the workflow affinity space echoes the creativity and experimentation found in early computers and writing conference publications. By bringing workflows into conversation with process and writing theory, we hope that the genres and practices we suggest can bring more people into the conversation, moving writing tools and technologies into a conversational space that is creative, critical, and experimental—and most important, welcoming to all.

References

Abbate, Janet. 2012. Recoding Gender: Women’s Changing Participation in Computing. Cambridge: MIT Press.

Alexander, Jonathan. 2015. “Glenn Gould and the Rhetorics of Sound.” Computers and Composition 37: 73–89.

Alexander, Jonathan, and Jacqueline Rhodes. 2014. On Multimodality: New Media in Composition Studies. Urbana, IL: Conference on College Composition and Communication/National Council of Teachers of English.

Alexander, Phill, Karissa Chabot, Matt Cox, Dànielle Nicole DeVoss, Barb Gerber, Staci Perryman-Clark, Julie Platt, Donnie Johnson Sackey, and Mary Wendt. 2012. “Teaching with Technology: Remediating the Teaching Philosophy Statement.” Computers and Composition 29, no. 1: 23–38.

Alexis, Cydney. 2017. “The Symbolic Life of the Moleskine Notebook: Material Goods as a Tableau for Writing Identity Performance.” Composition Studies 45, no. 2: 32–54.

Alvarez, Sara P., Michael Baumann, Michelle Day, Khristen L. Echols, Layne M. P. Gordon, Ashanka Kumari, Laura Sceniak Matravers, Jessica Newman, Amy McCleese Nichols, Caitlin E. Ray, Jon Udelson, Rick Wysocki, and Dànielle Nicole DeVoss. 2017. “On Multimodal Composing.” Kairos: A Journal of Rhetoric, Technology, and Pedagogy 21, no. 2. Retrieved from http://kairos.technorhetoric.net/21.2/praxis/devoss-et-al/index.html.

American Psychological Association. 2006. “Multitasking: Switching costs.” Retrieved from https://www.apa.org/research/action/multitask.

America’s Test Kitchen. 2017. “Bundt Pans.” Retrieved from https://www.americastestkitchen.com/equipment_reviews/1735-bundt-pans.

Anson, Chris. 2014. “Process Pedagogy and Its Legacy.” In A Guide to Composition Pedagogies, edited by Gary Tate, Amy Rupiper Taggart, Kurt Schick, and H. Brooke Hessler, 212–30. Oxford: Oxford University Press.

Ballentine, Brian D. 2015. “Textual Adventures: Writing and Game Development in the Undergraduate Classroom.” Computers and Composition 37: 31–43.

Barton, Ben F., and Marthalee S. Barton. 2004. “Ideology and the Map: Toward a Postmodern Visual Design Practice.” In Central Works in Technical Communication, edited by J. Johnson-Eilola and S. Selber, 232–52. Oxford: Oxford University Press.

Bazerman, Charles. 2002. “The Case for Writing Studies as a Major Discipline.” In Rhetoric and Composition as Intellectual Work, edited by G. A. Olson, 32–38. Carbondale: Southern Illinois University Press.

Beveridge, Aaron. 2018. “The Markdown Movement: Writing’s Influence on Markup.” Kairos: A Journal of Rhetoric, Technology, and Pedagogy 22, no. 2. Retrieved from http://praxis.technorhetoric.net/tiki-index.php?page=PraxisWiki%3A_%3Amarkdown.

Beverly, Paul. 2017. Macros for Editors. Retrieved from http://archivepub.co.uk/book.html.

Blood, Rebecca. 2004. “How Blogging Software Reshapes the Online Community.” Communications of the ACM 47, no. 12: 53–55.

Bolter, Jay David, and Richard Grusin. 1999. Remediation: Understanding New Media. Cambridge: MIT Press.

Boston, Robert. 1990. “Review of Collaborative Writer.” Computers and Composition 8, no. 1: 95–98.

Bowen, Tracy, and Carl Whithaus, eds. 2013. Multimodal Literacies and Emerging Genres. Pittsburgh: University of Pittsburgh Press.

Boyle, Casey. 2015. “The Rhetorical Question Concerning Glitch.” Computers and Composition 35: 12–29.

Buck, Amber M. 2008. “The Invisible Interface: MS Word in the Writing Center.” Computers and Composition 25, no. 4: 396–415.

Bucki, Lisa A. 2013. Word 2013 Bible. Indianapolis: Wiley and Sons/Safari Books Online.

Burkart, Polina. n.d. “Spending Time on What Matters.” Inside OmniFocus. Retrieved from https://inside.omnifocus.com/polina-burkart.

Caldwell, Serenity. 2018. “My 9.7 iPad (2018) Review: Drawn, Written, Edited, and Produced with an iPad.” iMore. Retrieved from https://www.imore.com/my-97-ipad-2018-review-drawn-written-edited-and-produced-ipad.

Chamberlain, John. 1996. “What Works for Me.” Teaching English in the Two-Year College 23, no. 3: 219–20.

Charmaz, Kathy. 2006. Constructing Grounded Theory: A Practical Guide through Qualitative Analysis. London: Sage.

Cheng, Jacqui, and Brian Lam. n.d. “Hello! (What We Do at the Wirecutter and Sweethome).” The Wirecutter. Retrieved from http://thewirecutter.com/hello-how-to-use-the-wirecutter.

Club MacStories. n.d. Macstories.net. Retrieved from https://club.macstories.net.

Colby, Rebekah Shultz. 2017. “Game-Based Pedagogy in the Writing Classroom.” Computers and Composition 43: 55–72.

Corbin, Juliet, and Anselm Strauss. 2008. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. 3rd ed. Los Angeles: Sage.

Council of Writing Program Administrators, National Council of Teachers of English, and National Writing Project. 2011. Framework for Success in Postsecondary Writing. Retrieved from https://files.eric.ed.gov/fulltext/ED516360.pdf.

Csíkszentmihályi, Mihaly. 1990. Flow: The Psychology of Optimal Experience. New York: Harper and Row.

DeRogatis, Jim, and Greg Kot (Hosts). 2011. “Interview: Brian Eno.” Sound Opinions 310 [Audio Podcast]. Retrieved from https://soundopinions.org/show/310.

Dilger, Bradley. 2008. “Ease and Electracy.” In and’ New Media/New Methods: The Academic Turn from Literacy to Electracy, edited by Jeff Rice and Marcel O’Gorman, 109–138. West Lafayette, IN: Parlor Press.

Dyson, Anne Haas and Celia Genishi. 2005. On the Case: Approaches to Language and Literacy Research. New York: Teachers College Press.

Elbow, Peter. 1973. Writing without Teachers. Oxford: Oxford University Press.

Ericsson, Patricia Freitag, and Richard H. Haswell. 2006. Machine Scoring of Student Essays: Truth and Consequences. Colorado State University Libraries. Retrieved from https://dspace.library.colostate.edu:443/handle/10217/87895.

Gee, James Paul. 2004. Situated Language and Learning: A Critique of Traditional Schooling. New York: Routledge.

Gee, James Paul. 2005. “Semiotic Social Spaces and Affinity Spaces.” In Beyond Communities of Practice Language Power and Social Context, edited by David Barton and Karin Tusting, 214–32. Cambridge: Cambridge University Press.

Geisler, Cheryl. 2004. Analyzing Streams of Language. New York: Longman.

Gresham, Morgan. 1999. “The New Frontier: Conquering the World Wild Web by Mule.” Computers and Composition 16, no. 3: 395–407.

Grusin, Richard. 2004. “Premediation.” Criticism 46, no. 1: 17–39.

Haas, Christina. 1996. Writing Technology: Studies on the Materiality of Literacy. Mahwah, NJ: Lawrence Erlbaum.

Hammer, Steven, and Aimee Knight. 2015. “Crafting Malfunction: Rhetoric and Circuit-Bending.” Harlot 14. Retrieved from http://www.harlotofthearts.org/index.php/harlot/article/view/261/173.

Harris, Muriel, and Madelon Cheek. 1984. “Computers across the Curriculum: Using Writer’s Workbench.” Computers and Composition 1, no. 2: 3–5.

Hawisher, Gail E. 1986. “Studies in Word Processing.” Computers and Composition 4, no. 1: 6–31.

Hawisher, Gail E., Paul LeBlanc, Charles Moran, and Cynthia L. Selfe. 1996. Computers and the Teaching of Writing in American Higher Education, 1979–1994: A History. Norwood, NJ: Ablex.

Hawk, Byron. 2004. “Toward a Rhetoric of Network (Media) Culture: Notes on Polarities and Potentiality.” jac 24, no. 4: 831–50.

Hawk, Byron. 2007. A Counter-History of Composition. Pittsburgh: University of Pittsburgh Press.

Heilker, Paul, and Pete Vandenberg. 2015. Keywords in Writing Studies. Logan: Utah State University Press.

Heslop, Brent, and David Angell. 1993. “Everything Microsoft Didn’t Tell You about WordBasic.” PC Magazine 12, no. 3: 71.

Hicks, Marie. 2017. Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge in Computing. Cambridge: MIT Press.

Hocks, Mary E. and Michelle Comstock. 2017. “Composing for Sound: Sonic Rhetoric as Resonance.” Computers and Composition 43: 135–46.

Hollingsworth, David. 1995. The Workflow Reference Model. Hampshire, UK: Workflow Management Coalition.

Horner, Bruce. 2015. “Rewriting Composition: Moving beyond a Discourse of Need.” College English 77, no. 5: 450–79.

Hutchins, Edwin. 1995. “How a Cockpit Remembers Its Speeds.” Cognitive Science 19: 265–88.

Jensen, Joli. 2017. Write No Matter What: Advice for Academics. Chicago: University of Chicago Press.

Johnson-Eilola, Johndan. 1991. “Structure and Text: Writing Space and Storyspace.” Computers and Composition 9, no. 2: 95–129.

Johnson-Eilola, Johndan, and Stuart A. Selber. 1996. “After Automation: Hypertext and Corporate Structures.” In Electronic Literacies in the Workplace: Technologies of Writing, edited by Patricia Sullivan and Jennie Dautermann, 115–41. Urbana, IL: National Council of Teachers of English.

Kabo, Raphael. 2018. “My Workflow for Transforming Academic Markdown into Beautiful Word Documents.” Raphaelkabo.com. Retrieved from http://raphaelkabo.com/blog/posts/markdown-to-word.

Kelty, Christopher. 2008. Two Bits: The Cultural Significance of Free Software. Durham, NC: Duke University Press.

Kirschenbaum, Matthew. 2016. Track Changes: A Literary History of Word Processing. Cambridge, MA: Harvard University Press.

Latour, Bruno. 1999. Pandora’s Hope: Essays on the Reality of Science Studies. Cambridge, MA: Harvard University Press.

Liebowitz, Stan J., and Stephen E. Margolis. 2001. Winners, Losers, and Microsoft. Oakland, CA: The Independent Institute.

Maid, Barry M. 1986. “Prewrite.” Computers and Composition 4, no. 1: 95–98.

Maid, Barry. 2001. “You Don’t Always Need a Hammer.” Kairos: A Journal of Rhetoric, Technology, and Pedagogy 6, no. 2. Retrieved from http://kairos.technorhetoric.net/6.2/features/townhalls/maid.htm.

Maid, Barry. 2018. “My Disciplinary History: A Personal Account.” In Composition, Rhetoric, and Disciplinarity, edited by Rita Malenczyk, Susan Miller-Cochran, Elizabeth Wardle, and Kathleen Blake Yancey, 36–52. Logan: Utah University State Press.

Malenczyk, Rita, Susan Miller-Cochran, Elizabeth Wardle, and Kathleen Blake Yancey. 2018. Rhetoric, Composition, and Disciplinarity. Logan: Utah State University Press.

Manovich, Lev. 2001. The Language of New Media. Cambridge: MIT Press.

Marcus, Stephen. 1984. “Invisible Writing with a Computer: New Sources and Resources.” Computers and Composition 8, no. 1: 41–48.

Marsden, Steve. 2017. “Using Evernote to Encourage and Monitor Student Research.” Kairos: A Journal of Rhetoric, Technology, and Pedagogy 21, no. 2. Retrieved from http://praxis.technorhetoric.net/tiki-index.php?page=PraxisWiki%3A_%3AUsing_Evernote.

Mauriello, Nicholas, Gian S. Pagnucci, and Tammy Winner. 1999. “Reading between the Code: The Teaching of HTML and the Displacement of Writing Instruction.” Computers and Composition 16, no. 3: 409–419.

McGee, Tim, and Patricia Ericsson. 2002. “The Politics of the Program: Microsoft Word as the Invisible Grammarian.” Computers and Composition 19, no. 4: 453–70.

McKee, Heidi, and Dànielle DeVoss, eds. 2013. Digital Writing Assessment and Evaluation. Logan: Computers and Composition Digital Press/Utah State University Press. Retrieved from http://ccdigitalpress.org/dwae.

Mearian, Lucas. 2017. “Android vs iOS Security: Which Is Better?” Computerworld. Retrieved from https://www.computerworld.com/article/3213388/mobile-wireless/android-vs-ios-security-which-is-better.html.

Microsoft. 2017. “By the Numbers.” Retrieved from https://web.archive.org/web/20170412001248/https://news.microsoft.com/bythenumbers/planet-office.

Milone, Michael N., Jr. 1984. “Five Ideas for Composing on the Computer.” Computers and Composition 1, no. 2: 6–7.

Mol, Annemarie. 2008. The Logic of Care: Health and the Problem of Patient Choice. London: Routledge.

Moran, Charles. 1984. “The Word-Processor and the Writer: A System Analysis.” Computers and Composition 2, no. 1: 1–5.

Moran, Charles. 2003. “Computers and Composition 1983–2002: What We Have Hoped For.” Computers and Composition 20, no. 4: 343–58.

Morgan, Bradford, ed. (1983). Research in Word Processing Newsletter 1, no. 1.

Morrison, Aimee. 2018. “I Did It Myyyyyyy Waaaaay: And You Should, Too.” Hook and Eye. Retrieved from https://hookandeye.ca/2018/02/21/i-did-it-myyyyyyy-waaaaay-and-you-should-too.

Mortensen, Torill, and Jill Walker. 2002. “Blogging Thoughts: Personal Publication as an Online Research Tool.” In Researching ICTs in Context: A Research Report from InterMedia, University of Oslo, edited by Andrew Morrison, 249–79. Oslo: InterMedia, University of Oslo.

Murray, Donald. 2009. “Teach Writing as a Process Not Product.” In The Essential Don Murray, edited by Thomas Newkirk and Lisa C. Miller, 1–5. Portsmouth, NH: Boynton/Cook.

Nahumck, Tim. 2018. “Drafts 5: The MacStories Review.” MacStories. Retrieved from https://www.macstories.net/reviews/drafts-5-the-macstories-review.

Nardi, Bonnie A., and Vicki O’Day. 2000. Information Ecologies: Using Technology with Heart. Cambridge: MIT Press.

Newkirk, Thomas, and Lisa C. Miller, eds. 2009. The Essential Don Murray. Portsmouth, NH: Boynton/Cook.

Nickell, Samila S. 1984. “Composition Students Experience Word Processing.” Computers and Composition 2, no. 1: 11–14.

Nielsen, Danielle. 2015. “Identity Performance in Roleplaying Games.” Computers and Composition 38A: 45–56.

Norman, Don. 2004. Emotional Design: Why We Love (or Hate) Everyday Things. New York: Basic Books.

North, Stephen M. 1992. “On Book Reviews in Rhetoric and Composition.” Rhetoric Review 10, no. 2: 348–63.

Ó Cinnéide, Pádraig, and Oisín Prendiville. (Hosts). 2018. “Castro 3 Wrap Up.” Supertop Podcast 32 [Audio Podcast]. Retrieved from http://blog.supertop.co/post/173359685017/podcast-castro-3-wrap-up.

Owens, Kim Hensley, and Derek Van Ittersum. 2013. “Writing with(out) Pain: Computing Injuries and the Role of the Body in Writing Activity.” Computers and Composition 30, no. 2: 87–100.

Palmeri, Jason. 2012. Remixing Composition: A History of Multimodal Writing Pedagogy. Carbondale: Southern Illinois University Press.

Pierce, Greg. n.d. “x-callback-url.” Retrieved from http://x-callback-url.com.

Pigg, Stacey. 2014. “Emplacing Mobile Composing Habits: A Study of Academic Writing in Networked Social Spaces.” College Composition and Communication 66, no. 2: 250.

Prior, Paul. 1998. Writing/Disciplinarity: A Sociohistoric Account of Literate Activity in the Academy. Mahwah, NJ: Lawrence Erlbaum.

Prior, Paul. 2004. “Tracing Process: How Texts Come into Being.” In What Writing Does and How It Does It: An Introduction to Analyzing Texts and Textual Practices, edited by Charles Bazerman and Paul Prior, 167–200. Mahwah, NJ: Lawrence Erlbaum.

Prior, Paul. 2006. “A Sociocultural Theory of Writing.” In Handbook of Writing Research, edited by Charles A. MacArthur, Steve Graham, and Jill Fitzgerald, 54–66. New York: Guilford Press.

Prior, Paul. 2008. “Flat CHAT? Reassembling Literate Activity.” Unpublished conference paper delivered at the Writing Research Across Borders Conference, Santa Barbara, CA. Retrieved from https://www.academia.edu/17016697/Flat_CHAT_Reassembling_Literate_Activity.

Prior, Paul. 2015. “Writing, Literate Activity, Semiotic Remediation: A Sociocultural Approach.” In Writing(s) at the Crossroads: The Process-Product Interface, edited by Georgeta Cislaru, 185–201. Amsterdam: John Benjamins.

Prior, Paul, and Spencer Schaffner. 2011. “Bird Identification as a Family of Activities: Motives, Mediating Artifacts, and Laminated Assemblages. Ethos 39, no. 1: 51–70.

Prior, Paul, and Jody Shipka. 2003. “Chronotopic Lamination: Tracing the Contours of Literate Activity.” In Writing Selves/Writing Societies, edited by Charles Bazerman and David Russell, 180–238. Fort Collins, CO: The WAC Clearinghouse and Mind, Culture, and Activity.

Prior, Paul, Janine Solberg, Patrick Berry, Hannah Bellwoar, Bill Chewning, Karen J. Lunsford, Liz Rohan, Kevin Roozen, Mary P. Sheridan-Rabideau, Jody Shipka, Derek Van Ittersum, and Joyce Walker. 2007. “Re-Situating and Re-Mediating the Canons: A Cultural-Historical Remapping of Rhetorical Activity.” Kairos: A Journal of Rhetoric, Technology, and Pedagogy 11, no. 3. Retrieved from http://kairos.technorhetoric.net/11.3/topoi/prior-et-al.

Purdy, James P. 2005. “Calling Off the Hounds: Technology and the Visibility of Plagiarism.” Pedagogy 5, no. 2: 275–96.

Rheingold, Howard. 2012. Net Smart: How to Thrive Online. Cambridge: MIT Press.

Roozen, Kevin, and Joe Erickson. 2017. Expanding Literate Landscapes: Persons, Practices, and Sociohistoric Perspectives of Disciplinary Development. Logan: Computers and Composition Digital Press/Utah State University Press. Retrieved from https://ccdigitalpress.org/expanding.

Rude, Carolyn D. 2006. Technical Editing. New York: Longman.

Rude, Carolyn D. 2009. “Mapping the Research Questions in Technical Communication.” Journal of Business and Technical Communication 23, no. 2: 174–215.

Saldaña, Johnny. 2013. The Coding Manual for Qualitative Researchers. Los Angeles: Sage.

Sayers, Jentery. 2011. “Tinker-Centric Pedagogy in Literature and Language Classrooms.” In Collaborative Approaches to the Digital in English Studies, edited by Laura McGrath. Logan: Computers and Compositional Digital Press/Utah State University Press. Retrieved from https://ccdigitalpress.org/cad.

Scollon, Ronald. 2001. Mediated Discourse: The Nexus of Practice. London: Routledge.

Selber, Stuart A. 2004. Multiliteracies for a Digital Age. Carbondale: Southern Illinois University Press.

Selfe, Cynthia L. 1999. “Technology and Literacy: A Story about the Perils of Not Paying Attention.” College Composition and Communication 50, no. 3: 411–36.

Selfe, Cynthia L. 2007. Multimodal Composition: Resources for Teachers. New York: Hampton Press.

Selfe, Cynthia L., and Gail E. Hawisher. 2012. “Exceeding the Bounds of the Interview: Feminism, Mediation, Narrative, and Conversations about Digital Literacy.” In Writing Studies Research in Practice: Methods and Methodologies, edited by Lee Nickoson and Mary P. Sheridan, 36–50. Carbondale: Southern Illinois University Press.

Selfe, Cynthia L., and Gail E. Hawisher. 2013. “Beyond Literate Lives: Collaboration, Literacy Narratives, Transnational Connections, and Digital Media.” In Literacy, Economy, and Power: Writing and Research after “Literacy in American Lives,” edited by John Duffy, Julie Nelson Christoph, Eli Goldblatt, Nelson Graff, Rebecca S. Nowacek, and Bryan Trabold, 185–202. Carbondale: Southern Illinois University Press.

Selfe, Cynthia L. and Kathleen E. Kiefer. 1983. “Editorial.” Computers and Composition 1, no. 1: 1.

Selfe, Dickie. 2003. “Techno-Pedagogical Explorations: Toward Sustainable Technology-Rich Instruction.” In Teaching Writing with Computers: An Introduction, edited by Pamela Takayoshi and Brian Huot, 17–32. Boston: Wadsworth Publishing.

Shipka, Jody. 2011. Toward a Composition Made Whole. Pittsburgh: University of Pittsburgh Press.

Siracusa, John. 2014. “OS X 10.10 Yosemite: The Ars Technica Review.” Ars Technica. Retrieved from https://arstechnica.com/gadgets/2014/10/os-x-10-10.

Smagorinsky, Peter. 2008. “The Method Section as Conceptual Epicenter in Constructing Social Science Research Reports.” Written Communication 25, no. 3: 389–411.

Smithson, Isaiah. 1986. “The Writing Workshop.” Computers and Composition 4, no. 1: 78–94.

Sparks, David. 2008. “MacUpdate Bundle.” MacSparky. Retrieved from https://www.macsparky.com/blog/2008/4/17/macupdate-bundle.html.

Sparks, David, and Katie Floyd. (Hosts). 2013. “Workflows with Brett Terpstra.” Mac Power Users 167 [Audio Podcast]. Retrieved from https://www.relay.fm/mpu/167.

Sparks, David, and Katie Floyd. (Hosts). 2015. “Workflows with John Gruber.” Mac Power Users [Audio Podcast]. Retrieved from https://www.relay.fm/mpu/264.

Sparks, David, and Katie Floyd. (Hosts). 2017. “Catching Up with Brett Terpstra.” Mac Power Users 366 [Audio podcast]. Retrieved from https://www.relay.fm/mpu/366.

Sparks, David, and Katie Floyd. (Hosts). 2017. “iPad Sensei—Federico Viticci.” Mac Power Users 374 [Audio Podcast]. Retrieved from https://www.relay.fm/mpu/167.

Spinuzzi, Clay. 2013. Topsight: A Guide to Studying, Diagnosing, and Fixing Information Flow in Organizations. CreateSpace Independent Publishing Platform.

Stedman, Kyle, Courtney Danforth, and Michael Faris. 2018. Soundwriting Pedagogies. Logan: Computers and Composition Digital Press/Utah State University Press. Retrieved from https://ccdigitalpress.org/soundwriting.

Sullivan, Patricia, and James E. Porter. 1997. Opening Spaces: Writing Technologies and Critical Research Practices. Greenwich, CT: Ablex Publishing.

Susser, Bernard. 1998. “The Mysterious Disappearance of Word Processing.” Computers and Composition 15, no. 3: 347–71.

Swarts, Jason. 2016. “Composing Networks: Writing Practices on Mobile Devices.” Written Communication 33, no. 4: 385–417.

Swisher, Kara. 2010. “Blast from the D Past: Apple’s Steve Jobs at D3 in 2005.” All Things D. Retrieved from http://allthingsd.com/20100517/blast-from-the-d-past-apples-steve-jobs-at-d3-in-2005.

Syverson, Margaret A. 1999. The Wealth of Reality: An Ecology of Composition. Carbondale: Southern Illinois University Press.

Takayoshi, Pamela. 2015. “Short-Form Writing: Studying Process in the Context of Contemporary Composing Technologies.” Computers and Composition 37: 1–13.

Taylor, Lee Roger, Jr. 1987. “Software Views: A Fistful of Word-Processing Programs.” Computers and Composition 5, no. 1: 79–90.

Terpstra, Brett. 2011. “I Think I’m Switching to Jekyll.” BrettTerpstra.com. Retrieved from http://brettterpstra.com/2011/07/10/i-think-im-switching-to-jekyll.

Terpstra, Brett. 2013. “A Relaunch for 2013.” BrettTerpstra.com. Retrieved from http://brettterpstra.com/2013/01/01/a-relaunch-for-2013.

Terpstra, Brett. 2015. “SearchLink 2.2.2.” BrettTerpstra.com. Retrieved from http://brettterpstra.com/2015/09/08/searchlink-2-dot-2-2.

Terpstra, Brett. 2016. “SearchLink.” BrettTerpstra.com. Retrieved from http://brettterpstra.comprojects/searchlink.

van der Aalst, Wil, and Kees van Hee. 2002. Workflow Management: Models, Methods, and Systems. Cambridge: MIT Press.

Van Ittersum, Derek, and Kory Lawson Ching. 2013. “Composing Text / Shaping Process: How Digital Environments Mediate Writing Activity.” Computers and Composition Online (Fall 2013). Retrieved from http://cconlinejournal.org/composing_text/webtext.

Vee, Annette. 2017. Coding Literacy: How Computer Programming Is Changing Writing. Cambridge: MIT Press.

Viticci, Federico. 2011. “Blogsy: A Better Blogging App for iPad.” MacStories. Retrieved from https://www.macstories.net/reviews/blogsy-a-better-blogging-app-for-ipad.

Viticci, Federico. 2012. “Automating iOS: How Pythonista Changed My Workflow.” MacStories. Retrieved from https://www.macstories.net/stories/automating-ios-how-pythonista-changed-my-workflow.

Viticci, Federico. 2013a. “Chaining Multiple Apps Together with Drafts.” MacStories. Retrieved from https://www.macstories.net/tutorials/chaining-multiple-apps-together-with-drafts.

Viticci, Federico. 2013b. “Editorial for iPad.” MacStories. Retrieved from https://www.macstories.net/linked/editorial-for-ipad.

Viticci, Federico. 2013c. “Reinventing iOS Automation: Editorial Review.” MacStories. Retrieved from https://www.macstories.net/stories/editorial-for-ipad-review.

Viticci, Federico. 2015. “iPad Air 2 Review: Why the iPad Became My Main Computer.” MacStories. Retrieved from https://www.macstories.net/stories/ipad-air-2-review-why-the-ipad-became-my-main-computer.

Viticci, Federico. 2016a. “Airmail for iPhone Review: Power User Email.” MacStories. Retrieved from https://www.macstories.net/reviews/airmail-for-iphone-review-power-user-email.

Viticci, Federico. 2016b. “Workflow 1.5: App Store Automation, Trello and Ulysses Actions, Audio Metadata, Safari View Controller, and More.” MacStories. Retrieved from https://www.macstories.net/reviews/workflow-1-5-app-store-automation-trello-and-ulysses-actions-audio-metadata-safari-view-controller-and-more.

Viticci, Federico. 2016c. “A Computer for Everything: One Year of iPad Pro.” MacStories. Retrieved from https://www.macstories.net/stories/one-year-of-ipad-pro/7.

Viticci, Federico. 2018. “GoodTask’s Smart Lists for Reminders.” MacStories. Retrieved from https://www.macstories.net/ios/goodtasks-smart-lists-for-reminders.

Viticci, Federico, and John Voorhees. (Hosts). 2017. “Pick 2: Ulysses and FullContact.” AppStories 14 [Audio Podcast]. Retrieved from https://appstories.net/episodes/14.

Viticci, Federico, Myke Hurley, and Stephen Hackett. (Hosts). 2018. “The Prompt.” Connected 198 [Audio Podcast]. Retrieved from https://www.relay.fm/connected/198.

Vreeman, Daniel J. 2015. “Using Scrivener for Writing Scientific Papers.” Danielvreeman.com. Retrieved from https://danielvreeman.com/using-scrivener-for-writing-scientific-papers.

Walker Rettberg, Jill. 2014. Blogging. Cambridge: Polity.

Walker, Robert. 2013. “History of Affiliate Marketing.” Visibility Magazine. Retrieved from http://www.visibilitymagazine.com/history-of-affiliate-marketing.

Wertsch, James V. 1998. Mind as Action. Oxford: Oxford University Press.

Witte, Stephen P. 2005. “Research in Activity: An Analysis of Speed Bumps as Mediational Means.” Written Communication 22, no. 2: 127–65.

Wresch, William, ed. 1984. The Computer in Composition Instruction: A Writer’s Tool. Urbana, IL: National Council of Teachers of English.

Wysocki, Anne Francis, Johndan Johnson-Eilola, Cynthia L. Selfe, and Geoffrey Sirc. 2004. Writing New Media. Logan: Utah State University Press.

Zhang, Ping. 2009. “Theorizing the Relationship between Affect and Aesthetics in the ICT Design and Use Context.” In Proceedings of the International Conference on Information Resources Management. Dubai, United Arab Emirates.

Zuboff, Shoshana. 1988. In the Age of the Smart Machine: The Future of Work and Power. New York: Basic Books.

Acknowledgments and Credits

Acknowledgments

This project began in the summer of 2014 at the Computers and Writing Conference in Frostburg, Maryland, and in the years since, we have benefited from the support and guidance of friends, family members, and colleagues.

We are especially thankful for the many people who have read chapter drafts and provided feedback. Libby Anthony, Kristine Blair, Lauren Marshall Bowen, Kory Lawson Ching, Carlos Evia, Daniel Lawson, Peter Mortensen, Kim Hensley Owens, Jason Palmeri, Jennifer Grouling Snider, and Pamela Takayoshi generously read drafts and offered helpful feedback at various points in our process. Similarly, Amber Buck, Tim Laquintano, Rachael Sullivan, and Annette Vee coauthored conference panel proposals with us and helped us think more expansively about this project. Likewise, Patrick Berry, Diana George, Gail Hawisher, and Cynthia L. Selfe supported us, cheered on this work, and modeled generous mentoring.

This project grew from the generosity of our research participants, who are self-employed and for whom time spent speaking with us was time away from their work. We appreciate their willingness to talk and to introduce us to their peers in the workflow affinity space. Likewise, Quinn Warnick deserves a special thank-you for working through an initial test interview and helping us to better focus our research and interview questions.

We also benefited from the support of the Sweetland DRC: Sara Cohen, Anne Ruggles Gere, Naomi Silver, and Simone Sessolo helped us move from proposal to publication; Carleigh Davis and Lauren Brentnell, who were DRC graduate fellows during the 2017–2018 academic year, read chapter drafts and offered extensive feedback; and the members of the editorial board (as well as anonymous peer reviewers) provided helpful feedback at various stages of the project.

We are also grateful for the institutional support we’ve received. Both Kent State University and Miami University offered us research leaves during the course of this project, and we’ve benefited from institutional financial support for travel and technology.

Finally, many thanks to our families for their ongoing love and support.

Image and Video Credits

Tim’s first workflow history video (in chapter 6) includes brief footage from a Windows 3.11 tutorial screen capture by Mat Martin, used via Creative Commons (attribution required) license, and video of a Packard Bell boot sequence filmed by YouTube user HaloSpartanG13, also used via a Creative Commons (attribution required) license.

Unless otherwise noted above or in the text, all screen captures were composed by us.

OEBPS/html/images/Fig29.jpg
O weeky exraas

iPad Diaries: Clipboard Management with Copied and
Workflow

‘One of the common challenges involving a switch from mac0S to an iPad isthe ack of
desktop-like clipboard managers on i0S.

OEBPS/html/images/Fig31.jpg
Microsoft Office Security Options

@ security Alert - Macro

Macro

Macros have been disabled. Macros might contain viruses or other security hazards. Do
not enable this content unless you trust the source of this fle.

Note: The content signature is valid, but you have not chosen to trust the
entity that published this content.

More nformation

FlePath: CADocuments and Settings\All Userstwizard wiz
Signature:
Signed by: Mcrosoft Corporation
Certficate expration: 11/24/2003

Certficate ssued by: Mcrosoft Code Signing PCA
w Sonatre Det:

@ Help protect me from unknovin content (recommended)
© Enable ths content
O Trust a documents from this publsher

Qoen the Trust Center

OEBPS/html/images/Fig30.jpg
Macros

Macrosin: Word commands
Organizer...

Macro name:

AcceptAllChangesinDoc

AcceptAllChangesinDocAndStopTracking
AcceptAliChangesShown
AcceptChangesAndAdvance
AcceptChangesOrAdvance

Description:

Accepts all changes in document, ignoring filter settings.

Cancel Step it Run

OEBPS/html/images/Fig35.jpg

OEBPS/html/images/Fig34.jpg

OEBPS/html/images/Fig33.jpg

OEBPS/html/images/Fig32.jpg
@ search utl 6:41 AM

|i'| Append to Clipboard

> &

This workflow accepts Articles, Contacts, Dates, ...

Get Clipboard
Text

@ clipboard Workflow Input

Copy to Clipboard
Local Only

Expire At

N\

Actions Workflow

OEBPS/html/images/Fig39.jpg

OEBPS/html/images/Fig38.jpg
3 Philip Schiller &

" @pschiller

Federico Vittici's healthier life
@viticci #iphone

Life After Cancer: How the iPhone Helped Me Achieve a He...

I've been struggling to get back in shape after chemo. Since
being diagnosed with Hodgkin Lymphoma (Stage IV) in late 2011,
my life changed. Beyond the psychological and emotional
acstories.net

1:03 PM - 3 Mar 2015

wssrenees 0Lk BOODOSHLO

OEBPS/html/images/Fig37.jpg
8 AM ¢ 7 3} -
)+ Append to Scratch v >

Preview X Append to Scratch
Selected Text

Outputs selected text in the current document

Set Variable

Stores text in the variable text

~
Replace Selected Text

Replaces the selected text with ""

Get File Contents
X —

Outputs the text contents of the file scratch.md (in Local)

N

X SetFile Contents =

File Name scratch.md
In Dropbox

New Text:

(Input.

[Yei

[ext)
If File Does Not Exist

5

&

OEBPS/html/images/Fig36.jpg

OEBPS/html/images/Fig19.jpg
17

 Inroduction

Markdown s text formating symax nspired on lintextamai.
1t oxtomelysimple, momorizablo and visollyEghtesight on rfacts 0.0
ottohinderreading - characteritics that go hand in hand with the essence.
of “Byword:-

1 tho words of s creator, John Gruber /-2
Thadoais thato Markdown formatted document should be publshobl.
5,35 plin toxt,wihoutlooking ke s boan marked p with ags o
formatinginstuctions.

Ly hepidaingfioboll ooy

nthe ot sacionsyou'lbo guided thruh soma of tho festores hatwil
ok Byword " your now avorte Markdown odter.

OEBPS/html/images/Fig18.jpg

OEBPS/html/images/cover.jpg
WRITING
WORKFLOWS

Beyond \Word Processing

Tim Lockridge
and Derek Van lttersum

OEBPS/html/images/Fig20.jpg
Custom Action (Advanced)
Runs a custom script with configurable parameters

Set Variable
‘Stores text in the variable inkname

1l

Move Caret
Move the caret to the end of the document

11l

Replace Selected Text

oo

Replacement Text
[(Linknane)}

“(Browser Title"

[S— i

Select Range
‘Selects the range [iniiaiSel]in the editor (reative to entre document)

]

Replace Selected Text
Repiaces the selected ext wih {Selected Tex{finkname]]

1l

Show HUD
‘Shows a HUD:style message wih the text "Link Inserted" or 1 second

1l

OEBPS/html/images/Fig24.jpg
QYABLETYPE®

Pt o T 5

M Men First Weblog > Enries > New Entry Vit

| First Weblog: Create New Entry

& vy

e 7]
MoaoieType wih Maricoun

You can instal the (Markdown pluginlhe:/daringfirebalL.net/projects/markdown/) into
MovableType in just one step.

st 1] Text Formting 1]

ety e
2170320 152935

e proven. Noscioos = G

Customize the display of this page,

OEBPS/html/images/Fig23.jpg
o <uponteo [ERERE

prepeeit
LT p———

[P

BLOG OF THE WEEK
osiLs

BLOGGER

PUSH-BUTTON PUBLISHING FOR THE PEOPLE

CREATE YOUR OWN BLOG!

more aboutht. =]

WHATS UP

1 freakin addictive. So,
You e for 8 Ining, don' read this, and don' ry the Web-log game. 1<
160 cas, and ¢ wil Suck Your Soul Away." We don' ke to tirk of 25
Sicking your 520 3way. We ke t NNk of i 35 Gwing I 50Ul 0 the
e, it o e

B 112/772000 4:49:00 7]

weicome eaders (Blogger s Inthe Sreet Crd section ofthe

January ssue.) You cancheck out our for more nformation

about Blogger and weblogs. But he best way 10 1an 5 toty £ out for
5 (12/6/2000 8:26:00 7w

Inc Magazines
mothowie. (11/30/2000 11:47:45 #¥)

“A capy o the
Blogger Wireless Ediion was oiso re-instaled, Ths inovative FDA 090
allows you to post and read bogs on your Pam. Wit the wireiess edton,
Jou could Iteraly blog whle cammuting on pUBIE transportation or
Wating for your unch o erve n 8 cronded restaurant, The wireiess
ediion ofers 3 subsetof functionalty ound ot www.iogger.com: account
Creation, biog creation, posing, €dtng, pulehing, and 3 direcory o
iogs sutabl for vewing on 3 PDA. For content pravidrs on the 9o, this
functionaity ionc Could Just the nvestment or the wireies ockoge
Ev. (1172812000 10:25:00 P}

We'r taing a break to oy the hoiday, but don fre, we've got you
covered, I youre having any new probiems Snce o services changed,
Take 3 1ook ot the new ' covers the

SIGNIN
i
—— -
po——
[

SioNUP
AR
e
-
|
]
-]

OEBPS/html/images/Fig22.jpg
©58 /i vewsocempsitmesarc: X\

& C 8 Sacuro view-source o /mebarchiveargineb 2021213100220t daiofesak et 2002108 sty reeds...| §

Toesday, 13 nug 2082

15 oaby Noads & New Pais of Processors</bix

Tou miahe hink that 16 you vore abost to dabt & Nacintoah-oientod biog, Lt vesid be quite & strske of 3054
Cartine for sous Resiiy Big Neus i bresk oa the vory day oo piun to Start welting. Lile, says & 4
e I e oot S s s o et AT

ho bucing Ficehalless2i;s vocdictd WoLl, thoy cortainly pase the tAIIZ0LDD T Want OsoBAANIZL; Lesk. Wil th
. thoy corainly pua tho LT £t GooTI st il e
e fastes bas ans

<«
Sopie Lo continuias to offer o vary appeatisg <a hrofe"hetps . apple.con/primo/dualoftes/ Sdisplay
Dromaton</23 Uith the e CALARILTser 3200 towards the picehage of & Liieiors (1at-panel, snd 3300 tovards o
Ziooma Dlaplay: Aads 18 yos heve a 1ok e Sonsy than the Deriag Fisaball dove and vens Lo cake advantage of the
e Saehngs F3217; ML In suppect for Gusl 1apLave, You cun sse this Fobate oFfer o bup a6 Sany monLiore

P —

£ Recent op1e o and discussion hes boss inexplicably fosused o the cost of spsoing softuace, passly Jaguer
hich pocple sant 1o bo-free o chasp for o (ne0 <Ioinootecris, shichs onks

ELeliiaiTiy really Treapiice s ST sede Syt Ry
s’

@
/3% thoso samses aze oi1ly and shortaishtad. There ace tvo biy problems facing Apple. The firat 1s that Doveriac
Eaion"ace doin, and have baon dovn for Guite some Vi Ko Siher probien campates b thie one in magtitude,
ecenes Che fait memeioe. that. ovl. 1n . the beatsers of seiliny sompatore: Mo vhils Jovoeed Sombemes machin
B i i

OEBPS/html/images/Fig21.jpg
" 4

Write! — The Only Writing App You Need
To Create, Edit and Organize Texts

OEBPS/html/images/Fig28.jpg
FREQUENTY HEDITATED QuE:

©

WRITING ENVIRONMENT
FOR MAC, PC, AND IPAD

abeautfuldisrocion:
vour authenti voce s free itis meant 0 g0,
iy, and discover

the liseof singe-tasking.

OEBPS/html/images/Fig27.jpg
brettterpstra.com

reader support

Introduction

Searchlinkis a System Service for OS Xwhich
handles searching multiple sources and
automatically generating Markdown links for text

Itworks in a few ways:

« Runa quick search on a single selection, and
have the selection replaced with the resulting
url (and optional title) a5 a Markdown inline
link, a Markdown reference, or just a plain url

« Runa single search and have the results put on your clipboard, perfect
for using from scripts and launchers (e.g. LaunchBar or Alfred).

« The “bracket” format, which allows you to just write, marking things to
link s you go. When youre done, you can run it on the full document
and — if your queries were good — have your links generated
automatically without ever opening a browser.

OEBPS/html/images/Fig26.jpg
You can support our work by simply reading about and buying the products we have
chosen through the links on our guide pages or through the shop links below.

Each of our pieces has dozens, if not hundreds of man-hours of work put into it—
usually a lot more than what goes into a typical review on many tech blogs and
magazines. If readers choose to buy the products we recommend as a result of our
research, analysis, interviews, and testing, our work is sometimes (but not always)
supported through an affiliate commission from the retailer when you make a
purchase. If we pick junk and you return it, we make nothing, and we think that's a
pretty fair system. (More on how our site works here.)

You'll notice we often link to Amazon for making a recommended purchase. Most of
our staff have been Amazon users since before this site existed, and for good reason.
Because of the convenience of Amazon Prime’s free two-day shipping and excellent
customer service, we feel it's the best way for most of us to shop online. If you'd like to
support us outside of buying a something we recommend in a guide, you can do so by
shopping through any of the following links.

amazoncom
N1

OEBPS/html/images/Fig25.jpg
amazon Prime

r—
THE AMAZON BOUNTY Primentic Aoty
PROGRAM | amazonvideo

g Ny
= ol amagonarly ~S-audible

BABYREGISTRY

OEBPS/html/images/Fig09.jpg
ASCNIN *

N E B H

ABOUT ~ CONTACT ~ BLOG PROJECTS HELP DONATE JOBS VOLUNTEER PEOPLE

=]

KA
P2Y

§*************************************§
§ FrEdWriter §
§ U.4 December &, 1385 §
i MAIN PROGRAM MENU §
FRFERRRRRRRRRRR R R R R R R R kR
DATE: <NO DATE>
TIME: <NO TIME>
Read This First
Start FrEdWriter
Set Date and Time
Format a New Disk
Copy a_Disk
Uiew, Delete or Copy Document
Credits

ST IR

[F1 RIAG Crate 006: Volume 183 FreEd
Writer Word Processor

RIAG Crate 006: Volume 183 FreEd Writer Word Processor

OEBPS/html/images/Fig08.jpg
Bradiord Morgan, Editor osonr South Dakota School of Mines and Tecmolog
Libera Arts Doparimant i id City, South Dakota 5770135 2

T w Nay 1983

Vo

WY R NEWSLETTER? 0 0 % ¢ o e s e s o

Consider the great computer watershed: numbers on one side, lat-
ters on the other. The computer can manipulate and analyze hoth
with equal ease. Indead, th age of word processing in academie
writing orograns is just beginning to dawn across the nation, and
more than a few institutions are awakening to the fact that a
Fevolutionary change in curriculum is being incubated. Thia
newslatter 15 a resource for guiding that application.

.7 e % ° 0t ot Ippy CONFERENCE TN OCTOBER ° 0 ¢ 0 0 % 0 s

"The Many Facets of Computer Communications® is the thame of this
year's conference of the IEEE Professional Communication Society
to be held in Atlanta, GA, October 19-21, fThe technology in
wzitten communications subdivision will include presentations on
wocd procesing, writing and editing on terminala, and persenal
Computers vs. main utility, More information can he obtained by
writing to the Tnstitute of Electrical and Electronics Englnsers,
Inc,, 345 5. 47th St., Wew Yok, NY 10017.

§ RS SN b way GDRD ZROCESSIRGR. © 490 ¥ s 8 4

For students and professors in a wide varisty of disciplines,
writing ls--or should be--a primary tool for learning. The com-
puter can help with all phases of the writing proseas, from the
houristic mustering of an idea-base to oft-neglectad revision,
It can provide a quantitativa measure of a writer's styla—of
allow a profsssor with a standalona system to offer-.detailed,
Studeat-specific comment sheets. Tha word processor not only
saves Limes, conserves labor, and Solves problams, but it also
reinforces the traditional mission of writing progrims.

€7 %7 A GET-ACQUAINTED BISLIOGRAPHY ° ° 0 7 0 7 o

The following bibliography is intended as an introduction to word
procesaing in writing pragrame. space limitations called for a

OEBPS/html/images/Fig07.jpg
Bundt Pans

P

: , <

OEBPS/html/images/Fig53.jpg
Do i
Cow=| |

)
T

OEBPS/html/images/Fig52.jpg

OEBPS/html/images/Fig51.jpg

OEBPS/html/images/Fig50.jpg

OEBPS/html/images/Fig13.jpg

OEBPS/html/images/Fig12.jpg

OEBPS/html/images/Fig11.jpg
17

 Inroduction

Markdown s text formating symax nspired on lintextamai.
1t oxtomelysimple, momorizablo and visollyEghtesight on rfacts 0.0
ottohinderreading - characteritics that go hand in hand with the essence.
of “Byword:-

1 tho words of s creator, John Gruber /-2
Thadoais thato Markdown formatted document should be publshobl.
5,35 plin toxt,wihoutlooking ke s boan marked p with ags o
formatinginstuctions.

Ly hepidaingfioboll ooy

nthe ot sacionsyou'lbo guided thruh soma of tho festores hatwil
ok Byword " your now avorte Markdown odter.

OEBPS/html/images/Fig10.jpg
ayout Mark Tool 't Graphics He

IN CONGRESS, JULY 4, 1776
The unaninous Declaration of the thirteen united States of
merica

hen in the Course of human events it becomes necessary for ane
peaple to dissolve the political bands which have comnected them
uith another and to assune among the povers of the earth, the
separate and equal station to which the Laus of Nature and of
Nature’s God entitle them, a decent respect to the opinions of
mankind requires that they should declare the causes which impel
them to the separation.

e hold these truths to be self-evident, that all men are created
cqual, that they are endowed by their Creator with certain
wnalienable Rights, that among these are Life, Liberty and the
pursuit of Happiness. - That to secure these rights, Governwents
re instituted among Men, deriving their just pouers from the
nsent of the governed, — That whenever any Form of Govermment
becanes destructive of these ends, it is the Right of the People
to alter or to abolish it, and to institute new Government,
laying its foundation on such principles and organizing its
povers in such form, as to them shall seem nost likely to effect
EC-IND . TXT Poc 1 Pg 1 Ln 1" Pos 1"

OEBPS/html/images/Fig17.jpg
INTERRUPTION
Q0 ——
s

DETOUR

A agetn L

+Agentz ————» GOALz

GOAL3

FIRST MEANING OF MEDIATION : GOAL TRANSLATION

‘TRANSLATION

OEBPS/nav.xhtml

		Cover

		Half Title

		Series page

		Title Page

		Copyright Page

		Contents

		Introduction

		Chapter 1. From Process to Workflow

		What is a workflow?

		What does a workflow look like?

		From Process to Workflow

		Process and Computing

		The Word Processor

		The word processor arrives

		Contemporary computing and normalized friction

		Workflow as a way forward

		What workflows offer

		Chapter 2. Sociocultural Theory and Mediational Means

		Calls for More Research on Writing Processes

		Tracing Literate Activity with Sociocultural Theory

		Participants

		Computation, Representation, and Inclusion

		Study Design

		Case Study

		Spotlight on Interview Questions

		Chapter 3. Cooking Ideas

		Writing with Computers

		Sparks’s Workflow

		Tool Selection

		Mediational Means

		Workflow Thinking

		Shaping mind

		The Limits of Tools and Workflows

		Conclusion

		Spotlight on Markdown

		Chapter 4. Automating Writing

		Blogging Friction

		SearchLink

		Automation

		Using SearchLink

		“Just Write” ideology

		Distributing Automation

		Conclusion

		Spotlight on Affiliate Marketing

		Chapter 5. Writing on the Edge

		Federico Viticci

		Viticci’s Writing

		Initial Constraints of iOS

		Viticci’s workflow history

		Initial forays into scripting

		Writing and Scripting Together

		Developer Relationships

		Finding the Limits

		Workflow Planning

		Toward New Roles in the Field

		Chapter 6. Mapping Workflows

		Workflow Mapping

		An Example

		Workflow mapping in context

		Mapping our workflows

		Derek’s Workflows

		Tim’s Workflows

		Workflows and scholarly genres—Ways forward

		The Software Review

		The Workflow Narrative

		Conclusion

		References

		Credits

		Acknowledgments

		Image and Video Credits

OEBPS/html/images/Fig16.jpg
Shees

Alwiiogisdone i Uysse'shees Shets aresomehat
equtlenttolsicdocuments,thaughthey don'equires
Ut ora“fle name”orsuch.

Youcreneshets i 3N orthenewsheet bt nthe
toolbar.

Shects canholdany amountof e, andyou canfrely move
Shets round and sotthem st il You canssoseect
mulipeshets nd e them agther 361). Theywil
then behave 5 singeshetinthe e, whichis specilly
colifyourther havea oo small chunk hana singe,
monclihcsalotten.

Youcanalsita shetin ot he currentcursorposion
Bt SplkatSlecion), and mergetwo o more sheets
togsthertoformone (e MegeSheets .

OEBPS/html/images/Fig15.jpg
Markdown
Ideas [OEUENIPE Outine / OPML Composing Draft
—_ —_— —_

OEBPS/html/images/Fig14.jpg
ottt vy
S I i
v oo

B
[l it aessy i)
oo
B e

bt bt
fieeoaerleivereinaiereisa s B
ooy
o

preva o
fioriyatiosbe ity

e ot o e o
s s
feakivnsisepabamint vy
e st s et s
et g
e e o e e
s sy ot b
e b e At g e
A et g e Tt
S TS

D E——

R ——
e g o et

o o)
B

OEBPS/html/images/cc_logo_by_nc_nd.jpg
(@) BY-NC-ND |

OEBPS/html/images/Fig42.jpg

OEBPS/html/images/Fig41.jpg

OEBPS/html/images/Fig40.jpg

OEBPS/html/images/Fig02.jpg

OEBPS/html/images/Fig46.jpg

OEBPS/html/images/Fig01.jpg

OEBPS/html/images/Fig45.jpg
[cwan i
wans N .
.
.
.
——

— ‘ =

OEBPS/html/images/Fig44.jpg
2006-06-07

OEBPS/html/images/Fig43.jpg
®-B-Q

OEBPS/html/images/Fig06.jpg
O3 Vouabe Soarch o

Writers Lawyers
Students = f Designers
e Mlind Mappers i

Modia Producers e —ozNETS

% e

Visual Thinking with MindNode
626

W Moo
Pebicho oniios 27,2017

I s e video, D ks about wht viuslthicking
Shaws how min maps e o Inesr and isua st ke ur inking. And ow e and sasy 1t
10 cruale onder feom clkaos oy Vedesilin yous bicis it MiwdNor.

and who it useul or. He

OEBPS/html/images/Fig05.jpg
ext
HTML
oup. howev SIS
. in these QL
Docx

fubric. and metacognitive Bosiun

ponents proce Mk —

riation of the t

component parts of the

ow might

nverting It to H

ng engine. The

writing techn

e the

ances r piece and vice versa,

OEBPS/html/images/Fig49.jpg

OEBPS/html/images/Fig04.jpg
LX) < Q Searct
| @ e CrangePesrs.
o
G o oions
il open e conron-
{2 Click the lock to make changes. @

OEBPS/html/images/Fig48.jpg

OEBPS/html/images/Fig03.jpg
A

11 Bear Quick Tip - Export panel

When its time to share a note with someone o send it to another app, Bear
has great support for the standard iOS share sheet. But Bear also has some
great, custom export options for when you need something.. different.

1f you tap the (i) button in the top right of any note, the Information panel will
appear. This displays some handy info about your notes~such as a total word
countand estimated read time. At the bottom of this panel is an Export
section with options to turn the current note into a number of file formats:

- TXT
=MD (Markdown)

OEBPS/html/images/Fig47.jpg

