

Twining

{

Twining
◊

Anastasia Salter
and

Stuart Moulthrop
{ }

Amherst College Press
Amherst, Massachusetts

Copyright © 2021 by Anastasia Salter and Stuart Moulthrop
Some rights reserved

Tis work is licensed under the Creative Commons Attribution- NonCommercial 4.0
International License. To view a copy of this license, visit http:// creativecommons .org/
licenses/ by -nc/ 4 .0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

References to internet websites (URLs) were accurate at the time of writing. Neither
the author nor Amherst College Press is responsible for URLs that may have expired
or changed since the manuscript was prepared.

Published in the United States of America by Amherst College Press
Manufactured in the United States of America

DOI: http:// dx .doi .org/ 10 .3998/ mpub .12255695

ISBN 978- 1- 943208- 24- 1 (paper)
ISBN 978- 1- 943208- 25- 8 (OA)

Contents

INTRODUCTION. Why Twine?

CHAPTER T-1.

CHAPTER P-1.

CHAPTER T-2.

CHAPTER P-2.

CHAPTER T-3.

CHAPTER P-3.

CHAPTER T-4.

CHAPTER P-4.

CHAPTER T-5.

CHAPTER P-5.

Twine as Platform 17

From Links to Stories 45

Twine (R)evolutions 77

Variation 101

Twine and the Question of Literature 135

Generation 173

Queer Twine and Camp 205

Too Much Twine 231

Twine and the Critical Moment 261

Conceptual Twining 293

CONCLUSION. Forever Twine 337

APPENDIX I. Interview with Chris Klimas 361

APPENDIX II. Interview with Dan Cox 381

APPENDIX III. Bonus Practical Chapter: Beyond Twine 393

1

Introduction

Why Twine?

In March 2020, classrooms around the world were abruptly shuttered
and life moved online. In an interactive storytelling class at the Univer-
sity of Central Florida (UCF) that semester, we were in the middle of a
unit on interactive fction, working with Twine and discussing strategies
for crafing hypertextual narratives. Twine is a platform for personal
storytelling and individual disruption on an increasingly corporate
web. Te sofware, and the work it enables, is deceptively simple: the
visual interface emphasizes approaching creation through metaphors
of passages and links. Tanks to its combination of educator-friendly
development decisions—the sofware platform is free to use, easy to ac-
cess through a browser without installation, and well documented with
a beginner-friendly learning curve—Twine makes frequent appear-
ances in courses of this kind around the world. However, this associa-
tion might suggest a tool for beginners, to be used and moved beyond.
Twine is more than that—as a platform, it can be the destination as well
as a tool for making the journey to creating interactive works.

We started that class meeting with a round of exquisite corpses (if
you’ll forgive the term): writing story beginnings on paper and folding
away all but the last words and passing them around the room to take
unexpected twists. Te stories took dark turns almost immediately—the

2 TWINING

news was already grim, and Twine didn’t present much of an escape.
Each class meeting opened with an apology for the examples featured.
So many of the most powerful works made in Twine draw us into mo-
ments of despair: Zoë Quinn’s Depression Quest, with its simulation of
the struggles of moving forward with clinical depression; Anna An-
thropy’s Queers in Love at the End of the World, which places the player
in feeting last moments with a lover; Michael Lutz’s vision of horror
and abuse in My Father’s Long, Long Legs—the list goes on and does not
include many of the escapist narratives still inextricably linked to our
expectations of games. In the moment, some of these works became
even more loaded, resonating diferently as we played through our fears.

Tis is not to say Twine is only a tool for making depressing things
or that Twine and hypertext must go hand in hand with crisis, struggle,
and turmoil. However, Twine is a tool that particularly resonates for
those with something personal to say, and Twine’s importance and vis-
ibility on the web have ofen risen correspondingly with confict (there
is more to say about this in chapters T-4 and T-5). At a time when our
technology is increasingly complex, sealed in tiny boxes and inscru-
table to most of its users, Twine is transparent and open. At a time when
our sofware is produced by large teams, with most of the production
members hyperfocused on a project part, Twine allows a single person to
develop an interactive experience holistically, without relying on any
external specialist’s knowledge. Twine is a tool for resisting the domi-
nant interactive storytelling of our times and, as such, tends to be a tool
for chronicling resistance and struggle.

But to return to the classroom the teaching of the theory and prac-
tice of interactive storytelling is an interwoven challenge of competing
histories and terms. To gamers, the history has been written by main-
stream game design companies and with increasingly cinematic visu-
als accompanying lavish environments. To electronic literature authors
and scholars, it is a history told in competing platforms and continually
deprecated tools, pushed to their limits for narrative experiments. To
interactive fction players and authors, it is a history of textual play
and riddles, told in parsers and, sometimes, in hypertexts. Crafing a
course in this area requires navigating these competing histories as well

 INTRODUCTION 3

as students’ own very diferent visions of what interactive storytelling
should become.

Twine doesn’t ft into any one of these histories—it moves freely
among all three. Created by independent sofware developer Chris Kli-
mas and released in 2009, Twine has gone through several iterations
and includes a range of story formats that extend the underlying editor’s
capabilities to allow creators to build a wide variety of stories and other
textual constructions. Te second iteration of Twine, Twine 2, extended
the accessibility of the platform by bringing a browser-based version
of the development tool to users (Klimas). Te things both Twine and
Twine 2 allow users to make are united by their emphasis on choice,
as Twine is at its heart a system for making passages and links that
the user navigates to diferent ends. Tese choice-based systems can in
turn become, in the hands of diferent makers, a platform for making
games, crafing electronic literature, building simulations, document-
ing experiences, or telling interactive fctions. Te resulting range of
works confounds inclusion in the categories of “game” or “story,” a false
binary we will question throughout this work.

To return to our classroom, we were approaching Twine frst through
this lens as a user-friendly tool: at its base, Twine ofers a graphical
framework for making hyperlinked content, most ofen compacted
into a single hypertext markup language (HTML) fle (barring exter-
nal resource fles, such as images and sounds) for easy web distribu-
tion and longevity of access. Twine’s tagline in the GitHub repository,
where the history of the code is embodied in versions and iterations
spanning years, describes it succinctly as “a tool for telling interactive,
nonlinear stories” (Klimas). It is open-source and user-friendly, ofen
recommended to newcomers to interactive making for whom code and
procedural, rules-driven thinking is unfamiliar. In a classroom of stu-
dents from diferent backgrounds, with varying knowledge of program-
ming, Twine can be an equalizer—the quality of the story created has
little to do with expertise in code but instead is driven by the honesty
of the narrative and the crafing of the experience.

Tese are the Twine concepts we were working through to-
gether, ofering players choices but then restricting them to produce

4 TWINING

manageable—and meaningful—narrative play. In that fnal, in-person
meeting, we didn’t know that we wouldn’t be seeing one another for a
long time, that our daily choices would be changing, as the restrictions
and rules under which we operate were abruptly rewritten for public
safety. We didn’t know when we’d see the new fears of public spaces
change—indeed, we still don’t know. Te broader landscape of the
communities making interactive narratives is still shifing to adapt as
I write this. Te Game Developers Conference was canceled, with on-
line talks replacing the largest annual gathering of the games industry.
LudoNarraCon 2020 and NarraScope 2020, two celebrations of narra-
tive video games and interactive fction, respectively, moved online to
streaming video rather than physical gatherings. We will address these
types of gatherings, and their role in shaping Twine and the surround-
ing community, throughout the work—while Twine exists online, such
physical convenings have been a part of building Twine’s infuence.

It is thus no surprise that when the students’ Twine stories were
fnally submitted online, weeks later, many of them dealt with
COVID-19. Te original fnal project for the class was simplifed in
favor of Twine’s spiritual compatriot Bitsy, a graphical, web-based
platform for small games with constrained, pixelated graphics and an
emphasis on exploration and dialogue. Te interactive stories of the
rest of the semester frequently reacted to the moment—students built
games about being confned in a room or dodging viruses in the one-
way aisles of a grocery store; stories captured the claustrophobia of the
home or invited players into social-isolation baking. Stress and fear
and boredom fueled these interactive works, made for the browser,
playable quickly, resonating with one another in exchanges through
the class discussion forums.

One genre that persists in interactive fction—particularly of the
parser variety, where players input combinations of nouns and verbs to
interact with a system, solve puzzles, and progress in a narrative—is the
locked room. (One of our practical examples, Twine Box in chapter P-5,
puts a twist on this theme.) A digital kindred of the physical escape
room, the locked room in adventure games always presents the player
with a variant on the same challenge: to get out. By contrast, the games

 INTRODUCTION 5

that COVID-19 has inspired focus on the internal struggles of staying
in. Within the locked room, players struggle with internalized anxi-
ety, domestic tasks, and monotony. Te threat of the external is ever-
present, but the resistance of temptation and need to leave dominates.
Tis theme recurs in the Twine games posted to events like the “Quar-
antine Game Jam.” G. Deyke and Damon L. Wakes’s Quarantine Quest
entry in the jam (fgure 1) opens with the real and moves quickly into
the surreal, imagining nightmare scenarios and inviting the player to
refect through them (Deyke and Wakes). Games like these emerge in
the moment, without the need for large investments in time or capital,
and with no delay between the moment of completion and release.

Tis is where Twine excels—in the internal, the personal, and the im-
mediate. We could take any large event and fnd similar traces—Twine
games responding to the 2016 election in the US and to Brexit; Twine
jams at the height of the cultural war of Gamergate; Twine games re-
sponding to incidents of police brutality—Twine games as protest, as
documentation, as an emotional response to a moment. Twine is part
of a growing category of tools that focus on allowing rapid procedural

Figure 1: Killing time in the interior space of Quarantine Quest (Deyke and
Wakes)

6 TWINING

creativity, removing barriers of both hardware and knowledge. It also
removes barriers in distribution, allowing for the rapid sharing of
whatever is made, removing gatekeepers and creating an ease of “free”
distribution (in the sense that any online trafcking is free). Twine’s
accessibility for making is key to its impact. Using Twine and Bitsy for
remote coursework allowed us not to worry about the power of any
student’s computer: even students with Chromebooks or long-outdated
machines could still load a web browser on even a limited internet con-
nection and easily make, and play, the works these tools create. Twine
is an ideal tool for this moment in teaching but also for this moment
in living and making.

Defning Twine

When you frst open Twine’s interface to make something, you are pre-
sented frst with a request to name your story, followed by the opening
of the screen to a grid with a single, untitled passage waiting for edit-
ing. Te interface immediately communicates the basic instructions:
placeholder text reading “Double-click this passage to edit it” waits
for a rewrite. Tis opening explicitly recommends a story, but works
produced in Twine go under many names: games, interactive fction,
stories, websites, quizzes, resources, essays, and so forth. Klimas notes
this “confounding” variety as a strength of the platform he hopes only
increases: “I also want it to be even more confounding, that not only can
the world be unable to decide whether things made with Twine are
stories or games, but also whether they’re sprawling commercial mas-
terpieces or intensely personal stories. I want people—not gamers, not
readers, just people—to experience something they love unabashedly
and never realize it was made with Twine” (sub-Q).

Twine doesn’t ofer a blueprint for what these confounding works
might become, but its interface does encourage certain approaches: the
size of a passage box, and the very term passage, encourages creators to
think and work in nodes. Te omission of any fxed structure for the
organization of links allows for any thought to become a connection,
with works emerging as the creator moves from thought to thought.

 INTRODUCTION 7

Passages are easily reorganized and moved, but their position has no
impact on the story structure, ofering authors a fexible design board
for rethinking as they work.

Because it defes such easy categorization, Twine as a platform sits
among many felds of study that we will draw on throughout this vol-
ume. Twine works evoke commentary on literary and aesthetic choices
as well as design elements that center interaction and play. In this book,
we will draw on the disciplines of literature (electronic and otherwise),
flm and media studies, games and sofware studies, and perhaps oth-
ers as needed to make sense of Twine’s infuence. We hope the vari-
ety of our discussion is less “confounding” than thought-provoking or
revealing, but in the words of an old hypertext fction, “there is no
simple way to say” what Twine means to us and the worlds in which
we work—which brings us to another complexity (Joyce). Tis book
contains more than commentary. Meant for active exploration as well as
critical understanding, the book pairs each chapter of refection with
a chapter of practical exercises. Whatever else Twine may be, it is frst
for us a means for making.

However, as we refect on Twine in 2020 in a time of international
social distancing, we are also reminded that Twine’s making is situated.
Twine is continually reimagined in dialogue with cultural forces—and
as a result of its continual usage in resisting the corporate hegemony
of the games industry and the social-media-dominated, commercially
platformized web. Twine encountered a surge of critical attention and
visibility in 2014, at the height of Gamergate, a cultural war driven by
misogyny and a reductive, purist view of gaming that lef no room for
the type of game-making that Twine enables. Tis attention took what
is still a community-driven tool within games and interactive fction
spaces and moved it dramatically into the spotlight in a way that similar
platforms, such as Inform 7, have rarely been centered, forever associat-
ing Twine with the culture wars even as its infuence extends beyond
that moment. Laura Hudson drew the popular gaze to Twine with her
article on the phenomenon in the New York Times, which highlighted
Twine (and Zoë Quinn’s game Depression Quest) as the spark that fueled
the raging confict. Hudson calls Twine “the video-game technology for

8 TWINING

all” and, in doing so, cements Twine’s centrality to alternative, personal
game-making (Hudson). Tis emphasis on Twine’s infuence in games
communities can be viewed as a reaction to the lack of inclusivity in
mainstream gaming spaces, as Carolyn Petit pointed out in her 2013
essay on Twine’s importance: “When games are by the people—by
women and gay people and poor people and the culturally marginal-
ized and kids growing up in Iran and not just primarily by the people
who are paid to make them by companies selling products designed to
appeal to as many customers as possible—they will inevitably be for the
people, too. Twine is a small but important step in this direction” (Petit).

To its developers, Twine is a platform for making hypertextual
things—a platform whose capabilities are continually being extended and
reimagined in light of users’ creative interventions. To its critics and advo-
cates, Twine is a tool for resistance and even revolution—for defance and
reimagining the future of genres of media production that were otherwise
closed and stagnant.

In the introduction to the pivotal Twine-centered collection Vid-
eogames for Humans, merritt k calls Twine the force behind a “quiet
revolution”: “Taken up by nontraditional game authors to describe
distinctly nontraditional subjects—from struggles with depression,
explorations of queer identity, and analyses of the world of modern
sex and dating to visions of breeding crustacean horses in a dystopian
future—the Twine movement to date has created space for those who
have previously been voiceless within games culture to tell their own
stories, as well as to invent new visions outside of traditional channels
of commerce” (merritt k).

Tat collection documents Twine’s revolutionary potential through
the words of many of Twine’s most infuential creators, including Anna
Anthropy, Christine Love, Zoë Quinn, and many others whose work
we encounter here. To call such creative forces “users” of sofware is
reductive—these creators have contributed to the platform, directly and
indirectly, and provided the blueprints of how Twine works can explore
the poetics of choice and its absence.

As scholars, we are admittedly adjacent to this revolution, looking in
at least partly from the outside—and, some might argue, looking down

 INTRODUCTION 9

from the relative privilege and fnancial comfort of the so-called ivory
tower (although in the wake of COVID-19, that same tower’s founda-
tions are shaking, if not collapsing). Tis positionality also impacted our
approach to interviews, and we frequently relied upon existing material
rather than ask for further time and resources from the creators whose
work we engage here. We understand and acknowledge the limitations
(and risks) of the academic gaze. Yet our relationship with Twine is
still personal, and it is this thinking that guides our approach to Twine
throughout the book: the histories we tell acknowledge our relation-
ships with the platform, its creators, and the works herein. Our work
with Twine is entangled with our own histories—this book was written
alongside several years of reading, making, and teaching with Twine.
Te fnal manuscript was submitted during the frst uncertain months
of COVID-19-enforced social distancing, which in turn reshaped our
collective relationship with the web. Scholarship is always driven by
one’s own perspective and position but is not always forthright about
this connection. We argue here that Twine works demand personal and
emotional engagement as well as theoretical and intellectual engage-
ment and that, at times, these lenses are inseparable.

About the Book

Tis book is unlike a lot of academic projects. Its concerns range
from autoethnography to close reading to something like critical
code studies, from the abstractions of Wallace Stevens to the poly-
chrome delights of “trash spinning.” It is both a critical study and a
guide to creative practice. Te mixed nature of the work fows from
our subject, which is both a tool for making and a made thing. Twine
is an unlikely proposition—a sofware platform crafed entirely by
volunteers, some of whom have never met in person, and a world-
wide community of creators who explore and expand the platform. To
understand this phenomenon, we do a kind of history, or tell stories,
primarily about the decade from 2009 to 2019 but with inevitable ref-
erences to earlier moments—and also the present, as current events
are very much with us.

10 TWINING

About that “us”—the book is written in two voices, both of whom
will say “I” on some occasions and may speak of themselves in the third
person, though generally, you will fnd a broadly inclusive “we.” Tough
we wrote this book together in equal measure, we are diferent people,
one a scholar in midcareer, the other an old hand closer to the end. To
compare great with small, it is worth remembering the way Deleuze
and Guattari open A Tousand Plateaus, observing that “since each of
us was several, there was already quite a crowd” (Deleuze and Guattari
3). Like most people loosely aligned with the digital humanities—and
there may be no other way to toe that line—we are by turns creative
and refective. We make things with various tools and platforms and
think about the implications of what we and others have made. In some
cases, the making and the thinking may be hard to tell apart, which is fne.

Above all, this book is a fusion of theory and practice. Tat is why we
called it what we did: Twining, a noun derived from a verb, a name for
an action or activity. Te organization of this book encourages you to
take up Twine’s invitation. Each section alternates between refection and
making. Te treatments of theory (broadly construed) are labeled as T-X
and position Twine as a platform and examine its trajectory of infuence
across cultural forms and domains. Te practical segments, labeled as
P-X, start with the fundamentals of Twine making, then explore diferent
techniques and trajectories drawing upon ideas from the Twine creators
whose work is examined throughout. Each example of practice includes
its source code and thus can be modifed, prodded, and remixed for your
own purposes. Access this source code directly through the project’s
GitHub repository, Twining, at https://github.com/AMSUCF/Twining.

Note that throughout this work, references and URLs are given to
projects that are, like the web itself, unstable. Te reference locations
provided are the last available versions of those resources: in some cases,
they can be accessed via the Wayback Machine, but in other cases, they
are lost to the web. We hope through this work to play a small part in
preserving this important history of contributions through our discus-
sions, citations, and screenshots but acknowledge that even as Twine
will continue to change, even the source code for these examples (and,
indeed, GitHub itself) might eventually disappear.

https://github.com/AMSUCF/Twining

 INTRODUCTION 11

Te narratives and play-centered examples focus on the personal,
literary, expressive potential of Twine, and we hope they provide seeds
for your own making. Troughout, we also point to the resources al-
ready created and shared within the Twine community, such as the
open-source Twine Cookbook (Cox). We cover a few of Twine’s major
technical variations or story formats, generally sticking with the Chap-
book format and others currently popular among makers and writers,
although those trends are subject to change as new voices enter the
authorial sphere. Community resources like the Cookbook and simi-
lar online documents ofer tools for taking your next steps in Twine
making.

In the frst theoretical chapter, T-1, we position Twine as a platform,
looking at the infuence of open-source ethos on development and po-
sitioning it in relationship to other tools both hypertextual and games-
leaning. What makes Twine appeal to marginalized communities in the
forgotten corners of the web, and how is this positioning distinct from
the tools that have preceded it (and will, perhaps inevitably, follow)?
How does Twine’s relationship to code and not-code play an integral
role in its reception and cultural rise? Te practical section similarly
introduces Twine but with a lens toward making, introducing the fun-
damental practices of passages and links and exploring the underlying
assumptions of the code.

Te frst practical chapter, P-1, introduces the interface and operat-
ing framework of Twine, laying out basic concepts and nomenclature.
Each practical chapter works through a series of exercises or projects.
Te series in chapter P-1 explores basic hypertext linking, moving from
linear to multilinear examples, exploring some of the creative and cog-
nitive challenges of linked writing along the way. Te mechanisms in-
troduced are sufcient to create an expressive work in Twine: indeed,
some of the most powerful works created make no use of the more
elaborate mechanisms of code and audiovisual enhancement covered
in the later chapters.

Te second theoretical chapter, T-2, takes an autoethnographical
lens to Twine, unraveling the complexities of thinking of Twine as a
tool for simultaneously making things and challenging culture. Twine

12 TWINING

is intensely personal as a platform—the most lasting and powerful sto-
ries that have emerged from it are ofen raw, vulnerable, and passion-
ate. Our connection to it is similarly personal and grounded in both
our own histories with the web and hypertext and our communities of
practice. We begin by positioning Twine and this relationship, think-
ing through Twine as a tool and using our own lens to get at the “why”
of Twine: Why is Twine signifcant now, in a media landscape where
hypertext has become mundane? In the practical section of chapter
two, we dive into variation, examining Twine’s take on the variable and
looking across the range of Twine’s capabilities.

Te second practical chapter, P-2, addresses the theme of variation
on several levels: the potential for variable text within Twine works,
the multiplicity of styles available to Twine writers, and the variations
of the sofware itself, ranging across story formats and scripting re-
sources. Te examples move beyond simple node-link replacement to
explore techniques in which Twine texts can change either between
readings or as we read them, in response to random selection or reader
choices. Tis chapter includes two projects using Harlowe, a story for-
mat with more robust scripting support.

Te third theory chapter, T-3, takes up the (for some) uncomfort-
able question of how Twine works ft into literary traditions—if at all. It
works through commentaries on two Twine works, John McDaid’s We
Knew the Glass Man (2019) and Porpentine’s With Tose We Love Alive
(2014). Te frst work looks back in irony toward high modernism, in-
voking the ghost of Wallace Stevens. Te second work lives in a more
contemporary world of dark fantasy and the milieu of independent game
creation. Tese works are discussed both as narratives and as technical
achievements, with a detailed examination of parts of their code. To un-
derstand With Tose We Love Alive as a game, it is compared to Valve’s
classic Portal series, another story of mothers, daughters, and dungeons.

Chapter P-3 builds on the concepts of textual variation introduced
in the previous practical chapter to explore the idea of text generation:
assembling readable content by selecting from a set of components ac-
cording to some logical procedure. Te chapter introduces a primary
design pattern, the substitution grammar, which will be used in later

 INTRODUCTION 13

chapters. Tis chapter moves deeper into programming, considering a
more ambitious use of variables in Chapbook as well as the inclusion of
JavaScript code, an especially powerful afordance of this story format.

In chapter T-4, we turn our attention from the text to Twine’s visual
and dynamic aesthetics and the visual play at work in camp works
built in Twine. Positioning this play with color, animation, and throw-
back web elements in relationship to camp, we consider the rise of
Twine as a platform for queer storytelling and resistant play. Trough
an examination of works that have come to defne Twine’s infuence,
we note how the association of Twine with marginalized creators and
the poetics of queer storytelling have shaped the platform. Given the
dominant heteronormativity and transphobia of the wider games dis-
course, we note the importance of queer Twine as a point of departure
and resistance.

Chapter P-4 explores the “too much”-ness of Twine, with projects
exploring ways to add excess through movement, audiovisuals, and ex-
ternal JavaScript libraries such as Kate Compton’s powerful procedural
grammar, Tracery. In these exercises, we explore the practical side of
developing camp Twine and explore the techniques Twine creators have
used to break their players’ expectations of the medium while incorpo-
rating aesthetic playfulness, visual extremes, and novelty.

In the last of the theory chapters, T-5, we bring together the in-
surgent impulses of camp Twine and the claims of literary legacy by
looking at Twine works in a critical moment—both a moment of crisis
(inevitably) and an opportunity for critical intervention or decision.
Te ultimate focus of this chapter is Anna Anthropy’s game of apoca-
lypse, Queers in Love at the End of the World (2013), which we examine
through lenses including queer gaming and game narrative generally,
reading it against Davey Wreden’s art game Te Beginner’s Guide (2015)
as well as other references in various media.

Te fnal practical chapter, P-5, is devoted to projects that move
beyond technique to concept. Its series of examples explore various
ways stories and games made with Twine can call attention to and in-
vestigate their own forms and the nature of stories, games, and language
itself. Using Chapbook exclusively, the chapter covers almost no new

14 TWINING

technical material but is intended instead to consolidate practical un-
derstanding and emphasize the connection between technical exploits
and the development of meaning.

Following the last practical chapter is a conclusion that takes up
skeptical questions about Twine concerning its aesthetics, its creative
community, and its economic basis. Tough acknowledging a mixed
outlook, especially in the last area, the chapter ofers three arguments
for the continued development of Twine, based on the “cognitive
mapping” of platform capitalism, the contribution of computational
creativity to language, and, ultimately, on unabashedly personal invest-
ments in a multigenerational project.

Tree supplementary sections round out the book: an interview con-
ducted with Chris Klimas during our early research, an interview with
Dan Cox, author of the Twine Cookbook and other key resources, and
a bonus practical chapter that bridges Twine techniques to forms of web
coding independent of that platform. While these techniques go beyond
Twine, they demonstrate Twine’s role as part of an ecosystem and its
educational potential as a path to other web development platforms and
approaches.

On a technical note, wherever possible, examples will be updated
in the online edition of this work to refect changing Twine standards.
However, obsolescence is inevitable, and in that spirit, we hope to pro-
vide both the context and the way of thinking for working with Twine
as well as code in the hopes that one of these things will outlive the
other. When preservation is no longer viable, this work will serve as a
record of the Twine that was and hopefully provide some inspiration for
what comes afer. Te future of Twine will likely be more fragmented
than its current iteration—already, diferent story formats within Twine
require diferent syntaxes and focus on more specialized use cases or
ways of thinking about making. Given that, it is important to attend
to the specifcs of the practical chapters and note the formats each ex-
ample is coded to use.

As an open-source platform, Twine refects its creators’ dedication
to making a tool that could be used widely and freely. Tis book is
similarly open access, intended as a gif back to the Twine community.

 INTRODUCTION 15

We particularly hope that in the coming years, as Twine continues to
serve as a platform for sharing and imagining the future, our words will
in some way provide a starting point for new voices.

Finally, we want to express gratitude to a number of people who
have helped us fnish this project. We thank our editor at Amherst
College Press, Beth Bouloukos, and the readers of our frst draf,
who have made the book substantially better, as well as the techni-
cal editorial team from Scribe Inc. for their detailed attention. Noah
Wardrip-Fruin of the University of California, Santa Cruz, gave cru-
cial feedback on parts of the manuscript. Colleagues and graduate
students at UCF and the University of Wisconsin–Milwaukee have
shaped our thinking and tested our code. Dan Cox’s Twine resources
and work, as well as his generosity in engaging with drafs and techni-
cal errors in this volume, have been invaluable. Any remaining errors
are our own. Tank you to all the creative voices refected here—and
particularly to Chris Klimas for Twine itself.

Works Cited
Cox, Dan, ed. “ifechfoundation / twine-cookbook.” 2017. GitHub. Accessed 2019. https://

github.com/ifechfoundation/twine-cookbook.
Deleuze, Gilles, and Félix Guattari. A Tousand Plateaus: Capitalism and Schizophrenia.

Translated by Brian Massumi. University of Minnesota Press, 1987.
Deyke, G., and Damon L. Wakes. “Quarantine Quest.” itch.io, April 2020. https://

gdeyke.itch.io/quarantine-quest.
Hudson, Laura. “Twine, the Video-Game Technology for All.” New York Times, No-

vember 19, 2014. https://www.nytimes.com/2014/11/23/magazine/twine-the-video
-game-technology-for-all.html.

Joyce, Michael. afernoon, a story. Tinker’s Dam Press, 1986.
Klimas, Chris. “klembot / twinejs.” Github, 2019. https://github.com/klembot/twinejs.
merritt k, ed. Videogames for Humans: Twine Authors in Conversation. Instar Books,

2015.
Petit, Carolyn. “Power to the People: Te Text Adventures of Twine.” GameSpot, Janu-

ary 21, 2013. https://www.gamespot.com/articles/power-to-the-people-the-text
-adventures-of-twine/1100-6402665/.

sub-Q. “Developer Interview: Chris Klimas.” August 20, 2015. https://sub-q.com/
developer-interview-chris-klimas/.

https://sub-q.com
https://www.gamespot.com/articles/power-to-the-people-the-text
https://github.com/klembot/twinejs
https://www.nytimes.com/2014/11/23/magazine/twine-the-video
https://github.com/iftechfoundation/twine-cookbook

CHAPTER T-1

Twine as Platform

We have introduced Twine, and indeed, Twine has more widely been
studied, primarily through the works it enables. Tis raises a preliminary
question: What is Twine for, and what do we call the things it makes?
Tis simple question holds the shadow of a much larger history of def-
nitional tension surrounding games and what “counts.” More impor-
tantly, who gets to decide what—and, by extension, who—counts as part
of the discourse of game design? Te shadow of a history of misogyny,
exclusion, racism, labor abuses, and general awfulness in video game
culture looms large over this question. We will wrestle with Twine’s place
(and our own) in this history throughout our study of Twine, and if you
engage in the making of Twine works as our practical chapters invite
you to do, you, too, might fnd yourself facing questions of where your
work fts—and what it should be called.

In academic circles, the desire for defnitional clarity might be un-
derstood through the discourse of formalism or (broadly) the place-
ment and understanding of a work according to its structure. And
formally speaking, Twine works are near immediately recognizable
unless their creators go through signifcant work modifying the fnal
interface: while each story format (a set of rules that overlay Twine’s
central logic) has its signature interface design, the general structure of

18 TWINING

passage-driven, hyperlinked narrative holds. Te two generations of
the Twine editor are fundamentally similar, as the dominant meta-
phors remain consistent, but they difer in the details. Rather like a
branching Twine narrative, the history of Twine and its signifcance
as a platform is a threaded, nonlinear tale, and how we tell it depends
on where we begin in defning Twine works. Tis is no small decision,
so before we make it, let me move toward a defnition that will resist
completion and fnality as we move through this work. Te front page
of www.twinery.org ofers a straightforward summary of the platform
that notably makes no mention of games, a deliberate omission we will
return to shortly:

You don’t need to write any code to create a simple story with Twine,
but you can extend your stories with variables, conditional logic, im-
ages, CSS, and JavaScript when you’re ready.

Twine publishes directly to HTML, so you can post your work
nearly anywhere. Anything you create with it is completely free to use
any way you like, including for commercial purposes.

Twine was originally created by Chris Klimas in 2009 and is now
maintained by a whole bunch of people at several diferent repositories.
(Klimas, “Twine”)

Tis initial defnition suggests that Twine works are, most funda-
mentally, stories. Te reality is more complicated. Twine has been used
recursively as a tool to build tutorials; rhetorically as a tool for argu-
ments and essays; abstractly for poetry and generative art; and edu-
cationally for making materials across disciplines, to name only a few
instances.

More recently, the Twine Cookbook, maintained by Dan Cox,
breaks down these features into usable demos across the many ver-
sions, or formats, of Twine. Te Cookbook notes that the terms used in
Twine are intended to be not limitations but opportunities: “Anything
made using Twine can be called by any name. Tey are no rules on
naming conventions and everything from experimental games to more
traditional novels can be created in Twine. Everything is welcome. In

www.twinery.org

TWINE AS PLATFORM 19

general, the Twine editor calls individual projects Stories” (Cox, “if-
techfoundation / twine-cookbook”).

When we call Twine a sofware platform for the development of
games and interactive stories, we risk being simultaneously reductive
and overgenerous with our description: not all things made with Twine
fall into these easy categories, and as a sofware platform, Twine can
make pretty much any genre of interactive text the user envisions. Te
term sofware platform evokes Lev Manovich’s discussions of the power
of “cultural sofware” in shaping (and allowing users to shape) culture,
from Adobe Photoshop and Flash to Microsof’s Visual Studio (Ma-
novich 3). Within this space, Manovich argues for the need for sof-
ware studies focusing on a range of categories of application: within his
hierarchy, Twine falls perhaps most easily into the category of “media
sofware” or content creation sofware broadly (Manovich 24). It is in
its resemblance to the tools of this category (graphical interface–driven
metaphors of making) rather than the programming-driven category
that Manovich describes as falling outside of this mainstream thanks
to the dividing line of code: “Today, a typical professional graphic de-
signer, flm editor, product designer, architect, music artist—and cer-
tainly a typical person uploading videos to YouTube or adding photos
and video on her/his blog—can neither write nor read sofware code.
(Being able to read and modify HTML markup, or copy already pre-
packaged lines of JavaScript code is very diferent from programming)”
(Manovich 31).

Te dismissal of basic web development as “diferent” from pro-
gramming in Manovich’s parenthetical is notable, particularly as the
book Sofware Takes Command was published in 2013—the same year
public media attention was drawn to Anna Anthropy’s “Twine revolu-
tion,” where she ofered an explanation of Twine’s appeal that similarly
put it in a category separate from programming: “Tis last year . . .
people have really adopted Twine, which is a free tool for making text
games. And aside from being free, it’s really not programming at all—if
you can write a story, you can make a Twine game” (Ellison).

Both Manovich and Anthropy draw a line around programming,
a term that carries with it heavy baggage of gatekeeping and a recent

20 TWINING

history of exclusion (again, the shadow of who counts—and who
owns—the culture of Silicon Valley and its global infuence looms
large). Tey focus their gazes on something else: the type of cultural
sofware that allows anyone to make, presuming some foundational
digital literacy. Tis association of Twine with the absence of program-
ming is, of course, illusory: as you will experience in the practical
chapters, Twine is entangled with code, and the code is at some level
inescapable. “Code” itself has many layers of meaning and nuance:
markup languages such as HTML primarily annotate and structure
content, while scripting languages such as JavaScript center on inter-
activity. Twine adds its own layers over both, but in simplifying, it also
imposes its own new structures and abstractions. While the graphi-
cal user interface (GUI) signifcantly draws the user into hyperlinked
visual making, the passage boxes awaiting content must ultimately be
programmed in that strict rules must be followed to ensure readability
following the procedures of Twine’s underlying machine. Tis contra-
diction is at Twine’s heart: it is a piece of cultural sofware that al-
lows a user to build complex interactivity toward many ends, and it
invites the user into a rabbit hole of complexity where the entryway is
paved with language, not code. As the user moves forward, Manovich’s
dismissal might even be reassuring: this disguised HTML, and precor-
ralled JavaScript, is not programming at all.

Tis allure of Twine is, of course, not true at a fundamental level:
Twine is code, and Twine-making is programming, but its structures
are designed with user experience at the forefront. Te tension be-
tween what Twine makes easy and what Twine makes possible is im-
mense, and as is common to communally supported sofware projects,
the complexity of entry to Twine has risen with its increased versatil-
ity even as the variety of entry points and tutorials available has also
grown, complete with whole texts dedicated to learning Twine: Melissa
Ford’s Writing Interactive Fiction and Anna Anthropy’s Making Games
with Twine. Both of these books are notably aimed at the game develop-
ment community of Twine.

TWINE AS PLATFORM 21

Twine and Games

Tough the defnition of Twine provided on its own website omits the
term games, a history of the platform that begins with usage (or starts
in the tutorials, textbooks, and examples that have gained notoriety)
cannot escape the term games. Tis term is hotly contested, all the more
so as of 2019, as I type these words fve years afer the anniversary of
Gamergate (whose specter haunts Twine and this work). In their pro-
vocatively titled book Real Games, Mia Consalvo and Christopher Paul
examine the contested defnitions of game and its impact on what gets
studied, critiqued, and ultimately preserved: “Game studies academics
are themselves variably interested in what constitutes a real game as a
way to legitimate the feld and defne an area of study. What gets lef out
of structuralist arguments is the value judgment going into labels such
as game or not game. If something is not a game, then it is decidedly less
important from the feld’s perspective” (Consalvo and Paul xxv–xxvi).

In opening this volume, it is tempting to position Twine as a games
platform and to categorize Twine works as games. Developing such a
common framework would give us the language of games studies for
addressing Twine’s value—and critiquing its structures—but more ur-
gently, it would also give us an easy case for Twine’s signifcance. Such
a claim would likely not go uncontested for long: in an entire volume
dedicated to reclaiming and examining cases of “not games” ranging
from Facebook games to walking simulators, Consalvo and Paul do
not mention Twine or even interactive fction. Te “not games” they
identify as edge cases are in many ways closer to gamelike expectations
than Twine works. Tis is not to say there has been no intersection of
this discourse: indeed, there is a fundamental awareness of formalism
embedded in Twine. Twine creators have wrestled with the question of
the platform’s game-ness and, in doing so, give us an entry point into
positioning Twine as a form.

Te extremism with which the word game is regulated inspired the
Twine metawork Is Tis a Game? released by the Game Police in 2013.
Te work asks users humorously to consider the degradation of lan-
guage that might result if the player calls the work in question a game.

22 TWINING

Tis “linguistic singularity” path, if pursued, results in the player faced
only with the word game repeating meaninglessly. Commenting on
the game’s message, critic Steve Haske observed, “Meanwhile, you can
choose to change your mind, rescinding your decision to call this thing
a game. It creates an interesting food-for-thought Catch-22: if you opt
out, then you haven’t just played a game. If you don’t, you may not have
the ‘game’ experience you thought you would (though you can confus-
ingly fnd an inherent design)” (Haske).

Figure 2 captures the rhetorical style of the game (or not game),
which deliberately uses a mostly unmodifed version of the Twine Sug-
arcane style sheet, capturing the aesthetic associated with Twine most
widely at the time. Te game later takes this a step further, demonstrat-
ing how its meaning eventually collapses under the weight of the word
game by literally replacing all other previously displayed text and ofer-
ing only the same word as a choice. While perhaps unsubtle, this work
is very much a product of its time, ofering a playable entry point into
the controversy over whose work counts in the game world.

Tis controversy was not one with merely academic stakes. In the
same year, the literal “game police” of Steam Greenlight were deciding

Figure 2: Is Tis a Game? escalates questions of formalism

TWINE AS PLATFORM 23

whether a Twine game, Depression Quest, could be included on the
game storefront. Being present on Steam opens up a market of op-
portunities for a designer, and Zoë Quinn’s work, tagged by them as
“interactive (non)fction,” would be the subject of hostility and debate.
While the game was released in 2013 and had already been recognized
as a game within independent spaces (including winning Best Narrative
Game at Boston FIG and Ofcial Selection at Indiecade 2013), one of
the most popular discussion threads on the Steam Greenlight page asked,
“Can this be counted as a game?” (Quinn).

Also in 2013, as questions of game-ness were rising around the
independent-developer scene, critic Leigh Alexander ofered a provo-
cation on Twitter in defense of the type of experiences represented by
Depression Quest and other works: “When people say games need objec-
tives in order to be ‘games,’ i wonder why ‘better understanding another
human’ isn’t a valid ‘objective.’ . . . Games need ‘challenges’ and ‘rules,’ isn’t
‘empathy’ a challenge, aren’t preconceptions of normativity a ‘rule’[?]”
(Alexander). Alexander’s tweet was not well received and escalated the
debate as others joined in defending the formalist approach as essential
to drawing lines to defne the object of study.

Designer and critic Raph Koster responded to this provocation with
a blog post entitled “A Letter to Leigh” that, among other critiques of
noninteractivity, asked why the games don’t in turn show more empa-
thy for him as a player: “But I also fnd myself looking to the future,
where I hope the games have empathy for the player, rather than the
other way around, because it is a far harder artistic, and empathic, chal-
lenge to understand an opposing point of view than it is to present one’s
own. I’ll be entertained by a rant I agree with, and angered by a rant I
don’t, but a debate is far more likely to change my mind” (Koster).

Darius Kazemi’s “On Formalism” ofers a playable response to that
letter, taking a quote from Koster and centering it on the screen while
ofering a critique of Twine as a platform through code. It opens unas-
sumingly, presenting as a classic Twine 1.X1 work with the hallmarks of

1 For readers not familiar with this sofware naming convention, 1.X indicates any of
several serialized releases in the frst series of an application (1.1, 1.2.3, 1.999, etc.), 2.X
indicates any release in the second series, and so on.

24 TWINING

SugarCube (a story format for Twine with a side bar and restart button).
Press “click to continue,” however, and the screen breaks free. Te pas-
sage starts to move, and the player’s clicks turn into a weapon gradu-
ally reducing the words to nothing (as shown in fgure 3). When the
game was posted by Porpentine to the Free Indie Games blog in 2013,
it inspired a debate about the defnitions of interactivity and dialogue
(Porpentine, “On Formalism”).

In these critiques, formalism is a stand-in for the larger debate
of where games begin and end—a debate that is used primarily to
exclude and gatekeep—that also asks us to question our relationship
with games and the assumptions that the very term makes us bring
to our interactions with a work. Game designer Robert Yang’s own
blog post in response to Koster’s (entitled, recursively, “A Letter to a
Letter”) further highlights the problematic aspects of Koster’s claim,
which Kazemi’s work makes playable (while resisting “dialogue”): “I do
think that you imply that this inability to separate content from form
is an inherent (formal) weakness of personal games and the ways they
mean things. Tat, because these games can’t ft into a formalist frame,

Figure 3: Te weaponization and transformation of “On Formalism” afer
clicking

TWINE AS PLATFORM 25

they are thus less gamelike. Instead, I’d argue that this is a weakness
of a traditional formalist approach: mechanics are ofen boring / limit
what authors can do with games. . . . ‘Dialogue,’ on an oppressor’s
terms, rarely results in empathy” (Yang).

In labeling something as a game, we might limit it; similarly, in la-
beling something not a game, we potentially exclude it, and its creators,
from the discourse of games and what games might be. Tese challenges
are worth pausing on here, as we operate with an awareness and interest
in Twine’s place as a hypertextual platform but also see the undeniable
signifcance of claiming this platform in the name of games: not just for
what it does for Twine but for what it does for games. It is no coinci-
dence that these defnitional debates accompany the cultural challenges
to Twine, which we will examine in more detail throughout this book.
Given these tensions, I want to stress that in examining Twine as a plat-
form, we are not taking a formalist lens; instead, we want to consider
how Twine’s afordances have played a role in making certain types of
experiments easier. To start with a simple claim, many of the games
and experiences that have been made in Twine center on the personal, and
the platform’s afordances seem to map well to expressions that put the
mechanics of choice—and denial of choice—at the forefront.

In her examination of the framing of Twine as a game platform
alongside these tensions, Alison Harvey notes that the community’s fun-
damental ethos plays a major role in framing the type of work produced:
while many game tools ofer tutorials based on shooting and confict,
Twine collections and tutorials place their emphasis on “a diferent set
of preferred afordances” (Harvey 98). Look at the tutorials for Stencyl,
GameMaker, Unity, and so forth: mechanics of movement, violence, and
acquisition dominate the expressive palette, pushing early designers to
imitate that which is already established (as broadening the vocabulary
of a graphical game is a diferent challenge than empowering verbs in
Twine). Similarly, game designer and Twine luminary Mattie Brice ex-
pressed her thoughts on games as objects in response to these debates:

Tere is much to be said in the way of a game’s form. How is it struc-
tured, and how does that structure make a diference? Let’s say someone

26 TWINING

submits something that doesn’t look like a poem to a poetry contest.
Te judges don’t necessarily go “Tis isn’t a poem, therefore, it is not
worth considering.” Rather, the form itself critiques the established
genre, it says “I’m a poem, and what are you going to do about it?” Te
formal genres in writing are for convenience only—ultimately, the kind
of criticism needed for fash fction, prose poems, short stories, novel-
las, and novels, is ultimately one in [sic] the same. Maybe everything
is really just poetry. Boundaries, bones of old men before us, are only
there to be transgressed. (Brice)

As a platform, Twine inherits this contradiction. It is structurally fa-
miliar and formally suggests so many antecedents that it does not at frst
glance appear transgressive—and yet it transgresses and transforms.

Transforming Hypertext

If we limit the lens of Twine as a platform to games, we ignore the other
spaces that Twine has transformed, including hypertext itself and inter-
active fction more broadly. Drawing on interviews with developers and
community members as well as the embodied history of Twine within
forums, mailing lists, and the code database, we will position Twine as
a communal, open-source project. Positioning Twine alongside other
platforms of the web (including precursors HyperCard, Storyspace, and
Flash) ofers insight into Twine’s signifcance, which is not only a mat-
ter of interface and afordances. We will consider Twine’s positioning
within communities such as Glorious Trainwrecks, Tumblr, itch.io, and
Philome.la and how the circulation and discourse within these spaces
have shaped Twine’s life-span and infuence. Astrid Ensslin and Lyle
Skains observe that Twine’s rise is a rejection of exclusivity and platform
control enabling a “writerly reader,” or “(w)reader”: this “(w)readerly
empowerment through co-creation of narrative meaning cannot be im-
posed through forms, texts, and theories that imply exclusivity of access
and assume that deconstructivist thought can be implemented through
manifest literary materiality. Instead, movements like the Twine com-
munity and participatory social media writing have shown that genuine

https://Philome.la

TWINE AS PLATFORM 27

wreadership has to come from users themselves, driven by the aes-
thetic and social needs of their own communities . . . and the desire to
get published as an experimental creative writer” (Ensslin and Skains).
While Twine is “owned” in a sense—and, with the increased control of
the Interactive Fiction Technology Foundation (IFTF) over its future,
communally owned—it is not a closed or corporate platform, and its
output is entirely open to reverse engineering, making it a purer form
of hypertext in that it fundamentally compiles into open web standards.

Twine is responsive to its moment and the platforms that precede it:
most of the earlier platforms are united by their reliance on proprietary,
corporate-owned technologies. Te web is littered with the unplayable
or occasionally emulated remains of works built on these platforms:
Apple’s HyperCard, perhaps the frst popular hypertext platform, van-
ished as the company shifed direction; Eastgate’s Storyspace supported
hypertext works sold on removable media that are now almost entirely
unplayable; and so forth. Te proprietary ecosystems and walled gar-
dens of currently popular ecosystems for games and electronic litera-
ture, such as iOS and Android, are similarly fraught with demands for
continual updates that, if unmet, render work unplayable. By contrast,
the web’s standards have been relatively reliable. It would be an exag-
geration to say that HTML is still what it once was—open a browser
source of the original HTML and HTML 5 and compare, and the tags
are certainly similar, but the act of translation required is daunting.
Fundamentally, we rely on this backward compatibility: we assume that
all other platforms might fail us, but the web lives on. Te dominant
force in emulation is the Internet Archive: Jason Scott and his team
have made it possible to reexperience many of the works created on
platforms that have fallen by the wayside.

Tere are many visual entry points into hypertext, but most of them
bring with them expectations of a corporate purpose or information
architecture–driven organization system. Adobe Dreamweaver, with
its drag-and-drop interface elements and GUI-driven editor, is in stark
contrast to the playfulness of Flash. Te WordPress interface (and sim-
ilar content management systems) emphasizes a separation between
form and content, ofering modifable themes and blocks of content

28 TWINING

that do not easily lend themselves to narrative. Meanwhile, opening up
an .html fle and starting from scratch can quickly become a logistical
nightmare when it comes to tracking: nonlinear work requires frag-
mentation, and those fragmentations require signifcant marking with
IDs (and tracking of past links) to navigate. In an early refection on
hypertext literacy, “Nonce upon Some Times,” Michael Joyce notes that
the “paradox” of hypertext relies on rereading, and that same rereading
makes development difcult without a dedicated tool for visualizing
the work:

Hypertext fction in some fundamental sense depends upon reread-
ing (or the impossibility of ever truly doing so) for its efects. Yet in a
sufciently complex and richly contingent hypertext it is impossible
to reread even a substantial portion of the possible sequences. Indeed
for any but a reader who has consciously blazed his way through the
thicket (breadcrumbs, in fact, have become a technical term for com-
puter tools designed to keep track of the reading of hypertexts) it is
unlikely that successive readings by a single reader will be in any signif-
cant way alike. Even in less vigorous hypertext systems such as current
instantiations of the World Wide Web, beref of the systematic memory
that shapes possible readings, the linked surfaces of possibility them-
selves compound. (Joyce)

Joyce writes in the earliest stages of hypertext, before the link became
utilitarian and familiar, so transparent as to become unremarkable.
However, he draws our attention to the ways hypertextual linking can
be playful, creative, and confounding, defying the utilitarian future of
the web.

Reconsidering Joyce’s concept of hypertext, and particularly his em-
phasis on defning the link, Emily Short notes, “From the perspective
of more than twenty years later, many of Joyce’s observations feel like
frst pen-and-paper cartographical attempts on a territory that has now
been explored very extensively on foot” (Short). Te type of nuanced
links that Joyce and Short describe were not built into the initial Twine
but evolved thanks to user-developers pushing Twine’s utility forward.

TWINE AS PLATFORM 29

Among those, one of the most signifcant developments is the cycling
link, a structure that allows the user to click and replace a piece of text
repeatedly from a set of options prewritten by the designer. (We retrace
this evolution in the next practical chapter, concentrating on textual
variation.) Porpentine documented the impact of Leon Arnott’s cycling
link macro in a blog post examining Candy Ant Princess, a game by
Whisperbat that makes extensive use of the system to allow the player
to make aesthetic choices that occasionally impact play. As Porpentine
summarizes, this makes the diference between creating passages for
every link and treating links as choices directly, as shown in fgure 4
(Porpentine, “Live Free, Play Hard”).

Tough this will seem an odd observation in a book about Twine,
in many ways, Twine appears unnecessary. It is an interface built on
top of hypertext: everything that can be accomplished in Twine can be
accomplished with HTML and JavaScript, albeit with more difculty.
Tus considered as a platform, Twine is not about the resulting work;
it is entirely about the means of production. At the same time, Twine’s
particular mechanisms (the things that each generation, and each story
format, makes easy) transform the resulting work, with cycling links as

Figure 4: Choosing clothing in Twine 1.X with and without cycling links

30 TWINING

just one example of the expanding vocabulary Twine ofers with each
iteration. Twine’s tools allow creators to create new poetics of the link
and particularly allow someone who might use Twine next to pick
up and expand those poetics with relative ease. Te consistency of the
interface shapes the experience and the player’s expectations for what
a Twine work can be.

Twine’s construction as a tool for facilitating a type of web produc-
tion is far from unique. WYSIWYG (What You See Is What You Get)
web editors have been around for almost as long as websites themselves,
from the built-in tools of community hubs such as GeoCities and Angel-
fre to the unwieldy, mangled-code-generating FrontPage and Dream-
weaver, but without the writerly metaphor that Twine’s story assumption
foregrounds. All this is a roundabout way of saying that what Twine
makes easy is superfcially simple but difcult in practice. Te shortcuts
are not just pragmatic code solutions but also visual navigation, and thus
the most crucial element of Twine for many users is the GUI itself. To re-
call Steven Johnson’s Interface Culture, the link is the center of hypertext,
the frst marker of meaning-making in digital navigation whose current
ubiquity makes us forget its initial impact: “Ask any Web user to recall
what frst lured him into cyberspace; you’re not likely to hear rhapsodic
descriptions of a twirling animated graphic or a thin, distorted sound
clip. No, the eureka moment for most of us came when we frst clicked
on a link, and found ourselves jettisoned across the planet. Te freedom
and immediacy of that movement—shuttling from site to site across
the infosphere, following trails of thought wherever they led us—was
genuinely unlike anything before it” (110).

It is this origin point of the link where we fnd Twine: a realization
of the “freedom and immediacy” of Johnson’s web, built on top of not a
game interface but a hypertextual one that would shape its afordances
and the expectations of its users going forward.

Contextualizing Twee

A short history of Twine starts not with Twine itself but with a script-
ing language called Twee, based on an earlier writing system called

TWINE AS PLATFORM 31

TiddlyWiki, a tool for creating user-modifable hypertexts, or wikis.
Twee lacks the visual interface of Twine but encodes the fundamental
underlying mechanics: it is the scripting language that precedes the
graphical interface. In the interview he gave for this book (appendix I),
Klimas described TiddlyWiki’s self-modifying codex as too limited for
the types of hypertexts he wanted to create—thus he set out to visualize
a better tool, which would become Twee:

I ran across this technology called TiddlyWiki, and it was this really
clever thing where it was this self-modifying Web page. . . . You down-
load it to your computer, you can edit it, it’s like a wiki but there’s no
server component to it at all, and so it’s like a very simple . . . DIY
hypertext. And so I started editing and playing out stuf in there and
experimenting with that medium . . . and it just got very disorienting,
actually, to try to edit it from inside . . . where I’d click links, and follow
them, and it’s like—where am I? And so I’d get lost in my own stuf,
and that was sort of the genesis: I want to build a tool that will help me
do this better. (Klimas, appendix I)

In his oral history of Twee, Dan Cox notes that several derivative
works perform a similar function, using output to bridge to other for-
mats: Cradle, or UnityTwine (2015); Yarn (2015); Tweego (2013); Twee2
(2015); Entweedle (2015); and Entwee (2016); among others (Cox, “An
Oral History of Twee”). Te range of these should not necessarily be
confused with infuence—many of these projects are driven by the
needs of their developers.

TiddlyWiki creator Jeremy Ruston remembers the allure of early
web wikis that inspired his design of the system and particularly the
idea of breaking out a single document model of development, which
in turn would inspire Twee and Twine:

Te allure of the wiki for me was the feeling that it could eventually dis-
rupt the prevailing paradigm of print-oriented documents and emails.

Afer watching people use wikis for a few years, I noticed that power
users made extensive use of the ability to open multiple wiki pages at

32 TWINING

once in several browser tabs, making it easier for them to compare and
review pages, to copy text between them and to act as a sort of queue
of pages yet to be read.

I felt that this ability to manipulate multiple pages at once was cen-
tral to the ability to refactor a wiki, and it is generally accepted that a
wiki that is lovingly refactored tends to be more useful. And yet, stan-
dard wiki user interfaces have always been designed exclusively for the
presentation and manipulation of single pages at once. (Ruston)

Te newest iteration of TiddlyWiki maintains that concept of non-
linear organization, inviting users with the question, “Have you ever
had the feeling that your head is not quite big enough to hold every-
thing you need to remember?” (TiddlyWiki). Tis evokes similar non-
linear tools built around organization, such as Evernote and Microsof
OneNote. Te original Twee website maintained by Klimas in 2005
explains Twee’s origin as emerging from his desire to have a text-driven
interface for working with TiddlyWiki:

Twee is a supersimple markup language for TiddlyWikis. It was in-
vented when Chris spilled water on his laptop’s trackpad, which
knocked it out of commission temporarily, and he still wanted to work
on his TiddlyWiki.

In short, Twee lets you turn plain text fles that look like this:

:: Twee [systemConfig]

Twee is a supersimple [[markup language]] for

~TiddlyWikis.

. . . into living, breathing TiddlyWikis. Right now, it allows you to target
the latest version of TiddlyWiki, TiddlyWiki 1.2.39, Twinkie, and iPods.
It also includes untwee, a tool that converts existing TiddlyWikis to
Twee source code. (Klimas, “Code and Other Oddments”)

Te legacy of the text version comes through in the earliest graphi-
cal iterations of Twine. In Twine 1.X, users were not by default intro-
duced to the concept of incorporating Cascading Style Sheets (CSS)

TWINE AS PLATFORM 33

and JavaScript into their work. Jane Friedhof describes Twine’s origi-
nal user interface as using the “corkboard paradigm,” which essentially
means that Twine ofers the same visual space and freedom as rear-
ranging materials on a corkboard, including ease of movement and the
ability to get a big-picture perspective. She notes, “Tis kind of visual,
spatial practice is relatively rare in the coding world (outside of patch-
ing languages, such as MaxMSP), but it is very similar to the way many
writers plan and organize their stories” (Friedhof).

Te passage interface did not distinguish between, or provide a spe-
cifc space for, adding such code, leaving users to follow tutorials to
incorporate “tagging” to mark special passages for this purpose. Twine
2.X is more elaborate in its initial assumptions and includes by default
a separate style sheet and scripting area, with boilerplate guidance for
incorporating CSS to properly link to the tags and structures of Twine.
Twine 2’s most dramatic innovation is the browser-based editor, which
ofers the next level of accessibility for users unable to install sofware.
Te 2.X editor is still not ideal for use outside of a desktop or laptop
computer (similarly, Twine works are mobile-passable but only mobile-
friendly when intentionally modifed by the designer with the touch-
screen user in mind). Tis shif refects a shif in assumptions about the
use cases for Twine, which have over time fallen more into classroom
usage as well as general interest as an introductory development tool.

Te story formats—or rulesets and paradigms that provide dif-
ferent ways of making in Twine (discussed in more detail in chapter
P-1)—included in Twine 1.X are Jonah, Sugarcane, and Responsive.
Later, SugarCube and Snowman would appear. By far the dominant
story format for designers was Sugarcane (and by extension, Sugar-
Cube): the other two pushed more specifc aesthetics onto users. Te
format called Jonah emphasizes the single page, requiring text that
is designed to stretch and accrete rather than replacing one passage
with another. Twine 2 removes the awkwardness of Twine’s original
distinction between a .tws source fle and the .html output, removing
the need for tracking and preservation of both the Twine editor’s code
and the browser’s readable output. From a preservation standpoint, this
strengthens Twine’s longevity, as the fnal .html is its own complete

34 TWINING

archive. Notably, a tool for reverse engineering .html works in Twine
1.X now exists, which eliminates the need to have the source fle in
order to investigate the complete work. As a platform, Twine is thus
continually expanding outward in the hands of its users. Te Twine 2
Monogatari story format, for instance, allows users to build from the
Twine syntax to create web-friendly visual novels (Pinheiro).

Twine’s Spread

Traditionally, platform studies approaches have examined corporate-
controlled ecosystems, usually regulated by the producer of the hard-
ware or sofware in question (Bogost and Montfort). Open-source
platforms raise diferent questions and simultaneously ofer clearer at-
tribution, thanks to the documentation of contributions on platforms
such as GitHub and murkier ownership and control. Friedhof notes
that the lack of a regulated distribution model is essential to the suc-
cess of Twine’s more queer, erotic, political, and otherwise experimental
titles that would likely not make it past the review standards of most
other platforms (Friedhof). Simply put, most Twine works would
not—could not—exist in the wild without Twine’s self-distributed, eas-
ily spreadable modality.

Te Interactive Fiction Database (IFDB), an archive of digital writ-
ing now sponsored by IFTF, primarily chronicles work by designers who
came in contact with or embraced the term interactive fction for their
work, while the curation blog Free Indie Games—founded by Terry Ca-
vanagh and featuring several developers, including Porpentine—ofers
a counterhistory heavily emphasizing Twine from 2012 to 2014 (Free
Indie Games).

Probing the history of Twine through the IFDB returns a few false
starts: humorously, Anna Anthropy’s Twine iteration of Nintendo Pow-
er’s 1990 feature Dragon Warrior Text Adventure is listed under this date
despite having been published in 2013. Te game is primarily notable
for its nostalgia (Nintendo Power and Anthropy). While this is one of
the more extreme examples of Twine as a preservation/emulation tool,
this trend continues in the second earliest publication noted: the 2006

TWINE AS PLATFORM 35

entry for Escape from the Crazy Place refers to the 2017 version of what
the authors call “a preposterous blob of literary jelly” that has previous
lives in physical text, classic HTML, and the 2006 version in the Text
Adventure Development System (TADS; Guest and Etheridge). Te
work is also an instance of collaborative Twine-writing, as its lead au-
thor describes in the Glorious Trainwrecks post announcing the Twine
version:

Written over 33 years, Escape from the Crazy Place is a sprawling
TWINE game with over 90,000 words of text. It is also an example of
exquisite corpse writing, combining the talents of around twenty dif-
ferent authors. Some wrote just a passage or two, others wrote dozens.

Tis new TWINE version was originally intended to be a
trimmed-down, more polished version of the 2006 TADS 2 version,
but myself and my friends Loz Etheridge and Mark Bailey got a bit
carried away, and somehow or other the 2017 version ended up being
two-and-a-half times the size of the original. Te game will continue
to expand as I intend never to stop adding to it. (Guest)

TADS, originally released in 1988 and last updated in 2006, stands
in contrast to Twine in its code-focused approach that resembles the pro-
gramming language C. It also ofers a diferent, code-grounded vision
than another system ofen mentioned in the same breath as Twine:
Inform 7. Created in 1993 by Graham Nelson, Inform 7 is Twine’s most
popular cousin in the interactive fction arena. Inform 7 boasts the
appeal of “natural language processing correlation between system
and output” that has been noted in early interactive fction platform
studies: Alex Mitchell and Montfort note that both TADS and In-
form, the dominant interactive fction creation platforms as they were
writing in 2009, are driven by sofware objects and that the model
of object-oriented, category-driven programming, in turn, suggests a
“simulationist” approach to design (Mitchell and Montfort). Mitchell
and Montfort draw the term simulationism from the interactive fction
community, defned as “the tendency towards deeper and less abstract
simulation of physical (and possibly emotional) properties of the game

36 TWINING

world, not for limited domains that the author has chosen, but as a
general framework,” with corresponding challenges for development:
“Interactive fction systems already face the problem of generating
human-like text to describe situations arising in games. Te list of
objects in a drawer is generated from the underlying world model. Te
problem with simulationist IF is that this becomes a magnitude more
complicated” (Mitchelhill).

Twine is the antithesis of this model. Originating in JavaScript (a
non-object-oriented programming language that arguably has become
more object-oriented as a result of increased pressures on web inter-
activity), Twine lacks the strict structures and classes of its C-esque
counterparts. While it is possible to build a world model within it that
might be termed simulationist—see our discussion of Porpentine’s With
Tose We Love Alive in chapter T-3—such development is not built
into the system in the way that Inform 7 has responded to the needs of
designers building complex world models.

Other platforms for the creation of interactive fction are more prag-
matic in their approach to potential users, recognizing that a knowledge
of programming is required to progress in developing with their tools.
To return to Inform 7, its system visuals are secondary to text, and the
authoring of natural language follows the most orderly rules of coding:
while the blank page of an open Inform 7 game might look like a Mi-
crosof Word document at frst glance, freedom of writing style exists
only inside the quotation marks that delineate strings. Te rigor of the
language is necessary for Inform 7’s primary metaphors—the designer
must frst create the world and then defne the rules by which the player
might interact with that creation. Tus the structures of basic Inform 7
look like sentences but follow predetermined rules, as in this example:

Te Ofce is a room. Te description of Ofce is “Despite all your best
intentions of cleaning, the ofce is covered in papers, none of them
useful.” Te desk is a supporter in the Ofce. Te laptop is on the desk.

Instead of booting the laptop:
say “The last thing you want to do is see the

state of your emails.”

TWINE AS PLATFORM 37

Note some of the conventions: quotation marks indicate a string,
or a sequence of characters that the language will not attempt to parse
and understand. All the other sentences must be readable to the parser:
words such as description and supporter are defned in Inform and cre-
ate certain properties. Te “instead” rule allows the system to inter-
cept certain verbs and respond—so if the player tries to type “boot
the laptop,” the phrase afer it will appear to discourage them from
continuing down that path of action. Once broken down, the structures
and demands of the language on the writer become apparent immedi-
ately (even before the would-be creator descends into the more clearly
programmatic metaphors of data structures, logic, and event-driven
“scenes” that enable a complex state of play). Mitchell and Montfort
end their analysis of Inform and TADS with a reminder that “it is useful
to consider the less-than-obvious ways in which these systems might
infuence the shaping of stories and worlds” (Mitchell and Montfort).
To extend this argument, I noted that it is necessary to consider the
less-than-obvious ways in which these platforms are reconstructing
game culture.

Te original Twine macros reveal the code intensity behind the ex-
tension of links in the early formatting and syntax of Twine’s vocabulary.
To return to the poetics of the cycling link, the macro was described
in its creator’s introductory post on Glorious Trainwrecks as a simple
enhancement: “Tis simply produces a link whose text cycles between
a number of values whenever you click on it. It otherwise leads no-
where. You can use it as a silly clicky trinket, a cheap alternative to
the <<replace>> macro, or (as detailed below) as an input interface
element” (Twine).

In 2012 (right before Twine’s rise on the scene), Montfort and
Short noted in their examination of the state of interactive fction that
the move to the browser was driving pushes for change in platforms
that typically had ignored and standardized the aesthetics of the user
interface:

Presenting IF in a browser window generates its own new set of player
and author expectations. Typography and text styling has for a long

38 TWINING

time been at best a secondary concern: interpreters on diferent operat-
ing systems present text in diferent ways, in diferent fonts, colors, and
marginal arrangements. Traditionally, the tools used by the IF commu-
nity have ofered the author only limited control over this presentation.
Portability across a large number of platforms (including small-screen
mobile devices and computers being run with a screen reader by blind
players) was ofen considered more important than the ability to craf
a specifc visual experience, and providing an attractive textual surface
was ofen seen as the job of the interpreter creator rather than the au-
thor of a specifc game. (Montfort and Short)

We return to this question of the interface in more detail later in
this work, with chapter T-5’s examination of Twine’s entanglement with
camp aesthetics. However, it is important to note that Twine’s rise as a
competitor to other interactive fction platforms comes from both the
ease of making and the ease of spreading work.

Open-Sourcing Twine

Placing Twine’s history alongside this other most dominant platform
for writing interactive fction, Inform 7, illuminates their important
diferences as well as their fundamental similarities as platforms driven
by their user communities. At NarraScope 2019, the frst conference
hosted by the IFTF, both Klimas and Inform 7 creator Graham Nelson
ofered “state of the platform” talks to audiences of players, developers,
and scholars.

Klimas addressed the past and future of Twine for his audience. Tis
moment was part of a shif in Twine’s history, as Klimas documented
some of the challenges of Twine as well as his hopes for the platform’s
future in the hands of the organization. At the core of his aspiration
is Twine’s commitment to open-source and open-access. Te open-
source nature of Twine has not been without its consequences. In 2018,
Netfix released “Bandersnatch,” a groundbreaking episode of its Black
Mirror series in which suitably equipped viewers could select links to
determine the unfolding of the narrative—an embrace of interactive

TWINE AS PLATFORM 39

video, or hypertext, or choose-your-own-adventure gaming, depend-
ing on perspective. Signifcantly, “Bandersnatch” also involved at least a
glancing encounter with Twine. Te “Bandersnatch” creative team has
acknowledged using Twine, among other applications, in preparing the
treatment (roughly speaking, the prototype) for the project (Rubin).
Creator Charlie Brooker described Twine as the tool that assisted in
his big-picture thinking for the episode: “Every time I had an idea I
put it in a box, and you can move them around. It’s a bit like making a
giant patchwork quilt” (Rubin). In his NarraScope talk, Klimas reports
reaching out to the “Bandersnatch” team but receiving only resound-
ing silence. Tis reaction was probably predictable, given problematic
claims of infuence, authorship, and credit that crop up regularly in
show business. Tere was, for instance, an ongoing lawsuit from the
publisher Chooseco over the use of the choose-your-own-adventure
concept, to which the company claims proprietary rights (Kaminsky).

Setting the “Bandersnatch” story aside, Klimas pointed to similar
uses of Twine as a prototyping tool for professional, proftable en-
deavors ranging from the choose-your-own-adventure graphic novel
Romeo and Juliet by Ryan North to the opening sequence of the game
Firewatch but also pulled up a more stark testament to Twine’s lack of
fnancial support even as he showed this economic potential. (At the
time, the Patreon to support Twine was at less than $800 a month.)
Tis echoed discussions of fnancial realities in narrative games that are
unavoidable: the conference opening keynote included shots of a game
in progress, abandoned for being too expensive to viably complete. Nel-
son, speaking during the Q&A, noted, “I’m not doing anything to help
that,” refecting on the type of ambitious game that the developer works
on and the realities of the limitations of open-source tools: “We’re mak-
ing a really good box,” but “every step you take along that road makes
it harder to get access to what’s outside” (Nelson).

Chris Klimas noted in his discussion at Narrascope that he is aware of
the challenges that arise when the user drawn to Twine by the promise
of no programming seeks more control over the logic of their play and
hits the wall of code and assumptions that go with it. Refecting on the
question, “How do you assist people in getting over that wall?” Klimas

40 TWINING

pointed to his then current work on the story format Chapbook, intro-
duced at the conference. In his initial guide, Klimas planned a section
labeled “Advanced” but expected that it would need a disclaimer: “You’ll
need to understand JavaScript.” (We discuss JavaScript in passing in up-
coming practical chapters and in some depth in chapter P-3, where an
example explores the integration of JavaScript code within Chapbook.)

Tis decision refects a constant tension at the heart of design work
on the platform: the balance of ease of use and capabilities. To again
evoke the spirit of the dearly departed Flash platform, the breakdown
of this balance can cause users to fee to new platforms or encourage
them to never upgrade—many users stuck with old versions of Flash
not just because of fnancial investment but because of the learning
curve that went with each iteration’s signifcant extension of the base
feature set into a more and more algorithmic world. Tis resistance is
also a reminder of the incredible frustration that can await the artist
and writer in a world of ever-changing and proprietary tools; by con-
trast, the open-source tool ofers the hope of consistency or at least the
promise of continued availability.

With that said, our venture into Twine as a platform will not be
without its challenges, and the interface underlies a greater complexity
than you might expect. Chris Klimas noted that even some of the most
fundamental functionality of Twine is more complex for the user than
it might at frst appear: “Plugging images into Twine, which is a really
basic idea, is hard. You have to understand how URLs work. Tere’s
the comfort and the size of the box” (Klimas, “Twine: Past, Present,
Future”). Twine’s “box” of utility is continually growing, from the 2006
Twee with its of-putting lack of graphical interface, to the frst Twine
GUI in 2009, to the 2014 Twine 2, which looked to the web as a work-
around for the frustrations presented by the walled garden of the Apple
Store and Android Market.

Te reach of Twine is also increasing: Twine 2.3.1’s downloadable
version (functional on Windows, Linux, and Mac) has reportedly ex-
ceeded twenty-fve thousand downloads. Te Twine community as of
Klimas’s 2019 report included 3,000 members on a Discord chat and
2,300 on the unofcial subreddit. In his own assessment of Twine’s

TWINE AS PLATFORM 41

reach, Klimas observed three main groups using Twine, all with difer-
ent needs. Creative professionals (mostly game designers) using Twine
as a prototyping tool, from the Netfix “Bandersnatch” team to the writ-
ers of the indie game Firewatch, rarely release those early iterations but
may acknowledge Twine in postmortems on their work. Educators such
as the authors of this book are the second primary user group, with
Twine’s reach extending to classrooms in India and well outside of game
design programs (frequently as an alternative to the traditional paper-
writing research assignments of many disciplines). And of course, f-
nally, Klimas noted the indie creators and the recognition their work
has brought Twine in a range of communities. Tese voices range from
those distributing work on itch.io and Steam to artists exhibiting at the
Whitney Biennial. Klimas observed that reaching (and keeping up with)
this audience presents its own challenges, ofering, self-deprecatingly,
“I’m really not cool, and these people tend to be really cool.”

Te Twine platform was “adopted” as a recognized platform by
the IFTF, a decision driven by the need for maintenance and institu-
tional support. Te Twine committee of the IFTF consists primarily
of the developers responsible for building the story formats and tutori-
als that power the Twine community: Leon Arnott, Tomas Michael
Edwards, Dan Cox, M. C. DeMarco, David “Greyelf ” Tarrant, Colin
Marc (stepped down 2019), and Klimas. Tis team is notably less di-
verse than the set of indie artists we highlight throughout this work,
and tensions between the community and the guiding developers can
be high—as Klimas observed, people frequently blame an imagined
“they” for changes in Twine rather than seeing open-source projects
as authored by dedicated creators donating their time to the project.
Code authorship is visible when discussing an open-source project like
Twine, but in some ways, that leads to less of a sense of creative control.
Te economics of this model are perhaps unsustainable: challenges in-
clude basic fnances, such as paying to become a registered or “signed”
application to enable users to more easily install the Twine platform
on their computers. Other ambitious goals, such as modernizing the
development workfow to add a Twine package manager and collab-
orative tools, are likely out of reach and also raise their own questions:

42 TWINING

If we cannot even easily defne what Twine makes, who should—and
will—decide where Twine goes?

In an inherently decentralized community, there are whole groups
who use Twine but aren’t part of the conversations about the future. Te
same challenges we face defning Twine’s scope also make it difcult
to plan its development road map, which, as Klimas noted, requires
balancing the needs and requests of the experts versus the teachers and
students working with Twine in classroom settings without code expe-
rience, who are thus perhaps less likely to post concerns and issues in
GitHub. Even the decision about where to place resources changes the
platform’s reach. Klimas and collaborators abandoned a plan to move
the Twine support forum to Stack Overfow, a popular website for cod-
ing support, given the emphasis on programming and the conventions
that might be particularly daunting to newcomers. Previous commu-
nity hubs, such as Google Groups and the Twine forums, have run
into problems of spam and moderation, while gamer-favored platforms
such as Discord and Reddit bring in whole new potentials for toxicity.

As we will argue throughout this work, Twine’s in-betweenness is its
strength: it is the source of the platform’s infuence and what makes
Twine relevant in conversations ranging from the future of education to
the unrealized potential of electronic literature to the need to transgress
existing boundaries in games. As cultural sofware, it is itself hyper-
textual, linked into communities that may never themselves intersect.
Its survival and evolution to this point, refusing to diverge toward a
commercial approach, is both admirable and unusual and ultimately
the source of Twine’s revolution.

Works Cited
Alexander, Leigh (@leighalexander). “When people say games need objectives in

order to be ‘games,’ i wonder why ‘better understanding another human’ isn’t a
valid ‘objective.’” Twitter, April 8, 2013. https://twitter.com/leighalexander/status/
321152113021448193.

Bogost, Ian, and Nick Montfort. “Platform Studies: Frequently Questioned Answers.”
Digital Arts and Culture, 2009. http://bogost.com/writing/platform_studies
_frequently_qu_1/.

http://bogost.com/writing/platform_studies
https://twitter.com/leighalexander/status

TWINE AS PLATFORM 43

Brice, Mattie. “Triptychs.” Mattie Brice’s website, April 13, 2013. http://www.mattiebrice
.com/triptychs/.

Consalvo, Mia, and Christopher A. Paul. Real Games: What’s Legitimate and What’s Not
in Contemporary Videogames. MIT Press, 2019.

Cox, Dan, ed. “ifechfoundation / twine-cookbook.” 2017. GitHub, 2019. https://github
.com/ifechfoundation/twine-cookbook.

———. “An Oral History of Twee.” Digital Ephemera, June 8, 2019. https://videlais.com/
2019/06/08/an-oral-history-of-twee/.

Ellison, Cara. “Anna Anthropy and the Twine Revolution.” Guardian, April 10, 2013.
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy
-twine-revolution.

Ensslin, Astrid, and Lyle Skains. “Hypertext: Storyspace to Twine.” In Te Bloomsbury
Handbook of Electronic Literature, edited by Joseph Tabbi, 295–310. Bloomsbury,
2017.

Free Indie Games (blog). “About.” Accessed July 29, 2019. http://www.freeindiegam.es/
about/.

Friedhof, Jane. “Untangling Twine: A Platform Study.” Proceedings of the 2013 DiGRA
International Conference, 2013, 10.

Guest, J. J. “Escape from the Crazy Place.” Glorious Trainwrecks, February 21, 2017.
https://www.glorioustrainwrecks.com/node/6547.

Guest, J. J., and Loz Etheridge. “Escape from the Crazy Place.” Interactive Fiction Data-
base, 2006. https://ifdb.tads.org/viewgame?id=ny5d87fqbeh3pnuz.

Harvey, Alison. “Twine’s Revolution: Democratization, Depoliticization, and the
Queering of Game Design.” GAME 1, no. 3 (2014). https://www.gamejournal.it/
3_harvey/.

Haske, Steve. “‘Is Tis a Game?’ Forces You to Contemplate the Philosophical Defni-
tion of Games.” Complex, June 9, 2013. https://www.complex.com/pop-culture/
2013/06/is-this-a-game-forces-you-to-contemplate-the-philosophical-defnition
-of-games.

Johnson, Steven. Interface Culture: How New Technology Transforms the Way We Create
and Communicate. San Francisco, CA: Harper, 1997.

Joyce, Michael. “Nonce upon Some Times: Rereading Hypertext Fiction.” Modern Fic-
tion Studies 43, no. 3 (1997): 579–97.

Kaminsky, Michelle. “Chooseco, ‘Choose Your Own Adventure’ Trademark Owner,
Sues Netfix over ‘Bandersnatch.’” Forbes, January 14, 2019. https://www.forbes
.com/sites/michellefabio/2019/01/14/chooseco-choose-your-own-adventure
-trademark-owner-sues-netfix-over-bandersnatch/.

Klimas, Chris. “Code and Other Oddments.” Gimcrack’d, March 28, 2006. https://web
.archive.org/web/20060328165735/http://gimcrackd.com/etc/src/.

———. “Twine: Past, Present, Future.” IFTF Narrascope Conference, June 15, 2019. https://
2019.narrascope.org/pages/schedule.html.

———. “Twine Is an Open-Source Tool for Telling Interactive, Nonlinear Stories.”
Twinery.org, 2019. https://twinery.org/.

https://twinery.org
https://Twinery.org
https://2019.narrascope.org/pages/schedule.html
https://archive.org/web/20060328165735/http://gimcrackd.com/etc/src
https://web
https://www.forbes
https://www.complex.com/pop-culture
https://www.gamejournal.it
https://ifdb.tads.org/viewgame?id=ny5d87fqbeh3pnuz
https://www.glorioustrainwrecks.com/node/6547
http://www.freeindiegam.es
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy
https://videlais.com
https://github
http://www.mattiebrice

44 TWINING

Koster, Raph. “A Letter to Leigh.” Raph Koster’s website, April 9, 2013. https://www
.raphkoster.com/2013/04/09/a-letter-to-leigh/.

Manovich, Lev. Sofware Takes Command. Bloomsbury, 2013.
Mitchelhill, James. “Simulationism and IF (Long).” Google Groups, October 1, 2005.

https://groups.google.com/forum/#!msg/rec.arts.int-fiction/o-Y2qK8_KLE/
Qrwmdv0L5k4J.

Mitchell, Alex, and Nick Montfort. “Shaping Stories and Building Worlds on Interac-
tive Fiction Platforms.” eScholarship, December 2009. https://escholarship.org/uc/
item/6pk7s4n6.

Montfort, Nick, and Emily Short. “Interactive Fiction Communities: From Preservation
through Promotion and Beyond.” Dichtung Digital 41 (September 2012). http://
www.dichtung-digital.org/2012/41/montfort-short/montfort-short.html#10.

Nelson, Graham. “Opening Inform.” IFTF Narrascope Conference, June 15, 2019.
http://emshort.com/narrascope/talk.html.

Nintendo Power, and Anna Anthropy. “Dragon Warrior Text Adventure—Details.”
Interactive Fiction Database, August 2, 2013. https://ifdb.tads.org/viewgame?id=
vbs1pvv73c2p18i2.

Pinheiro, Haroldo de Oliveira. “haroldo-ok / twine-monogatari.” GitHub, 2019. https://
github.com/haroldo-ok/twine-monogatari.

Porpentine. “Live Free, Play Hard: Te Week’s Finest Free Indie Games.” Rock Paper
Shotgun, April 28, 2013. https://www.rockpapershotgun.com/2013/04/28/live-free
-play-hard-the-weeks-fnest-free-indie-games-26/.

———. “On Formalism (Darius Kazemi).” Free Indie Games (blog), April 25, 2013.
http://www.freeindiegam.es/2013/04/on-formalism-darius-kazemi/.

Quinn, Zoë. “Steam Greenlight: Depression Quest.” Steam, December 4, 2013. https://
steamcommunity.com/sharedfles/fledetails/?id=200770535.

Rubin, Peter. “How the Surprise New Interactive Black Mirror Came Together.” Wired,
December 28, 2018. https://www.wired.com/story/black-mirror-bandersnatch
-interactive-episode/.

Ruston, Jeremy. “History of TiddlyWiki.” TiddlyWiki, September 23, 2014. https://
tiddlywiki.com/static/History%2520of%2520TiddlyWiki.html.

Short, Emily. “Links and Structures from Michael Joyce to Twine.” Emily Short’s Inter-
active Storytelling (blog), July 27, 2019. https://emshort.blog/2019/07/27/michael
-joyce-on-hypertext-links/.

TiddlyWiki. Accessed December 20, 2018. https://tiddlywiki.com/.
Twine, Leon. “Twine Macro: << Cyclinglink >>.” Glorious Trainwrecks, January 28,

2013. https://www.glorioustrainwrecks.com/node/5020.
Yang, Robert. “A Letter to a Letter.” Radiator (blog), April 10, 2013. https://www.blog

.radiator.debacle.us/2013/04/a-letter-to-letter.html.

https://www.blog
https://www.glorioustrainwrecks.com/node/5020
https://tiddlywiki.com
https://emshort.blog/2019/07/27/michael
https://www.wired.com/story/black-mirror-bandersnatch
http://www.freeindiegam.es/2013/04/on-formalism-darius-kazemi
https://www.rockpapershotgun.com/2013/04/28/live-free
https://github.com/haroldo-ok/twine-monogatari
https://ifdb.tads.org/viewgame?id
http://emshort.com/narrascope/talk.html
www.dichtung-digital.org/2012/41/montfort-short/montfort-short.html#10
https://escholarship.org/uc
https://groups.google.com/forum/#!msg/rec.arts.int-fiction/o-Y2qK8_KLE
https://raphkoster.com/2013/04/09/a-letter-to-leigh
https://www

CHAPTER P-1

From Links to Stories

◊ Twining is not simply a how-to book, so the step-by-step ex-
amples in this chapter are accompanied by comments designed

to put practical learning in context. If for some reason you’re

more interested in the instructions alone, you’ll find each action

item set like this paragraph, boxed and marked with a special
character. We’ll use this convention for all the practical chapters.

Supporting materials for this chapter can be found online at
https://github.com/AMSUCF/Twining. For most of our examples, you’ll
fnd two documents: a web page (.html), which is the fnished version of
the project, plus a plain text fle (.txt) containing all the code we discuss.
In projects with multiple pieces (or “passages,” as you’ll shortly learn to
call them), we’ve indicated the passage to which the code belongs.

We’re providing these resources as an invitation to tinker, play, and
remix. Tere are two ways to make our code your own. Te Twine 2 ap-
plication allows you to import any published Twine fle you fnd as a web
page. Te procedure is discussed later in this chapter. You can import any

https://github.com/AMSUCF/Twining

46 TWINING

of our examples and see all the structure and code. On the other hand, if
you want to work through our examples step-by-step, you may want to
copy and paste from the text fles to save yourself a lot of tedious typing.

Getting Ready to Write

You can access Twine via the web at www.twinery.org. Tere are two
options: download a local copy or use the program online. We recom-
mend downloading and installing if you can. Te online version is fne
for beginners, but it limits more advanced work (involving external
fles, for instance). Also, somewhat confusingly, the stories you build
using the online tool are accessible only in the browser and computer
you built them from. Tey are not stored on a server and the link can-
not be shared, which can be problematic for newcomers.

Twine is available from Twinery at no charge, with versions for
Windows (32- and 64-bit), Mac OS, and Linux. Installation is straight-
forward: download and run the appropriate installer. Twine will set up
necessary fles and permissions. You’ll fnd a new folder named “Twine”
in your Documents directory, where data fles associated with your
various Twine projects (called “stories” by default) will reside. An icon
for the Twine application will appear in your list of programs and in the
appropriate system folder where applications are stored.

On rare occasions, things don’t go so smoothly. Depending on how your
system is confgured, you may encounter pushback from antivirus sofware.
You might, for instance, see a warning about a supposed vulnerability called
“WS.Reputation.1.” Appearances to the contrary, this is not the name of
a malicious virus code lurking in the Twine installer. “WS.Reputation.1”
is a designation applied by makers of antivirus sofware to programs that
serve small or niche audiences. Such programs, they imply, aren’t circulated
widely enough to have a reliable reputation. Tere are usually straightfor-
ward ways around any obstacles your antivirus sofware presents. At worst,
you might have to open a quarantine folder, click on the Twine installer, and
give it an exemption. You should only have to do this once.

We considered not mentioning antivirus problems. Most peo-
ple will never run into them. If you do, you should feel safe using

www.twinery.org

FROM LINKS TO STORIES 47

installers downloaded from Twinery. Te Twine developers under-
stand the risks of malicious sofware and maintain their code respon-
sibly. It is at least ironic, and not a little insulting, to question their
reputation. We tell this story because it highlights Twine’s identity
and ethos. You pay nothing for Twine—though you should consider
making a contribution for its support. Te program is nonpropri-
etary, open-source sofware, supported and advanced by expert vol-
unteers and a community of users. Twine belongs to a culture sharply
diferent from that of giant corporations with hundreds of millions
of sales. While you can use Twine for all sorts of things—journalism,
education, research, and so on—it is designed for one basic task:
telling complex, interesting stories. Te rest of this chapter will help
you get started with that.

Interface and Controls

Launch the Twine application by clicking on its icon. Since the installer
may not place the icon on your desktop, you may need to look for it in
the appropriate Applications folder on your system. Afer launching,
you should see something like this:

Figure 5: Twine library view

48 TWINING

You’re looking at a Twine library. Tis one has contents, but yours
will contain no stories if you have done a fresh installation. Te larger
panel on the lef will include a visual representation or thumbnail for
each story you create. You can sort this collection in various ways. Each
thumbnail is a square containing one or more circles. Te circles stand
for the subdivisions or passages in your story. Tey are arranged in a
way that roughly imitates their layout in the Twine structure editor.
(More about both passages and structure is just ahead.) Tumbnails can
be helpful if you are trying to fnd a specifc Twine story in a crowded
library, but they are impressionistic.

To the right of the library panel, you’ll see a stack of operators, or
function buttons. Te most important of these is the prominent green
button labeled “+ Story.” You’ll use this operator to begin a new story.
Next in the stack is “Import from File,” which is a way to fnd and im-
port existing Twine stories that may be located outside of your Twine
folder. Tis function will be useful later in your Twine career, especially
if you change computers or collaborate with other writers.

Below the import operator is “Archive,” a function that creates a
copy of your entire current library. You should use this tool early and
ofen. Don’t worry too much about storage space, unless your system
is unusually constrained. Today’s storage devices are designed with
graphics and video in mind, and in many cases, Twine stories, which
are mostly made up of words, take up only a tiny share of available
space. Feel free to archive as ofen as you like. Remember to use a sen-
sible naming convention for the resulting fles.

Below “Archive” is the “Formats” operator, which shows all the story
formats available in your Twine application. Story formats are pre-
sentational interfaces for Twine stories. Interfaces probably need less
of an explanation today than they did in the last century. You’re prob-
ably familiar with the way web pages can change as you view them
on diferent devices and browsers. In efect, browsers and devices are
interfaces. Te contents of the web page exist in a fle that various inter-
faces process for display. Something similar happens with Twine. Your
story contents go into an output fle, which Twine processes using a
designated story format to determine what appears on the user’s screen.

FROM LINKS TO STORIES 49

You are not required to choose a story format. Te default format
for Twine at this writing is Harlowe. A newer format called Chapbook
will install as an inactive alternative. Chapbook is a simple, readable
scheme designed to help people use Twine without encountering too
much complexity—though it is quite good at supporting more ad-
vanced techniques. In our opinion, Chapbook provides excellent ways
to move from simple to more ambitious creative uses. Te material
covered in the present chapter is the same for both formats, though we
will rely largely on Chapbook in later practical chapters. Switching to
Chapbook and making it your default story format is quite easy. We’ll
discuss it in the next practical chapter.

Te “Formats” operator ofers a choice of formats built into the
Twine application. At this writing, that set includes Chapbook, Har-
lowe, and two even earlier formats, Snowman and SugarCube. You
can fnd documentation and projects using these schemes online.
Because Twine is an open-source application based on the core tech-
nologies of the web, anyone who wants to can build improvements
and ofer them to the world. Sofware never sleeps. Te “Formats”
operator allows you to add new formats as they are developed. Many
Twine users do this seldom or never. At some point, though, a re-
markably elegant and useful new format may give you the itch to
switch.

Below “Formats” is an operator called “Language,” which lets you lo-
calize Twine to any of thirteen national languages. Below this is a “Help”
operator, which takes you to the wiki at Twinery. Continuing down the
screen, afer a small gap, we fnd two buttons marked by a representation
of the sun (lef) and moon (right). Tese buttons toggle the background
and text colors used in any story format. In the dark theme, which is ac-
tive by default, words appear in a light color against a dark background.
Te light theme reverses this arrangement. Te choice of theme is largely
a matter of preference. Some fnd the dark theme more dramatic, maybe
suited to dystopian or gothic moods. Tose less aesthetically inclined
may fnd the dark theme hard to read in low light, preferring dark text
against a bright background. Tis setup has worked pretty well for books,
afer all.

50 TWINING

Tere are two text indicators at the very bottom of the stack. One
identifes the version of Twine you are using, with a link to the credit
screen for that build. Note—and please use—the included link for do-
nations. Like public radio and TV, Twine depends on a combination of
pride, love, and guilt. Every donation helps. Te fnal item is a link to a
bug-reporting channel, should you encounter anything in Twine that
seems clearly dysfunctional. Use this link by all means—bug reports help
everyone—but always ask yourself if the trouble could have been caused
by some mistake in your use of Twine rather than the program itself.

Twine is nowhere near as complicated in its interface as some com-
mercial products we use regularly, but it does have more than one
menu of functions. We’ve just discussed the one that appears at the top
level of the library view. Another will show up afer you have opened
a story fle. You can access this menu by clicking on the name of your
story, which appears at the lower lef of your screen, or on the black tri-
angle that may be visible next to your story name. (Longer story names
make the triangle invisible.) When you unfold this menu, you will see
nine options. We’ll only discuss the last two, “View Proofng Copy” and
“Publish to File.” In fact, we’ll defer “Publish to File” to the end of this
chapter. “View Proofng Copy” produces a very useful printout of your
story with the contents of each passage, including the script elements
we will describe in later chapters. We’re not quite sure how the passages
are sorted in this report, possibly from graph position or order of crea-
tion, but they’re all included, and each is set of by a dotted line. Tis
draf view can be of great help if your story has very many passages or
if you’ve lost your way in the process of composing.

Key Terms

Before we start doing things with Twine, we need to defne some basic
terms. A story is a Twine work, indicated in the library by a title and
thumbnail. It is interesting to think of possible alternatives to this
word. Te strongest tension, of course, is between story and game, as
we discuss in the theory chapters, but we could also consider other
metaphors for branching texts. Labyrinths? Mazes? Webs? Weaves?

FROM LINKS TO STORIES 51

However, story is the word Klimas chose because Twine is frst and
foremost a storytelling tool. You may take this term loosely and think
of your work as a news or feature story, or the kind of instructional
story used in teaching, or the unfolding story-of-play that belongs to
games, but everything tends to be some kind of story.

As we have seen in chapter T-1, Twine has a story of its own. Twine’s
relationship to earlier hypertext systems is complicated but close
enough for some comparisons. Hypertext programs generally adopt a
scheme called a directed graph—typically, a stylized tree made of boxes
and lines—in which the reader’s attention is meant to move from one
division or node to another. Adapting this idea to literature, George P.
Landow, the frst theorist and rhetorician of hypertext, renamed nodes
as lexias, deriving the term from the French literary theorist Roland
Barthes, in whose work Landow found a conceptual basis for hypertext
(Landow 2–3). Like early hypertext itself, the term lexia was eventually
eclipsed by other usages, such as page, post, and tweet.

In many ways, Klimas’s term for a textual unit, passage, represents
a second coming of the lexia. A passage is a discrete body of material
that may contain words, still or moving images, and sound cues. Pas-
sages are displayed one by one as a reader moves through a Twine story.
(We don’t yet know of a Twine story format that displays more than
one passage at a time, or a good reason for building one, but never say
never.) You can put as much or as little information into a passage as
you like. Twine passages tend to be relatively terse, though some writ-
ers put multiple paragraphs into their passages. Long before Twine, the
frst hypertext writers faced a similar aesthetic problem: Why put a lot
of text into a lexia if the point is to replace it with something else? A
famous early hypertext paper contrasted “holy scrollers,” who preferred
longer, unbroken texts, to “card sharks,” who thought the contents of
a lexia should ft the dimensions of a fle card (Halasz 838). Tough
the sharks still dominate, both traditions are still with us, ofen within
single works. As Twine writers like Porpentine and Anna Anthropy
show, varying the length of passages can be highly efective. Tere are
no absolute rules about passage length. If you need a long passage, write
one. Scroll if you want to—but don’t consider it mandatory.

52 TWINING

Te last of our three crucial terms is link, the active aspect of any
directed-graph system. We’ll begin our practical work with Twine by
describing how to make links, but before we get there, we need to ex-
plain what links essentially are. Links have become an invisible part
of everyday life in the internet age. You use one kind of link, the type
described by Hypertext Transport Protocol, or HTTP, every time you
move from one web page to another—but what exactly are you doing?

Te World Wide Web has led us to identify links with words or
phrases set of in special colors or images that invite a click or tap. Tis
sense comes into play every time we say something like “Go to the main
Twinery page and follow the third link on the lef.” Such expressions
may be inevitable, but they’re also inaccurate. Visual traces are only one
aspect of hypertext linking. We could also describe a link in terms of its
underlying code—in, for instance, HTML:

Get your Twine
here!

If we keep in mind the infrastructure that underlies any visible
trace of a hypertext link, we begin to understand that links are, like
all programming code, hyperlinguistic (Galloway 165). Tey are si-
multaneously meaningful in more than one mode. Te HTML anchor
tag (<A> . . .) usually surrounds some readable text. Tat text
is ofen meaningful as part of a sentence. Te anchor tag itself has
meaning as a bit of web coding, and that code in turn is signifcant
to another piece of sofware, a browser application, which converts
it into an expression in machine language. When your computer re-
ceives this machine instruction, it retrieves and displays the indicated
information.

Links are more than just markers on a screen. In the most complete
sense, a link is a transition—an action or event—associated with mul-
tiple signatures or traces: the immediate words of the text, to which
the link is anchored; the underlying code that specifes what the link
will do; and a third aspect that we have not yet explored, which we will
discuss in greater detail later in this chapter.

FROM LINKS TO STORIES 53

Figure 6: Two passages connected by a link

In terms of the hypertext graph, which we will call structure, the
link is represented by a line with an arrow at one or both ends, show-
ing the possibility of transition from one passage to another. Hypertext
systems do not always display graph structure—consider the World
Wide Web—but graphical mapping can be very important in building
complex narratives like hypertexts and games.

To summarize, when we say link, we may refer to any or all these
aspects:

1. Some anchoring text or image
2. Underlying sofware code
3. A representation in the story’s structure map
4. An action, typically replacing one passage with another

Te most important item in this list is the last. As the poet and de-
signer Johanna Drucker says, digital writing is always “more event than
entity” (Drucker 31). Te point of a hypertext or other kind of digital
fction is that it allows things to happen, ofen in response to choices by
a reader/player. In a sense, all language—certainly all storytelling—is a
happening of some sort. In Twine and systems like it, this active aspect

54 TWINING

of the text is particularly central. Tis distinction will be important as
we shif our conception from literary texts to games, which must be
actively played.

Example 1.1: A Simple, Circular Story

Action requires planning. Stories need to be written, and digital stories
have to be designed or structured as well. You’ll eventually divide your
time between the words of your story and its logical layout, but every-
thing begins at that primary, verbal level—what you choose to say—so
let’s start there.

◊ Launch Twine if you haven’t already.
A dialogue box will open asking for a title. You can call this

story anything you like, though we recommend calling it The
Ostrich. Click that green button on the right labeled “+ Story.”
At the title prompt, enter “The Ostrich.”

Here’s what your screen should look like—a view into the Twine
structure editor:

Figure 7: Beginning a new story

FROM LINKS TO STORIES 55

Te background of the structure editor is a grid system with two
scales, or rules, bold and fne. Tese lines are just a visual convenience
for people who like to line things up neatly. Tey don’t afect the func-
tion or underlying code of your story. Within this grid is “Untitled
Passage.” Below the title, you can faintly see the message “Double-click
this passage to edit it”—which is a bit like the label on that bottle Alice
fnds in Wonderland—Drink me. Who could resist?

◊ Double-click the untitled passage.

When you double-click the passage, the structure editor is replaced
by the passage editor, which is a specialized text processor. It looks like
this:

Figure 8: Passage afer opening

Here’s where we’ll begin writing, but frst have a look at the elements
that sit above the editing window. Te frst is a title bar. Every passage
needs a title, preferably a unique title, for reasons that will become ap-
parent shortly. (In fact, you can give two passages the same name in
Twine, but this is a bad idea unless you know what you are doing.)

56 TWINING

Below the title bar is a space where you can add tags to your passage.
Tags are further ways of identifying the passage and can be used to sort,
group, and otherwise process them. If the main title is a tag’s given name
(“Chris”), a tag might be its family name (“Klimas”). So if our Chris pas-
sage has relations, they might all be tagged as Klimases. Tere are other
ways to use tags, including in more sophisticated, code-intensive opera-
tions, but this is a starter example, so we won’t add any tags.

◊ Type “the last thing” into the title area.

Now that we know what we’re writing, let’s get ready to enter some
text. As you’ll see, there’s a small twist to negotiate here, but we can
begin sensibly enough by blanking out the existing text before adding
our own.

◊ Select (drag over) the phrase “Double-click this passage to

open it,” then press “Delete” on your keyboard.

You might expect this operation to yield a nice, blank writing area.
It doesn’t. Out of their desire to make their program superfriendly,
Twine’s developers have decided to display a page of hints every time
you begin editing. Tis quick reference includes directions about for-
matting text, working with special symbols, making links—the subject
to which we are coming—and some advanced topics. Tis is all very
useful information, though we wonder if you really need to see it every
time you start to write. Go ahead and erase these notes before entering
your own text—and don’t worry, you can fnd all this information on
the Twine wiki by clicking the “Help” button.

◊ Place your cursor to the right of the bullet (•) in the text editing

area. Type any character.

Te helpful page disappears, and you have a blank space in which
to write. Well, almost blank—for some reason, that bullet character re-
mains. Don’t worry, though, it won’t appear when your text is displayed.

FROM LINKS TO STORIES 57

◊ In the writing space, enter the following text:

. . . on this of all mornings, the last thing
anyone wants to see is an ostrich.

Tis text is a recommendation, not a requirement. Feel free to write
other words as you move through this example. Just be sure to put in
links where they are specifed. We’re coming to those.

◊ Click on the “X” at the top right of the editing window.

Te editing window will close, returning you to the structure editor,
where you should see a passage named “the last thing,” with the sen-
tence you just typed visible inside the square. In the upper lef corner
of the square, you should see a small, circular icon in green and white.
Tis icon, which looks to some people like a rocket ship, marks the pas-
sage from which play will begin.

With only one passage, we don’t have anything like a real Twine
story or a hypertext yet. Te magic begins with a second passage. We’re
going to add one now. You might expect to repeat the process we used
to create our frst passage, and in fact, you could do so—but if we use
that method, we’ll miss an elegant and charming aspect of Twine.

◊ Double-click your passage. In the text editor, add a pair of
square brackets on either side of the word ostrich, making your
text look like this:

. . . on this of all mornings, the last thing
anyone wants to see is an [[ostrich]].

Use right and lef square brackets—the keys to the right of the
letter P on your keyboard—not parentheses or curly braces. Twine
looks for these specifc characters and won’t recognize substitutes.
Also, if you are following closely, you’ll put the period outside of
the right set of brackets. Tere’s no great harm if you get that detail

58 TWINING

wrong. (In later examples, however, precise punctuation may matter
quite a bit.)

◊ Click the “X” to close this passage . . . and behold!

Treasure this moment. It’s your frst step into hypertext. It is also
your frst experience of a very beautiful thing: Twine automatically
creating a new passage to complete a link. Most people take this little
transaction for granted, but some early hypertext systems did not in-
clude this feature. Te World Wide Web makes no attempt at all to
manage structure. For these reasons, Twine’s automatic link creation
makes an old hypertext writer smile. It’s a sweet hack. More important,
creating passages automatically makes building complex structures a
fuid, coherent process, giving a major boost to creativity.

If you look at the structure editor now, you’ll see two passages
(boxes), with a curved, arrowheaded line between them. Structurally
speaking, you now have the beginnings of a genuine Twine story.

◊ Double-click on the “ostrich” passage to edit its text. Set your
cursor to the left of the first line and type the following:

But here it is, maybe slightly larger than
life, in the middle of your Auntie Integer's
sunroom. A flightless bird with eyes the size of
[[gumballs]].

As you may guess, typing those double brackets around the word
gumballs automatically links the “ostrich” passage to a third passage
called “gumballs.”

◊ Return to the structure view; open this new, blank passage;
and enter a third paragraph:

Once, for an entire week between the ages of
two and two-point-one, your entire vocabulary

FROM LINKS TO STORIES 59

consisted of the word "gumball," which became the

name of every person and object as well as
the lone verb in your dramatic revision of the
human language. Now, somehow, the occurrence of
this word makes you vaguely [[uncomfortable]].

If you do this right, you’ll summon up a third link to a fourth pas-
sage, which is automatically titled “uncomfortable.”

◊ Open that passage and enter a last chunk of text:

"!!!" says the ostrich, also apparently
unsettled.

But you speak Human, not Ostrich. You take a
step closer.

"!!!," the ostrich reasserts.

You carefully blink each of your eyes in
succession, an old trick for stabilizing
realities. It is unmistakably an ostrich;

Tis time we didn’t end with an automatic link. Tat’s because we’re
going to join this fourth passage back to the frst one—ironically called
“the last thing.” Doing this will let us demonstrate a second powerful
technique for making links in Twine.

◊ At the end of your text in the current passage, following the
semicolon, add the following text:

[[and . . .->the last thing]]

Here you see a second way to define a link in Twine: by adding
the symbol -> (a two-character rendering of an arrow) plus the name

60 TWINING

of an existing passage. Links made in this way can run anywhere you
like, not just from new to newer but into and among existing passages
as well. Te name of the destination passage (“the last thing”) must be
spelled exactly as it appears in the structure graph, and unlike destina-
tions in HTML links, it is not placed in quotation marks.

Our frst story, Te Ostrich, is now complete. Properly assembled, it
forms a simple loop. To see how the loop works in practice, we’ll need
to play it through.

Playing through the Story

Twine provides two main ways of checking the operation of a story,
each associated with a button you will see to the lef of the “+ Passage”
button. Moving from right to lef, the frst of these is “Play.” To its lef
is “Test.” Te “Play” button shows the story pretty much exactly as it
will appear to your reader. “Test” adds debugging tools, which become
useful as you begin building more ambitious things.

◊ Click the “Play” button.

You should fnd yourself looking at the text you wrote in the frst
passage, called “the last thing.” If you are using the Harlowe story for-
mat (still the default at this writing) and did not change from dark to
light themes, the letters will be light-on-dark. If you have switched
to Chapbook, you’ll see something resembling a printed page. Te fnal
word of the passage, ostrich, should appear in a style that indicates the
starting point of a link: blue in Harlowe or underlined in red for Chap-
book. If any of these details are wrong, click the “X” in the upper right
corner of the window to return to the structure view. Reopen the prob-
lematic passage and check what you wrote.

Suppose you found a mistyped character in the third of our four
passages (“gumball”). Afer you make the correction, you can press the
“Play” button again and move through the story from the frst passage.
With only four passages, this is just mildly annoying, but once your

FROM LINKS TO STORIES 61

stories stretch to dozens of passages, you won’t want to return to the
top. Fortunately, Twine allows you to make any passage the start of
the story. Let’s make “gumball” the beginning.

◊ Return to structure view if you are not there already. Hover
over the “gumball” passage. A row of buttons appears. Slide

your cursor down and to the right, then click once on the button

marked with three dots (. . .). A menu appears. Choose the first
option, “Start Story Here.”

Te “gumball” passage now has the green rocket ship, indicating
that it is the start of the story. If you use the “Play” or “Test” buttons
now, you’ll automatically begin with “gumball.” Resetting your start
passage can be essential in building longer stories—but be careful. If
you change the start passage for editing purposes, remember to change
it back. When you export or publish your Twine story, whatever pas-
sage is currently marked as the start will become the entry point. If
you send out a story and readers complain that it seems to start in the
middle, that might be because you forgot to reset the start passage.
(With hypertext, though, you can always say you wanted things that
way.)

◊ Use the “Start Story” procedure to set “the last thing” as the
start passage again. Then play through the entire story, fol-
lowing the single link at the end of each passage. Visit all four
passages and make sure the final link takes you back to “the
last thing.”

Our Ostrich story shows one legitimate use of Twine, but not the
best or most interesting. Te Ostrich has only one reading sequence.
Even if we move the start point, the reader will always follow the same
path around the loop. Every passage has only one exit, leading inevita-
bly to the next. Te Ostrich is the sort of story we might fnd on printed
pages, which is fne, but Twine can do more than imitate print.

62 TWINING

It is tempting to say this story is not a hypertext, but that claim could
be controversial. Teodor Holm Nelson, who invented the term, in-
sisted that “hypertext is the most general form of writing” (Nelson 3/2).
According to Nelson, writing in fxed succession—the paragraphs of a
newspaper story, for instance—artifcially limits language. Even without
computers, writing tends toward multiple arrangements or sequences.
You can open a book to any page you like. To return to newspapers or
web pages, think of the way your eye might drif from one story to an
item in another column or space, then back again. For Nelson, multiple
sequences are the natural order; linear chains, like our Ostrich story,
bury their heads in constraint, ignoring other possibilities.

What happens if we explore those possibilities? Doing so would
lead us away from the conventions of single-stream media (books,
flm, video) in the direction of other things, including hypertexts and
computer games. Tis turn has obvious creative consequences, but
it can also be a technical matter. We can measure how hypertextual
a story is in terms of link density, the ratio of passages to links. Te
Ostrich has a link density of 1.0, with exactly one link per passage.
Other values are possible. Consider a story with fve passages and a
total of seven links among them. Tat story has a link density of 5 to
7, or 1.4. We might say that a true hypertext should have a link density
greater than 1. We might also say that link density will generally fall
somewhere between 1.0 and 2.0—which may seem strange, consider-
ing there is no formal constraint on the number of links you can put
into a passage. However, not all constraints are formal. Consider the
following example.

Example 1.2: Overfow

◊ Start a new story in Twine. Name it Overflow. Create a new
passage, title it “Overflow,” and type in the following text:

Let me make one thing perfectly clear: I am
in no way responsible for whoever or whatever
devoured the sun.

FROM LINKS TO STORIES 63

◊ Type double square brackets around each word in the sen-
tence. (You can either include or exclude the colon and period,
as you like.) You should end up with something like this:

[[Let]] [[me]] [[make]] [[one]] [[thing]]
[[perfectly]] [[clear:]] [[I]] [[am]] [[in]]
[[no]] [[way]] [[responsible]] [[for]]
[[whoever]] [[or]] [[whatever]] [[devoured]]
[[the]] [[sun.]]

◊ When you are finished typing, click the “X” in the upper right
corner to return to structure view. Consider the results.

Twine will happily anchor a link on every word in a sentence or every
word in a passage. You could even . . .

[[l]][[i]][[n]][[k]] [[e]][[v]][[e]][[r]][[y]]
[[c]][[h]][[a]][[r]][[a]][[c]][[t]][[e]][[r]]

. . . if you were entirely mad. Of course, Twine will generate a desti-
nation passage for everything you link. In the case of Overfow, we end
up with a total of twenty-one passages—the original plus twenty pos-
sible successors. Tink for a moment about the time it will take to write
unique text for each of those twenty passages (as we’ve actually done in
the completed version in the digital version of this book). Now consider
writing at least one outward link from each of those passages. And what if
every successor passage needed more than one link out? Before you knew
it, you’d have a completely unmanageable project. One early hypertext
writer, Shelley Jackson, encountered this problem while working on her
celebrated fction Patchwork Girl in 1995. She began by making links at
will, starting threads and branches that expanded in all directions. Afer a
while, she found the proliferation of links downright monstrous. In a later
interview, she called the resulting structure map a “Brillo pad” of tangled
lines. So much for the frst draf. “I erased all the links,” she said. Ten
she started over with a more careful approach (Jackson).

64 TWINING

Link explosions can be troublesome. Yet strangely, there are at least
two important digital fctions in which each word in every lexia behaves
like a link: Michael Joyce’s afernoon (1990; the frst thing called a hy-
pertext fction) and Judd Morrissey and Lori Talley’s Te Jew’s Daughter
(2000). In the Twine era, Porpentine’s Howling Dogs contains at least
one passage in which every word is linked. How did these writers man-
age to avoid the Brillo pad of madness?

If every link system implies a conceptual tree or bush, the answer
to explosive growth is simple: cut back the excess. Trim judiciously.
Tink topiary gardens, not jungles. Let’s consider a more sensible
example.

Example 1.3: The Reign of the Two Doors

◊ Start a new story called The Reign of the Two Doors (holding
nose for pun). Enter the following text in a new passage also
called “The Reign of the Two Doors”:

You find yourself in the two-door universe. It
was slightly less expensive than the three- or
four-door models and all we could afford.

◊ Below the text you just entered, enter the following:

[[Go through the left door->Not Right]]

[[Go through the right door]]

Before going on, let’s introduce a useful Chapbook feature designed
especially for the kind of story we’re telling here. It’s called a fork. A
fork is a visual device for presenting a small set, usually a pair of links.
If you’re using Harlowe, don’t worry—the fork is convenient but not
essential.

FROM LINKS TO STORIES 65

◊ Add a greater-than sign, or right angle bracket, before each
link, like so:

>[[Go through the left door->Not Right]]

>[[Go through the right door]]

Te angle bracket notation creates the fork. Its visual efect is sub-
tle but pleasing: a fne line appears between the two links. Te online
Chapbook guide (https://klembot.github.io/chapbook/guide/) pro-
vides advanced information about restyling the appearance of forks.
You can include this efect or not, depending on your taste.

As you can see, this story is written in an idiom many Twine fc-
tions share with parser-based interactive fctions and the kind of
multipath novel usually called “choose your own adventure.” Te
reader/player is addressed in the second person. For scene-setting,
we use the present progressive tense. Link anchors, which substitute
for command-line typing in interactive fction, use the imperative
mood and describe some action—in this case, movement through
space carried out by the reader/player’s persona.

Each of our twin links uses one of the main linking styles avail-
able in Twine. Te lefward exit names a specifc destination passage
that, since it does not previously exist, will now be created. Te
rightward link calls into being a passage named for its anchoring
text.

Looking at the structure graph, you’ll see that we have two fresh pas-
sages to deal with: “Not Right” and “Go through the right door.” Let’s
handle the second of these (“Not Right”) frst:

◊ Open the passage called “Not Right” and enter the following
text:

You find yourself in the Place of No Winning. It
is a simple room with, of course, two doors.

https://klembot.github.io/chapbook/guide

66 TWINING

[[The Init Door->The Reign of the Two Doors]]

[[The Exit Door->The Reign of the Two Doors]]

Te point here is that both doors from this passage lead back to the
start point, closing a loop. Tere are two doors because this is a two-
door universe. If you’d prefer one, that’s fne. Te reference to winning
(or its opposite) is a matter of judgment. Maybe the player wants to stay
in the loop. Who are we to say?

◊ Open the passage called “Go through the right door” and

enter the following text:

Advancing boldly through the dexterior portal,
you find yourself in another version of the same
stupid room. Someone is trying to make a point,
you suppose.

[[Left! Maybe it will work this time->Not
Right]]

[[Right!]]

For the record, dexterior is not an actual word, though maybe it
should be. By now, you should grasp the general design of this story:
there are two links (or doors) from every passage. So far, at least, one
of them always leads to the so-called fail passage, locking the player into
the loop. However, there is a bit more to the story.

◊ Return to structure by closing the current passage. Open the
new passage called “Right!” and type the following text:

Right. Always take the door on the right. You
get it now.

FROM LINKS TO STORIES 67

[[Always right->The Reign of the Two Doors]]

[[Left Behind]]

In this passage, we do the perhaps all-too-predictable thing, ca-
priciously breaking the lef/right pattern. Te frst link leads back to
the beginning, while the second, lef-hand door leads on. Tis is an
entirely voluntary decision, of course. You could be kinder to your
player/reader and avoid such perversity. When it comes to link pat-
terns, the rules are up to you.

◊ Return to structure. Open the new passage called “Left
Behind” and type the following text:

Moving at last through the door the writer
apparently doesn't want you to take, you begin
to float above the confines of the labyrinth,
leaving fools behind.

Rise up, you lovely winner.

Players of Davey Wreden’s metagame, Te Stanley Parable, will recog-
nize the two-door controversy (Wreden, Stanley Parable). Tis rising-
up business is an abject steal from Wreden’s next ofering, Te Beginner’s
Guide, which we’ll address in the conclusion of this book, even though
it is not a Twine work. Te player’s upward motion expresses a univer-
sal fgure or trope. Given a loop or labyrinth, there are three possible
actions: make your way to the center, fnd some way out, or rise above
the whole thing. It is no coincidence that we fnd ourselves referring to
a video game and reaching beyond the realm of hypertext fction (and
indeed Twine). Te current generation of Twine creators think of them-
selves as game developers as well as storytellers, and they occupy the
same social and economic space as independent game developers. As
we’ll see in chapter T-2, they’re part of the conficts that come with that

68 TWINING

contested space. Many Twine stories are explicitly designed as games,
with rules, consequential decisions, winning and losing outcomes, and
even scoring systems. Porpentine’s Ultra Business Tycoon III (Porpen-
tine, Ultra Business Tycoon III) and Seth Alter’s RocketJump-ifcation
(Alter) are excellent examples.

For some, Twine works belong entirely within the game world. Oth-
ers see Twine works as hypertexts encompassed within a larger group
of creative products called cybertexts. Tat term was coined many years
ago by Espen Aarseth, who went on the become one of the found-
ing theorists of computer games. Cybertexts include games but also
any other undertaking without a fxed sequence of presentation, where
“non-trivial efort” is required to experience the work (Aarseth 2).
Tere’s much more to say about Twine stories and games both here
and in the chapters that follow, but for the moment, there’s more to say
about our example, both as story and as hypertext.

Te Reign of the Two Doors has a respectably hypertextual link den-
sity of 2.0: there are two ways out of every passage. Yet it requires no
more than six passages, since, in fve of those passages, only one link
runs to a nonexisting passage, expanding the structure. (In the “Not
Right” passage, both links bend back to the beginning.) You can build
as many links as you want, provided many or most do not expand your
inventory of passages. Tis is the technique used by both Porpentine
in Howling Dogs (Porpentine, Howling Dogs) and Joyce in afernoon
(Joyce). In the former, the overlinked passage presents a feld of linked
words that mainly go to the same place, except for the one that doesn’t.
Joyce uses a diferent but similar technique in which a few words in
each lexia will “yield” a connection to a specifc other lexia (Joyce).
Every other word in the lexia is implicitly linked to a default destina-
tion. Tis design was made possible by a clever feature of Storyspace
(Bolter, Joyce, and Smith), the early hypertext system for which afer-
noon served as the test fle.

Te third example mentioned earlier, Te Jew’s Daughter (Morrissey
and Talley), arrives at universal link coverage very diferently. In Mor-
rissey and Talley’s story, which is, in fact, less a hypertext fction than
an example of digital text generation, clicking any word on the current

FROM LINKS TO STORIES 69

screen feeds the word to a program that composes a new passage be-
ginning with that word. Tis revolutionary technique goes beyond pre-
defned passages and links, but you may want to keep it in mind even
so. Because it ofers access to programming resources like JavaScript,
Twine allows you to work with dynamic, variable, and even logically
generated text. Tese are more advanced subjects, so we reserve them
for later chapters, beginning with P-3.

Our Reign of the Two Doors example shows that it’s possible, even
with basic tools, to manage links and story structures, avoiding explosive
overload. Links and linking strategies take a wide variety of forms. Te
Reign of the Two Doors shows what we might call navigational linking,
tied to the movement of a virtual character or point of view through a
described space. A close cousin of this approach is procedural linking,
where the anchoring text describes an action involving the persona: “You
shut the door”; “Te ostrich says nothing”; “Te Twinebot emits another
burst of story,” and so on. Also quite popular is conversational linking,
where the anchors are options for responsive speech. For instance,

The high commissioner shoots you an arctic stare
and says, "Twine. Really?" You answer:

[["It is the way among my people."->Way]]

[["Who said anything about Twine?"->No Way]]

[["Hey, is that an ostrich?!"->Way Out]]

All these linking strategies—navigational, procedural, and
conversational—share a common feature of composition. Tey divide
the visible space of the passage into two parts: an upper section that
advances the story and a lower part that contains the link anchors (per-
haps set of as a fork). We could say the upper part is defnitive or
diegetic, reporting what happens or has happened in the world of the
fction, while the lower portion is hypothetical, consisting of lan-
guage still in play. We’ll call this arrangement a bifold construction.

Te alternative, which we’ll call a unifed construction, brings the
links directly into the diegetic text. Here is a thumbnail example:

70 TWINING

Every morning, [[the old man->Hubert]]
comes to search our [[trash bins]]. He is
impeccably dressed and obviously from the
[[Ministry->Darkness]].

As you can see, this passage consists only of narration—strictly
speaking, the direct report of an unidentifed narrator. Tere is no
second-person address and no reader/player persona. Tere are link
anchors, but they ft into the diegesis instead of pulling away from it, as
is ofen the case in the bifold scheme. Tese features give the example a
stronger resemblance to conventional literary fction than to interactive
fction or choose your own adventures. Te unifed or in-line treatment
of links was a signature of early hypertext fction, whose writers some-
times set themselves (perhaps regrettably) against the older interactive
fction tradition of parser-based games.

Very roughly speaking, bifold construction accentuates the game-
like qualities of Twine stories, while the unifed approach plays to liter-
ary interests; but this distinction can never be absolute. In the 1980s
and ’90s, some hypertext writers said of their work, “Tis is not a game”
(see McDaid). In the following decades, however, stories and games
inevitably converged. In a later hypertext from the web era, one of us
revised the claim, declaring, “Tis is not not a game” (Moulthrop). To-
day’s Twine writers dispense with single and double negatives alike.
Klimas’s use of “story” notwithstanding, many Twine creators call their
products games and even “videogames,” as in merritt k’s groundbreak-
ing and essential anthology, Videogames for Humans (merritt k).

However controversial the claim to game identity may be, it will not
go away. Twine stories can be games, and Twine games tell stories. One
interest or the other may dominate, but both will be present. In fact,
many Twine writers exploit this dynamic, alternating the two types of
construction, writing some passages in the double-decked way and oth-
ers with the all-in-one pattern. Two of the most impressive Twine sto-
ries, Porpentine’s With Tose We Love Alive and Howling Dogs, display
this strategy. Know and consider your options. Nothing requires you
to address a player persona (the eponymous “you”). Likewise, no law

FROM LINKS TO STORIES 71

says that Twine stories have to imitate print fction. At its best, Twine
allows us to explore the spaces between those alternatives, refning a
new art form as we go.

Example 1.4: Don’t Think of an Elephant

Here’s a fourth example exploring what can happen if you let your links
mingle with the rest of the text.

◊ Start a new Twine story. Title it Don’t Think of an Elephant.

◊ Add a new passage. Title it “Don’t Even Think.” In this passage,
type the following:

At dawn, the [[Elephant Men->Elephant]] will
come for your skull. But meanwhile, as Uncle Jed
always told you, [[the night]] is as long as you
want it to be.

Just, you know, don't think. You know. Of it.

◊ Close the text editor and return to the structure editor. You
should see two links running from your first passage—one to
a new passage called “Elephant” and the other to “the night.”

◊ Open the “Elephant” passage and enter the following text:

Hyperintelligent pachydermatoids from an
exoplanet we haven't found yet are here to
avenge humanity's crimes against the elephants.
Evidently, they will be satisfied with just one
trophy. That would be you.

Why they chose you remains a mystery, though
it could have something to do with the illegal

72 TWINING

safari they caught you on. And that elephant gun
with the smoke coming out of it.

The senior Elephant Man asks if you have any
[[last words]].

Yes, this is one of those tales about exoplanetary pachydermatoids.
Tis story also appears to have a link density of 2, like another example
we might recall. If this story follows the earlier pattern, we might expect
it to have two tracks: one leading to happiness and the other, otherwise.
Let’s fnish the darker destiny frst.

◊ Open the passage called “last words” and enter the

following:

Evidently, you don't.

Tere are no links from this passage. It is in every sense a dead end.
With the less fortunate outcome covered, let’s see what lies along the
other track.

◊ Return to the structure editor and find the passage titled “the
night.” Open it and enter the following:

As, for instance, that first night in the
Algarve, when Georges-Marie said, "La, but it is
[[so big->Elephant]]!"

Meaning the room, or the bed, possibly. But you
[[flattered]] yourself.

◊ Back to structure. Two links, as always, one already pointing
conveniently back to “Elephant.” The other runs to a new pas-
sage called “flattered.” Open that one and enter this text:

FROM LINKS TO STORIES 73

"Not the [[Hermes->Elephant]]," Georges-Marie
objects. "It flatters not the slightest. Goes
immediately into wrinkles. And the gray does
nothing for you."

This was on the night train to St. Petersburg.
You remember the cocktails with prices in
Korean, the waiters in their tricorn hats, the
endless fields of [[elephant grass]].

As in Te Reign of the Two Doors, we’re throwing some curves. Te
general rule here is to avoid any word or phrase that makes us think of
an elephant—references to things of a large scale or a gray and baggy
suit. But now there’s this link to “elephant grass.” Remember, in Two
Doors, this was where we challenged the player/reader to win by revers-
ing logic. Tink we’ll do the same now?

◊ Open the passage titled “elephant grass” and enter the

following:

Oh dear. You meant to say
"[[potatoes->Elephant]]."

[[Oops->Elephant]].

Sometimes Twine stories are simply cruel. Save the elephants.
With a couple of exceptions—the additional passage on the way

out and the tragi-farcical ending—this story is structurally identi-
cal to The Reign of the Two Doors. Instead of explicitly revealing
the logic of its links, however, this story works by implication and
association—as language tends to do, especially literary language.
Perhaps this difference represents a step away from the idiom of
games, at least games of a certain kind. But we could as easily say that
it connects logical play with wordplay. That might be a promising

74 TWINING

match, at least in stories more graceful and sophisticated than
this one.

Exporting and Sharing Twine Stories

One last detail needs attention before we fnish with the basics: how
to make your Twine story available to friends, strangers, editors, and
teachers. Tere are many options for circulating a story, but before you
can circulate, you must frst export your work. Tis requirement applies
even if you are using the online version of Twine. Stories you build online
are accessible only using the current browser and computer: they are
stored locally to your computer. If you send the web address (URL) of
an online Twine story, recipients will not be able to view it, as the mate-
rial is not stored online.

◊ In the structure editor, look at the bottom left area of the win-
dow. You should see an icon that resembles a house. Click this
icon to return to your library. In the library, find the thumbnail
that represents the story you wish to export. Next to the title
and time stamp for each thumbnail, you’ll see an icon that looks

like a gear wheel. Click this icon to reveal a menu. The third item

in this menu is “Publish to File.” Select that item.

At this point, your operating system will go into its usual fle-saving
routine, asking you where you want the results to be stored. Pay close
attention. In Windows and Mac OS, saved fles usually default to a
Documents folder. Be sure you know how to fnd that folder. When
in doubt, change the destination to the desktop, where items are im-
mediately visible.

Click the “Save” button in the fle-saving dialogue to complete the
process. Twine now creates a single fle containing your story plus
everything a web browser needs to display it. Tis fle is saved as a web
page, with the fle extension .html.

Why a web page? you may ask. Why doesn’t Twine use binary
code or some arcane, proprietary format? Like the World Wide Web

FROM LINKS TO STORIES 75

and HTML, Twine is noncommercial, open-source sofware. It uses
free, accessible resources. For all its limitations, HTML/HTTP is for
most of us the most convenient hypertext platform available. Ex-
porting Twine stories as web pages means they can be uploaded to a
web server and displayed either remotely or locally in virtually any
browser.

Te other advantage of HTML is accessibility of code, for those
who are motivated and prepared to read it. Te fle format for every
web page is plain text, which can be read by built-in text processors
such as Notepad (Windows) and SimpleText (Mac OS). You do need
to know what you’re looking at, which in the case of Twine stories is
not just basic HTML but also quite a bit of JavaScript. JavaScript is an
auxiliary coding language (or scripting language) developed to extend
the function of web browsers. Much of the magic of Twine depends on
JavaScript.

If you are not a programmer, you don’t need to concern yourself
with any of the underlying code for your story. All you need to know
is that Twine pages require JavaScript to function, so your server and
browser must be confgured to allow for this. We’ve encountered at least
one academic course management system that prohibits script-enabled
web pages. Hopefully, that won’t happen to you. Talk to your teachers
or your system administrator if it does. If the prohibition has no excep-
tions, there are work-arounds.

With export complete, you are ready to show your fle to others. Te
simplest way to do this is via email, again provided your email system
allows you to send web pages as attachments. Any browser application
can read a web page immediately without going through a server. All
your friends and teachers need to do is download the attachment and
open it as a local fle.

If you want a wider world to experience your work, you can upload
your HTML fle to a web server. Tere are plenty of free web hosts (Wix,
Weebly, etc.). Many schools ofer server access for students. Always
remember that information shared on the web can be seen by nearly
anyone in the world, so don’t include sensitive details, names of private
persons, or other things that violate common sense. You might also

76 TWINING

want to think about the audience you have in mind for your Twine
story. If the story contains material that might disturb or trigger some
people or might be inappropriate for young children, include a dis-
claimer at the beginning.

Works Cited
Aarseth, Espen J. Cybertext: Perspectives on Ergodic Literature. Johns Hopkins Press,

1991.
Alter, Seth. RocketJump-ifcation. Subaltern Games, 2013. Accessed June 6, 2020. https://

subalterngames.itch.io/rocketjumpifcation.
Bolter, Jay David, Michael Joyce, and John B. Smith. Storyspace [hypertext system sof-

ware]. Eastgate Systems, 1990.
Drucker, Johanna. What Is? Nine Epistemological Essays. Cuneiform Press, 2013.
Galloway, Alexander. Protocol. MIT Press, 2004.
Halasz, Frank. “Refections on Notecards: Seven Issues for the Next Generation of Hy-

permedia Systems.” Communications of the ACM 31, no. 7 (1988): 836–52.
Jackson, Shelley. “Interview Part 5: Tinking outside the Screen.” In Pathfnders, edited

by Dene Grigar and Stuart Moulthrop. Nouspace Press, 2015. https://scalar.usc.edu/
works/pathfnders/shelley-jackson.

Joyce, Michael. afernoon, a story. Eastgate Systems, 1990.
Landow, George P. Hypertext 2.0. Johns Hopkins University Press, 2006.
McDaid, John G. Uncle Buddy’s Phantom Funhouse [hypermedia novel]. Eastgate Sys-

tems, 1993.
merritt k, ed. Videogames for Humans: Twine Authors in Conversation. Instar Books,

2015.
Morrissey, Judd, and Lori Talley. Te Jew’s Daughter. Self-published, 2000. http://www

.thejewsdaughter.com/.
Moulthrop, Stuart. “Reagan Library.” Little Magazine [CD-ROM edition], 1999.
Nelson, Teodor H. Computer Lib/Dream Machines. Microsof Press, 1987.
Porpentine. Howling Dogs. Alien Dovecote, 2012. http://slimedaughter.com/games/

twine/howlingdogs/.
———. Ultra Business Tycoon III. Alien Dovecote, 2013. http://slimedaughter.com/

games/twine/tycoon/.
———. With Tose We Love Alive. Alien Dovecote, 2014. http://slimedaughter.com/games/

twine/wtwla/.
Wreden, Davey. Te Beginner’s Guide. Everything Unlimited, 2015.
———. Te Stanley Parable. Galactic Café, 2011.

http://slimedaughter.com/games
http://slimedaughter.com
http://slimedaughter.com/games
https://thejewsdaughter.com
http://www
https://scalar.usc.edu

CHAPTER T-2

Twine (R)evolutions

Works built in Twine hearken back to early electronic literature, evok-
ing HyperCard and Eastgate hypertext fctions, but their relationship
with these established digital forms is not straightforward (as we’ll dis-
cuss further in chapter T-3). Te reception and defnition of Twine as a
platform recalls the many debates of defnitions surrounding electronic
literature. Works in Twine have been included in interactive fction
competitions, displayed at independent games festivals, and built as
part of interactive story jams. However, despite Twine’s link to hyper-
text fction, it has not been as visible in the electronic literature commu-
nity. In an interview in Guardian, designer and writer Anna Anthropy
has called attention to the works in Twine as part of a “revolution,”
noting that they ofer a solution to some of the dehumanizing aspects
of mainstream games: “I think that what I want to see more of in games
is the personal—games that speak to me as a human being, that are
relatable, which is the opposite of the big publisher games that I see.
People who are creating personal games aren’t hundred-person teams,
they are people working at home, making games with free sofware of
their own experiences” (Ellison). Key Twine works evoking this per-
sonal literary construct include Nora Last’s Here’s Your Rape, Finny’s
At the Bonfre, Anna Anthropy’s Escape from the Lesbian Gaze, and

78 TWINING

Zoë Quinn, Patrick Lindsey, and Isaac Schankler’s Depression Quest.
We examine these works (and many others) as part of “Twining”—a
practice, event, and platform that challenges the existing discourse of
several disciplines—and further invite the reader to engage in their own
personal making, subversion, and refection. Twining will, like Twine
itself, intertwine theory, practice, and poetics—we will weave together
principles of making with an examination of the many Twines. Twine
is simultaneously punk and childish, new and retro, a return to nineties
hypertext and a procedurally driven rejoinder to web 2.0’s toxic “real
self ”–driven social spheres of performance and harassment.

What follows is an autoethnography positioning Twine as a force
for culture, documenting and at times wrestling with the emergence of
Twine as a piece of cultural sofware—a history of encounters, people,
interfaces, and aesthetics that situate Twine’s signifcance as a platform
with queer, feminist, and punk leanings. We apologize in advance for
what it does oddly but would argue that this oddness is necessary
for embracing what makes Twine Twine. As such, in this chapter, we
diverge into the “I,” drawing on Anastasia Salter’s point of view (again,
with apologies and trepidation). In this rapid, personally situated his-
tory, we consider Twine as a tool of disruption and invite you to join us
in asking, Why Twine?

Welcome to the Neighborhood

Te appeal of Twine is the appeal of a GeoCities neighborhood (my
frst virtual “home” was in Area 51—for those unfamiliar, that was once
the designated space for science fction fandom and home to many
writers of another important form of electronic literature—fan fction).
My GeoCities site was populated by animated GIFs “adopted” from
online artists, webrings links to other preteens and teenagers with ram-
bling, and confessional web pages flled with fandom, and most of my
early writing (such as it was) was done in the collaborative, free-form
space of a role-playing chatroom in my frst fandom. (Which fandom
is irrelevant and omitted here for self-preservation. OK, it was Mum-
mies Alive!) Tankfully, any and all record of this appears to have been

TWINE (R)EVOLUTIONS 79

erased by the death of the old-school web (reader: do not view this as
a challenge, please). Tese websites gave birth to the similarly aestheti-
cally challenged chaos of MySpace, which similarly featured the web-1.0
look of clashing backgrounds, bad animation, and lots of fashing and
moving parts—an aesthetic shown in fgure 9, which we will revisit in
chapter T-4.

Figure 9: A typical ’90s website, https://geocities.restorativland.org/Area51/
Atlantis/2782/. Mine was worse.

By contrast, Facebook is boring, uniform, and tiresome, with a pan-
opticon of profles, all the same and algorithmically monitored. Inter-
active fction constructed in parsers has always felt similarly of-putting
to me—colorless and gray. Inform 7 has the cookie-cutter visual look of
corporate web 2.0, despite its decidedly rebellious lineage. Twine, on the
other hand, is the discordant, frequently visually dissonant development
tool that seems to have grown up on GeoCities, MySpace, and LiveJournal.

But back to GeoCities: when I was happily linking my site to oth-
ers through webrings and banner exchanges, I was not particularly aware
that hypertextual narratives were a thing (or even a thing other people
did), and that is something I suspect I have in common with many
of the writer/designers who discovered Twine. On refection, I was

https://geocities.restorativland.org/Area51

80 TWINING

participating in their ilk—the interwoven narratives of self-inserted
characters appearing and reappearing in fan fction traded and rewrit-
ten had its moments. While I was generationally of the right age to
grow up on graphic adventure games and a few text-game holdovers,
I would not discover hypertext fctions and electronic literature until
a college class directed me to the appropriate corners of the web and
required the purchase of an Eastgate CD that didn’t want to run even
then. Tat disk, Deena Larsen’s beautiful work Samplers (1996), is still
on my shelf for posterity’s sake alongside many other unplayable pieces.
As a platform, Eastgate’s Storyspace was immediately of-putting to me:
anything that can’t be shared freely online or found in a computer sof-
ware store seemed to me (raised on fan fction) inaccessible. Hypertext
fctions seemed better-suited to thrive when made open on the web
and lived alongside GeoCities in nineties venues, including New River,
Postmodern Culture, and Iowa Review.

Prior to Twine, I built hypertextual narratives and scholarly projects
the old-fashioned way, with tons of fles and links. Built in Notepad
and featuring the correspondingly horrifc coding styles of the 1990s and
early 2000s, these projects usually had inline styles, overly complex table
layouts, and even the occasional piece of animated text. (My frst game,
built rebelliously as a JavaScript vocabulary quiz for a class board game
assignment, featured an entry portal so complicated that no one could
fnd it until I wrote out a detailed instruction manual.) I lef this style
of web development behind for years, lured in by the world and tools of
graphical game development. For years, the idea of teaching something
like Twine in the game design classes where I would teach primarily
Flash, XNA, and Unity would have seemed laughable—getting students
to care or see text-based games as relevant was nearly impossible. In an
interactive narrative course I later developed, I brought in Inform 7 in a
pre-Twine concept, and students struggled with both the text emphasis
and the idea of making games that were this complicated. Te graphical
world seemed to have won.

But something happened. Flash died. I wrote it a eulogy, slightly
early but quickly proven fnal, released during the same year as Gamer-
gate. More on that later (Salter and Murray). Gaming changed: it needed

TWINE (R)EVOLUTIONS 81

a new disruptive platform, a space for metacommentary like the Flash
games that used to mock the standards and norms of console games
and mainstream gaming. And similarly, those displaced, alienated, and
boxed-in by web 2.0 would start looking for tools to break out—tools
that would be accessible and would, most importantly, allow for rapid
circulation and distribution outside of gated platforms, sofware in-
stallations, and expense. Twine would make a place for itself as that
platform.

What follows is my highly biased, timeline-jumping, woefully in-
complete narrative of why I think that is.

The University of Baltimore, or How I Accidentally
Was Present for the Birth of Twine*

*(But Mostly Missed It)

I started my doctoral program at the University of Baltimore (UB) in
2007. I ended up in a class with a cohort of interesting fellow students,
including Chris Klimas, who would later be known as the creator of
Twine. We had some conversations about interactive fction, but I did
not, at the time, realize I was talking to someone who would redefne
the term. Chris Klimas introduced himself to our cohort in September
2007, noting that he came from a background that mixed computer
science and creative writing: “I’ve had webby kinds of jobs for the past
six years which started of kind of amorphous, but by now I think I’ve
fgured out I’m a web developer, not a designer. Te line can be a fuzzy
one. . . . In general, I’m good at code but not so much design. . . . Lately
I’ve been writing hypertext. . . . If you’re curious, I post my stories
on gimcrackd.com” (Klimas, IDIA student introductions). I still have
slides and emails from projects we collaborated on at UB, including an
orientation game designed for, of all things, a Motorola Razr phone.
Te pace with which technology would advance was not foreseeable
even to us, immersed as we were in its potential. Looking back at these
projects, Chris’s (and for that matter, my own) growing interest in ac-
cessibility in design is apparent.

https://gimcrackd.com

82 TWINING

Te TweeCode/Twine Google Group dated from 2006 to 2018, at
which point it was superseded by other Twine forums. Prior to Chris
Klimas’s own enrollment at UB, he was working on Tweebox 1.1, which
was decidedly focused on interaction over aesthetics, but the discussion
in the Google Group suggests he was starting to think about interface:
“Right now the color scheme’s pretty bland. Tis is sort of intentionally
so—I didn’t want it to be too distinctive—but even so, it would be nice
to ofer a couple of color variations. Either that or allow people to tweak
the colors right from Tweebox, though that might be a bit too much
complexity to give your average person” (Klimas, “What I’m Tinking
About”).

Te “intentionally” bland look of this early Twine story for-
mat, Jonah, is not so diferent from the default look of the corporate
web—but that would change. In an interview with Gamasutra, Chris
Klimas cited the infuence of the interaction design courses we both
took at UB on Twine’s move away from the computational interface to
a graphical one: “[Twine] might have been my graduate thesis, origi-
nally, if I had the patience to complete one. . . . At the time, I had been
experimenting with ways to create hypertext that were strongly code-
oriented. I was studying interaction design, so Twine was my attempt
to make something that would be friendly to people who were writers
more than coders” (Alexander). I’d also suspect the impact of Eric Rob-
erts’s course on learning and interactive media, which we took together
with others from the cohort. Sadly, nearly all records of that class are,
for me at least, lost to time and poor memory.

Te Twee documentation (which dates from Klimas’s time at UB
in 2009) refects how diferent Twine was in this early, grad-school
incarnation. It’s decidedly geared toward hypertextual narrative, not
games: “Keep in mind that hypertext is best described as a medium,
not a genre. Tere can be hypertext fction, nonfction—even poetry.
But in this document we’ll talk about hypertext prose” (Klimas, “What
Is Hypertext?”). Likewise, the discourse of the design documentation is
grounded in electronic literature: “Links are the glue between pas-
sages. Tey are the equivalent of being told to turn to another page
in a nonlinear book; in gamebooks, for example, you do this to make

TWINE (R)EVOLUTIONS 83

decisions for the main character” (Klimas, “What is Hypertext?”).
But this isn’t the only possible kind of link. Deena Larsen describes
a whole taxonomy of links in “Fun Da Mentals: Rhetorical Devices
for Electronic Literature.” Te original “Fun Da Mentals” includes a
coloring book section entitled “Drowning in the Distance” that in-
vites the reader to connect imagery and passages with any tool that
enables linking. Twine appears currently on the list of recommended
tools alongside a number of other open-source tools for manipulating
and remixing content (Larsen).

Te barriers to entry for the original Twee were high, but that was
not uncommon. At the time, the shif to accessibility in tools-focused
discourse in the digital humanities was only beginning its rise, along
with increased interest in bringing these types of platforms to new users.
Both Chris and I were part of this interest and on the outskirts of the
digital humanities community—where, in 2011, the reader called Defn-
ing Digital Humanities would include an essay where Stephen Ramsay
observes that “learn to build” might be more useful than “learn to code”
as a call for action in the digital humanities (Ramsay). He particularly
points toward the usefulness of the THATCamp model in the sharing
of methods of building—a space that Twine itself was heading toward,
albeit slowly.

THATCamp Games

Te Humanities and Technology Camp—THATCamp—is a peculiar
institution, worthy of its own book that will hopefully someday be writ-
ten. It is an informal “unconference” gathering of digital humanists,
convened by anyone with the will to organize and embrace the low-
or no-cost model. It appears repeatedly in the stories of early digital-
humanities community formation, best chronicled in the Debates in
the Digital Humanities volumes (Gold and Klein). THATCamps vary
wildly. Many THATCamp agendas included sessions about games, with
enthusiasts such as myself sharing favorites and preaching their poten-
tial value to humanists everywhere, but for most, the very idea of games
in the classroom still seemed challenging and out of reach.

84 TWINING

In 2011, I co-organized the frst THATCamp Games with Amanda
Visconti at the University of Maryland, College Park. Te camp was
held in January 2012 during a snowstorm, with participants primar-
ily including games scholars and digital humanists. Twine was so far
under the radar at that point that even Klimas didn’t discuss it: he of-
fered a workshop on Flash game development with Flixel, an unre-
lated precursor of sorts to Twine in (relative) accessibility and usage if
not in aesthetics. However, 2-D game development of this kind was a
very diferent proposition than what would develop in Twine—Chris’s
boot camp description noted that “you should have some previous
experience with object-oriented programming” (Salter and Visconti).
Te other boot camps were similarly positioned. Darius Kazemi fore-
shadowed the growing signifcance of HTML5 with a session on the
Akihabara framework for 2-D games in HTML, which required pro-
gramming experience; Bridget Blodgett (also from UB) focused on
text-based games using Inform 7; John Murray looked at the Kinect
Sofware Development Kit; James Morgan and Marek Kapolka looked
at GameMaker 8 (back when there was a free version); and Todd Bry-
ant shared strategies for modding Civilization IV (Salter and Visconti).

Looking back over the open schedule, many of the participants
were looking for something like Twine—sessions on games and litera-
ture, narrative design, games for teaching arguments, queering games,
and games and gender all foreshadowed Twine’s eventual signifcance
in educational games discourse. Twine was introduced but not yet
dominant—reporting back afer the event, Carly Kocurek, a game re-
searcher and historian, noted, “I came back from THATCamp excited
to play more with some of the tools I’d had the opportunity to work
with, but also excited to spend some time with the tools I heard about
but didn’t get an opportunity to fddle with hands-on at THATCamp
Games: Flixel, Unity, Inform 7, and Twine, among others” (Kocurek).

Another attendee and designer, Sukey Argfored, posted observa-
tions on Inform 7 that echoed both its allure and the problems I’ve
seen with it in class: “Te nuts and bolts of creating a game in Inform
7 may be simplifed for non-programmers, but they are still far too
complicated to really learn in an hour and a half session” (Argfored).

TWINE (R)EVOLUTIONS 85

We really should have held a Twine boot camp, but it says a lot that
here, on the brink of 2012, even Chris Klimas himself didn’t propose
one for this venue. Te explosion of Twine games (which would in
turn help push the open-source project forward and create many of
the resources on which Twine developers currently rely) wouldn’t hap-
pen until a little later. I started at this time pointing people to Twine,
but more the digital humanities crowd than the games crowd: in my
own world of graphics-focused coursework, with students demanding
better ways to build zombie shooters, there didn’t seem to be a place
for Twine in educational games discourse—yet. For small projects and
subversive gameplay, we had Flash, which was highly visual, relatively
quick and well supported, and easy to circulate on all the pre-iPhone
platforms we could imagine.

Glorious Trainwrecks and the
Intervention of Anna Anthropy

While our THATCamp-ers were learning Inform 7, elsewhere, others
thinking inventively about games were discovering Twine. Te main
page of Glorious Trainwrecks opens with a provocation: “Tis site is
about nothing, if it is not about getting of your ass and creating. Wiki-
pedia claims that [people] used to stage trainwrecks (with empty trains,
of course) for the amusement of the general population. Would the
world not be a better place if we brought this tradition back?” (Glori-
ous Trainwrecks). Te site turned ten years old in April 2017, and since
2008, the moderators have maintained a list of rapid game development
tools on which Twine features second (afer Klik N Play, a graphical
game tool currently described as “free, terribly buggy, doesn’t work
on 64-bit, beloved by all”). Te parenthetical for Twine is more posi-
tive: “free, open-source, creates web-based text games with a nice no-
programming GUI interface.” Te list was last updated in 2012 and still
links to Gimcrack’d, Chris’s now defunct site that used to host the Twee
wiki as well as his own work. Leon Arnott (maintainer of the Harlowe
story format) turned the site into a resource for Twine poetics and prac-
tices with a series of blog posts dating back to 2012 and covering topics

86 TWINING

including Twine page transitions and CSS tricks, adding in external
libraries such as jQuery and extending the built-in JavaScript support
with more dynamic elements.

Glorious Trainwrecks is home to one facet of the rapid game-making
community that wasn’t Twine’s initial audience but would come to de-
fne it, as Chris credited in our interview:

I initially thought of [Twine] as this thing that was for . . . serious writ-
ing, I guess, though serious writing is obviously a loaded term. It wasn’t
that I thought [Twine work] was somehow better than a game, it was
more that I couldn’t see how you build a game out of it, originally. And
then everybody came along and proved me wrong, basically. And that
was the other piece of it. I had zero awareness of the indie game scene
at the time. Tat was the thing that Anna Anthropy really recognized,
I think. I honestly credit her. . . . We’ll go ffy-ffy for Twine’s success.
Because she saw something and was in a digital community I had no
relationship to. (see appendix I)

In June 2012, Anna Anthropy was interviewed in Rock, Paper, Shot-
gun by Cara Ellison, who published the interview as a Twine game: afer
a nod to GameMaker (which has since gone very commercial), Anna
Anthropy plugged Twine: “Te other thing I recommend to people
who are making games for the frst time is Twine, which is a really
simple tool for making basically choose your own adventure sort of
things—very simple text stories—click here to do this—and it makes
games as web pages that you can put online” (Ellison). Tis, along with
similar Anna Anthropy interviews and posts, was the introduction to
Twine for many.

My interest in Twine had already been piqued by these discussions,
and I was rapidly working on my own (woefully bad) experiments. I
found inspiration and discovered a better entry point into the com-
munity afer a post from Porpentine in the Twine Google Group on
August 11, 2012: “i’ve been working in Twine for a while and recently
discovered this group. Just posting a collection of the games i’ve made
along with my favorites from other people in the indie game scene

TWINE (R)EVOLUTIONS 87

to show that Twine isn’t dead. Tere’s a variety of tones and styles on
display here so there’s sure to be something you enjoy” (Porpentine,
“collection of Twine games from me and other people”). Te list in-
cluded many of Porpentine’s own works, as well as Kitty Horrorshow’s
horror and a number of romantic and historical vignettes. Many of
these remain powerful, teachable works, and they also demonstrated
early on Twine’s range—from “surreal” to “dripping horror” and be-
yond. I am a fan of Batman Is Screaming, described here by its creator
as “tiny, surreal”—it presents the strangest merger of fan fction tropes,
Twine, and body horror I’ve yet seen. It remains understudied, probably
because of the connection to that “other” woman-driven, frequently
queer, online community of storytelling: fandom. More on that and
other unusual works later.

Many others would fnd Twine during this surge thanks to Por-
pentine, who would quickly become one of Twine’s most respected
creators. In an essay she has since deleted that we quote here for its
formative infuence and power, Porpentine described the appeal of
Twine’s blank page as something other than the white page of the
word processor. She particularly noted the value of Twine’s original
aesthetics, which I still appreciate myself—the black background of
Twine 1.X’s default story format lends itself to a certain atmosphere,
while the chunked passage formats encourage thinking through frag-
ments rather than confronting the whole. As she observed,

So many people tell me their stories start to get personal no matter how
they start out.

Twine’s default color scheme is blue on black, not black on white.
Black on white is daylight, it’s mundane. Twine invites us to write our
secrets into the night. We can make it light in a line of CSS, but that the
default is inverted feels non-trivial to me.

More signifcantly, when we write in natural language, as opposed
to code, we’re in the element of the diary, the notepad, the confessional.

Our engines shape our output. We can’t pretend that the his-
tory of game design has been designing on a blank canvas or a white
page. Te history of game design has been working with a canvas that

88 TWINING

screams at you and changes shape and rejects your strokes if they aren’t
just right—working with machines. (Porpentine, “Creation under
Capitalism”)

Published in November 2012, this essay exemplifed everything that
would make Twine important. Prior to my focus on Twine, I was inter-
ested in another tool that has this “personal” element, Adventure Game
Studio. However, Adventure Game Studio is far more difcult for de-
velopment, and the graphical narratives made with it frequently take
their lead from commercial adventure games of the past rather than
from text-based games. It and other genre-driven engines force the
user/creator into a certain trajectory, demanding the embrace of domi-
nant mechanics, while Twine ofers the freedom of the creator-defned
verb—the link—over any other interface.

Twine down the Rabbit Hole

As Twine became hip among the alternative gaming community, I was
inspired by its throwback aesthetic to start playing with it not for game-
making but for scholarship. Te frst time I used Twine for my own
scholarly work was in the construction of Alice in Dataland, a project
that began as part of Anvil Academic’s abandoned (as far as I know)
Built Upon series in digital scholarship. I combined Twine with other
old-school hypertextual play throughout the project, using animated
GIFs, simple canvas animation, and procedural play on classic forms
such as Montfort’s procedurally generated poem Taroko Gorge—all to
explore Alice’s rabbit hole as a metaphor for remediation, remediated.

Te project was not at all what the editorial board of Anvil Academic
had in mind—their vision of digital humanities scholarship was data-
driven, database-heavy, and “modern,” not web-nostalgic. A year afer
the initial announcement of my project and others being accepted, the
editorial board posted a commentary on the project’s failure, though
that commentary foreshadowed something larger: the failure of the
entire series, which as of 2020 has not published a volume, perhaps
due to their emphasis on “production values: sophistication of interface

TWINE (R)EVOLUTIONS 89

design, complexity and power of the underlying sofware engine, and
other features that (intuitively, at least) fall under the heading of tech-
nology rather than scholarship or intellectual content. Te lone author,
in other words, working without the support of a digital scholarship lab,
fnds it hard to compete when work is evaluated both for its technical
sophistication and its intellectual content” (Moody). Tis is certainly
accurate; particularly the demands of data-intensive work and complex
development have only grown in overhead.

But such commentary also echoes some of the criticisms frequently
aimed at Twine—criticisms that can be one of the platform’s most im-
portant virtues. Te lone creator, making work in hypertext, may release
on games platforms but will never have work that echoes the technical
style of their storefront companions. Twine creators frequently don’t
fnd a home for their games alongside the corporate marketplaces,
which similarly forefront “production values” but instead have played
a role in shaping new spaces for personal games. Similarly, I found my
lone, strange Twine scholarly project a more suitable home in Kairos, a
journal dedicated to multimodal rhetoric and thus full of experimental
digital scholarship exploring the form. Here I found the same echoes
of what Twine-makers were noting in games: Twine games, intensely
personal, developed by the “lone author” in most cases, were easy to
reject, to label as not-games—and would become central to the dis-
course of game or not game that was about to become much more than
an academic debate.

Gamergate, or How Twine Helped Fuel a Culture War

In 2013, Zoë Quinn released a Twine game called Depression Quest.
Quinn also broke up with an abusive boyfriend. Te two events to-
gether would fuel the outbreak that we now call “Gamergate,” which
was essentially an onslaught of toxic masculinity, online warfare, and
misogyny that would send several of its targets into hiding while fun-
damentally changing the discourse of gaming culture and game stud-
ies as a feld. It put some academics into a hostile spotlight, fueled by
the rhetoric of “saving” games from the onslaught of “feminists” and

90 TWINING

“social justice warriors” bent on ruining games for cisgender, hetero-
sexual white men.

Te outcomes are a testament to the deep understanding on the part
of Zoë Quinn’s ex of what makes men on the internet angry. Te still-
unfolding incident has been well documented elsewhere, but Twine’s
role as an inciting platform, and eventually a platform for commen-
tary and resistance, is not so well known. Quinn recently published a
detailed account of their experiences in and afer Gamergate in Crash
Override, covering both the roots of the movement in domestic abuse
and the calculated attacks of their ex-partner and the years of coordi-
nated harassment that followed. In that work, Quinn never mentions
Twine but does discuss the works it enabled (they used Twine for both
Depression Quest and the Crash Override resources they later devel-
oped for victims of similar attacks).

During Gamergate, Klimas came under attack as the developer of
Twine and alerted me when my name showed up with his in the discus-
sion on Gamergate forums. I’d already linked the afordances of Twine
to the Gamergate movement in some early talks where I’d been working
through the signifcance of Depression Quest—as Quinn’s work drew
attention to the ways their ex used the existing groups of misogynistic,
angry white supremacist groups (the same Donald Trump’s campaign
would tap into only a few years later), I was interested in what it was
about Twine itself, not just the content produced on Twine, that added
fuel to that culture war.

As a result of giving a talk of this kind at a conference that also
included an inclusivity-focused Wikipedia edit-a-thon, a participant
would put Zoë Quinn’s work on Wikipedia. Tus Klimas’s name and
mine would become linked by the research of the same aforementioned
posters mentioned. Te initial message from Klimas (with the appro-
priate title “quinnspiracy”), dated October 2, 2014, directed my atten-
tion to an Escapist magazine forum, where my name had popped up as
part of an elaborate conspiracy. For a while, I screenshotted mentions
(and put all my accounts under two-factor authentication as a preemp-
tive defense mechanism), but it amounted to very little other than a
message from a colleague: “Wait, you’re part of a vast conspiracy to

TWINE (R)EVOLUTIONS 91

bring down gaming from the all-powerful throne of academia and you
didn’t tell me?! I am so disappointed in you. Tanks for the heads up.”

Te conspiracy post noted my overlap with Klimas at UB as well
as the presence of Twine in my courses, linking us in an elaborate
conspiracy:

In summation, you have an edit-a-thon hosted and facilitated by a
Wikipedia admin who has been found editing for hire in the past. Dur-
ing that edit-a-thon someone registers an account at Stierch’s urging
and creates a bio for Zoe Quinn, less than an hour afer Stierch writes
some mocking edits on her page about video games linking to some
social justice-style attack on gamer culture. Stierch protects Quinn’s
article from deletion but does not remove blatantly promotional lan-
guage. Te edit-a-thon was taking place at the university where the
creator of Twine, the sofware Quinn’s game uses, works and one of
the other participants in the event that included the edit-a-thon at-
tended the same university as the creator of Twine at the same time
as the creator of Twine where she wrote about emerging sofware useful
for creating interactive fction and has since promoted Twine heavily
in her work and at seminars. It is defnitely a very shady situation. (link
deliberately omitted)

I apologize for the rather lengthy quote, but I believe it demon-
strates something essential in how the Gamergate discourse twisted
community—among both academics and game-makers and those of
us in-between—into conspiracy. Te same story would later be added
to the Gamergate wiki as part of the entry on Wikipedia. Clearly, I
could have started and ended the history of my own involvement with
Twine here. Whoever did this research paid more attention to my time-
line than I had, though, in some ways, this autoethnography is its own
rejoinder—a history focused on connections, not manipulation.

It was around this time that my entire scholarly focus changed.
Tis sounds like an exaggeration, but it’s really not. Since Gamer-

gate, I’ve cut down on my participation in games-centered research and
spaces and instead focused on electronic literature, social media,

92 TWINING

and particularly how open platforms and communities can provide
spaces for resistance and expression. Taking a step back from games also
meant looking at the culture I’d long been part of as a so-called geek and
examining the role we’d collectively played in shaping this moment.

Tis political bent started to inform my Twine workshops and my
larger scholarship, which I shared in a session entitled “Lit Misbehav-
ing” at the Modern Language Association (MLA) convention in 2014.
Te Digital Rhetoric Collaborative write-up of the session noted this
focus: “Given the sexual harassment that women encounter when try-
ing to form an identity as a game developer, Salter suggested that Twine
has potential to change the defnition of games and enrich the voices
we hear in the gaming community” (Sullivan). Such write-ups (and
indeed, my own work and the work of other feminist scholars at this
moment) insufciently grounded the importance of trans women and
queer creators in leading the way, an omission in my own early work
that I hope to remedy in this project.

Amplifed by the hashtags of the conference and the realities of the
moment, that year’s MLA panel also ended up the subject of a weird blog
post and YouTube video (edd77) designed to encourage criticism from
the Gamergate loyalists, of which my personal favorite is a line-by-line
repost of the account with commentary from cool_boy_mew repro-
duced in part here: “All in all, the feminists are the ones invading our
space and making everything worse in their passage. Tese so called
‘heroes’ of feminism are completely toxic and the feminists academics
are a complete mess. . . . We are not the monsters you make it out to
be. If anything YOU are the monster. I’ve never seen so much bullshit
disguised by a supposed drive to do good” (Irvine).

So obviously, afer this type of scintillating commentary, I and all the
other “monstrous” feminists in games gave up and went home.

Twine during Gamergate

Twine didn’t quiet down afer Gamergate started—it got louder. Sev-
eral game-makers used it to comment on the moment, with one of
the most powerful coming from D. Squinkifer via their game Quing’s

TWINE (R)EVOLUTIONS 93

Quest VII: Te Death of Videogames. Te game was released as part
of Ruin Jam 2014, a jam “open to anyone and everyone who has
been, is being, or plans to be accused of ruining the games industry”
(Sandel). Te game (shown in fgure 10) featured an over-the-top
narrative inspired by classic adventure games, featuring a narrator
exiled from Planet Videogames following the Gamergate-analogous
Culture War.

Figure 10: Like many people, I went out and bought the T-shirt

2014 was also the frst year Twine entries outnumbered parser
interactive fction pieces in the annual XYZZY fnalists. Te shif from
the relatively obscure infuence of the parser, with its resemblance to the
command line and its reliance upon an understanding of a verb-based
interaction system, was received with mixed reactions at the time.
While both hypertext and parser-based interactive fction already
had—and continue to have—a long history, this shif also served to
bring new voices to the competition. As Klimas commented, “Tere
is no doubt that Twine and its kind represent a diferent paradigm of
interactive fction. But I think there’s more opportunity here for devo-
tees of parser IF than there is ill omen. Easy for me to say, right? I cre-
ated Twine. Of course I think this is a positive development” (Klimas,
“War, Pestilence, Famine”). Six years later, the mix of tools suggests
that Chris was correct and there is no winner—Twine and Inform 7
coexist, both bringing diferent opportunities to interactive fction.

During this time of fallout and increased Twine visibility, I was in-
vited to serve as part of the editorial board for the “Electronic Literature
Collection—Volume 3,” or ELC3, the latest volume in a series of com-
pendiums compiled by the Electronic Literature Organization (ELO).

94 TWINING

I wasn’t quite sure what I was doing there, so I decided to make the
most of it and get Twine represented within the discourse of electronic
literature. Tis includes Quing’s Quest VII, despite—in fact, in part be-
cause of—the dig at electronic literature within its text: when the player
suggests migrating to “planet hypertext,” a character responds, “Is that
even a real planet, comrade? I thought it was a satellite. Is it inhabit-
able, even?” (Squinkifer). Te game is no kinder to academia: “You’d be
willing to climb all the way up that ivory tower, comrade? Wow, I guess
we’re in a more desperate situation than I thought.”

Despite this skepticism of an admittedly ofen-closed ivory tower,
several Twine authors agreed to be part of the collection, as shown in
the index of the Twine keyword. We addressed our goals in including
these works in the introduction to the volume: “In the Electronic Lit-
erature Collection Volume 3, we knew we wanted to represent the vital
work happening in Twine, which hadn’t really existed as a platform
at the release of the ELCv2. However, this posed many challenges, in-
cluding the problem of asking people who perhaps wouldn’t identify
with this research community or even the label ‘electronic literature’ to
include their work in an ongoing open-access space. While most Twine
works are released for free, several creators have been working to fnd
ways to receive at least some payment for their work, or to leverage
projects towards a career” (Boluk et al.).

Te careful wording of this statement refects some of my own un-
ease about potentially colonizing Twine work by annexing it as “elec-
tronic literature.” While Klimas clearly had that framework in mind
while creating the tool, it is far less visible in the current work or ongo-
ing communal discourse. Te Twine works featured refected some of
the works that had most infuenced my own view of how games could
be reimagined. Quing’s Quest VII appears alongside Anna Anthropy’s
Hunt for the Gay Planet and Porpentine’s With Tose We Love Alive,
both of which we will discuss at length in later chapters.

In an interview following the publication of the ELC3, lead editor
Leonardo Flores commented on how this type of work challenges exist-
ing defnitions of electronic literature: “We also need to account for the
ubiquity of computing and digital media. In the early days of the feld,

TWINE (R)EVOLUTIONS 95

the distinction between print and digital writing was a convenient and
rhetorically powerful trope. But now that most contemporary writing
is already ‘born digital’ (though designed for print-based interfaces)
its digitality has lost power as an indicator. Tis raises a few ques-
tions: how much of an engagement with digital and electronic media is
enough for something to be considered e-lit? And what distinguishes
e-literature from computationally intensive works such as videogames?
How e-literary is a work of e-lit?” (Ofenhartz and Flores).

I appreciated the double-sidedness of this disruption. Te question
of Twine’s inclusion had the potential to challenge defnitions of elec-
tronic literature with the same force as it has challenged the defnition
of games. Positioning Twine in the sphere of electronic literature—a
space we both, with various levels of comfort, inhabit—can be reduc-
tive but also valuable for expanding the dialogue around the form. To
revisit the early discussion of Twine as a platform and particularly that
lingering question of “What is Twine for, anyways?” one way of under-
standing Twine is through Flores’s lens of third-generation electronic
literature—a tool for disrupting some of the feld’s assumptions and
points of entry.

Teaching Twine

Troughout these various shifs in the tides of electronic literature
and games and their corresponding rocking of Twine’s boat, I spent a
lot of time teaching Twine. Workshops that I used to teach with board
games to avoid procedural barriers to design were rethought in Twine,
and I introduced the tool to hundreds of students in the large courses I
taught at UCF. My workshops have primarily reached humanities edu-
cators and librarians, who in turn ofen take Twine to their students in
various disciplines.

Alexis Lothian commented on Twine’s usefulness for teaching afer
using Twine with her students following an introduction in one of these
workshops, noting that “Twine’s structure of branching choices lends
itself really well to explorations of the ways that our day to day choices
are limited by dominant power structures” (Condis). She ofered the

96 TWINING

example of a game exploring the experience of a nonbinary student
continually asked to ft themselves into gendered boxes that made no
room for them—a metaphor of play that particularly resonates with me,
as most games (and spaces) still make no space for those of us more
comfortable in-between.

Questions of accessibility more broadly are encoded in the choice of
Twine over other more visual platforms. Former IFTF board member
Flourish Klink noted that the organization’s frst two goals are to build
a program to help sustain the Twine community over the next twenty-
plus years and seek solutions for making interactive fction games more
accessible to people with disabilities: “Tere are many game genres that
are difcult to make accessible . . . not because of any failure on the part
of the developers, but because they simply require sight. On the other
hand, it should be easy for [players with disabilities] to play an interac-
tive fction game . . . because interactive fction is usually developed by
indies who don’t have experience with accessibility, sometimes that falls
by the wayside. We plan to create resources to help those developers,
and to work with projects like Twine, Inform, etc to make sure they
have good accessibility tools” (Francis).

I explored this in a collaboration with UCF faculty and students
engaged in a cultural exchange program with students from a school for
low-vision students in Russia. Tey developed a game that combined
large text and audio narrations—recorded themselves—with keyboard
input replacing the need to touch a particular quadrant of the screen.

Working with Twine is usually part of my prototyping or rapid de-
velopment workfow rather than my more complex work, simply be-
cause most things I want to make ultimately demand breaking out of
some of the Twine aesthetics. I also resisted Twine 2.X initially (but
have now embraced it), in part thanks to the aesthetic changes—the
online editor in particular is too cheerful for me. I’ve spoken to others
quietly about the use of Twine to create works that have no particular
audience. Te fragmented form lends itself to journaling or exploration.

I am continually impressed by the ability of writers to use Twine
to respond to moments movingly and quickly. A recent standout that
quickly sparked discourse among academics is September 7th, 2020,

TWINE (R)EVOLUTIONS 97

a stark work by Cait S. Kirby, released in the summer following the
initial wave of COVID-19. It places the player on a reopened campus,
confronting day-to-day challenges:

You raise your hand. Your professor motions that it will be a few min-
utes. She’s trying to answer other questions, but each question takes
longer than usual due to masks and social distancing.

While you’re waiting, you look around. You see that a neighboring
student is not wearing a mask.

Do you motion for the student to put their mask on or pull your
own mask tighter? (Kirby)

By asking the player to make impossible choices in the position of
a high-risk student, the work pushes back on the choices universities
are already making for students in the name of preserving a traditional
experience of education. It is the best of Twine: personal and cultural,
making an immediate impact in a charged moment of debate.

As we move out from the personal and gaze on Twine as a cul-
tural object, we believe this divergence provides a useful framing to
remember: Twine is personal, and our relationship with it is continu-
ally reshaped by the moment in which we use it. Twine is a platform
but also a happening, and what’s happening around Twine infuences
the expectations of those who pick it up and renew it. Te future (and
present) of Twine is in this trajectory of infuence. As we will discuss
later, Twine works now emerge into interfaces and forms ranging from
print books to Netfix flms to Unity games. Twine can be a beginning
and an end (as we examine in chapter T-5, which delves further into
queer Twine, camp, and the evolution of the GeoCities aesthetic), and
it can be a beginning to new ends and new platforms.

Works Cited
Alexander, Leigh. “Game Creation for the Masses: What’s Next for Twine.” Gamasutra,

October 9, 2014. https://gamasutra.com/view/news/227313/Game_creation_for
_the_masses_Whats_next_for_Twine.php.

https://gamasutra.com/view/news/227313/Game_creation_for

98 TWINING

Argfored, Sukey. “THATCamp Games: Inform 7.” TeLS Webletter, January 21, 2012.
http://www.telswebletter.com/2012/01/21/thatcamp-games-inform-7/.

Boluk, Stephanie, Leonardo Flores, Jacob Garbe, and Anastasia Salter, eds. Te Electronic
Literature Collection. Vol. 3. Cambridge, MA: Electronic Literature Organization,
February 2016. http://collection.eliterature.org/3/.

Condis, Megan. “Composition Games: An Interview with Dr. Alexis Lothian.” Unwin-
nable, August 6, 2016. https://unwinnable.com/2016/08/08/composition-games-an
-interview-with-dr-alexis-lothian/.

edd77. Anastasia Salter on the Video Game Industry. Accessed September 2019. You-
Tube video, 6:16. https://www.youtube.com/watch?v=K-JBZ3fKVzQ.

Ellison, Cara. “Anna Anthropy and the Twine Revolution.” Guardian, April 10, 2013.
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy
-twine-revolution.

Francis, Bryant. “Interactive Fiction Foundation Formed to Aid Twine, IFComp
Growth.” Gamasutra, June 30, 2016. https://www.gamasutra.com/view/news/
276226/Interactive_Fiction_foundation_formed_to_aid_Twine_IFComp_growth
.php.

Glorious Trainwrecks. March 29, 2018. https://www.glorioustrainwrecks.com/.
Gold, Matt, and Lauren Klein. “Debates in the Digital Humanities.” Debates in the

Digital Humanities, 2019. https://dhdebates.gc.cuny.edu/.
Irvine, Spencer. “Too Few Feminists in Video Games, Says Professor.” Accuracy in Ac-

ademia, January 23, 2016. https://www.academia.org/too-few-feminists-in-video
-games-says-professor/.

Kirby, Cait S. “September 7, 2020.” Accessed June 16, 2020. https://caitkirby.com/
downloads/Fall%202020.html.

Klimas, Chris. IDIA student introductions, September 18, 2007.
———. “War, Pestilence, Famine, Death, and Twine—Chris Klimas.” Chris Klimas,

April 22, 2014. https://chrisklimas.com/blog/2014-04-22-129/.
———. “What I’m Tinking about for 1.1.” Google Groups, December 4, 2006. https://

groups.google.com/forum/#!searchin/tweecode/Right$20now$20the$20color
$20scheme$27s$20pretty$20bland%7Csort:date/tweecode/BDKuEUy3nYc/
wpid6eJzOTkJ.

———. “What Is Hypertext?” Twee Reference, October 1, 2009. http://twee-twine-doc
.tiddlyspot.com/.

Kocurek, Carly A. “THATCamp Games Postmortem.” Carly A. Kocurek (blog), Febru-
ary 14, 2012. http://www.sparklebliss.com/thatcamp-games-postmortem/.

K10blogger. “Info: A Look Back at the ’90s Internet.” Info (blog), April 23, 2011. http://
randominfok10.blogspot.com/2011/04/look-back-at-90s-internet.html.

Larsen, Deena. “Fun Da Mentals: How to Read and Write Electronic Literature.” Fun
Da Mentals, 2008. http://www.deenalarsen.net/fundamentals/.

Moody, Fred. “Te New Digital Divide | Anvil Academic.” Anvil Academic, October 23,
2013. http://anvilacademic.org/the-new-digital-divide/.

http://anvilacademic.org/the-new-digital-divide
http://www.deenalarsen.net/fundamentals
https://randominfok10.blogspot.com/2011/04/look-back-at-90s-internet.html
http://www.sparklebliss.com/thatcamp-games-postmortem
https://tiddlyspot.com
http://twee-twine-doc
https://chrisklimas.com/blog/2014-04-22-129
https://caitkirby.com
https://www.academia.org/too-few-feminists-in-video
https://dhdebates.gc.cuny.edu
https://www.glorioustrainwrecks.com
https://www.gamasutra.com/view/news
https://www.theguardian.com/technology/gamesblog/2013/apr/10/anna-anthropy
https://www.youtube.com/watch?v=K-JBZ3fKVzQ
https://unwinnable.com/2016/08/08/composition-games-an
http://collection.eliterature.org/3
http://www.telswebletter.com/2012/01/21/thatcamp-games-inform-7

TWINE (R)EVOLUTIONS 99

Ofenhartz, Jake, and Leonardo Flores. “Electronic Literature in 2016: Defni-
tions, Trends, Preservation, and Projections.” Entropy, February 1, 2016. https://
entropymag.org/electronic-literature-in-2016-defnitions-trends-preservation-and
-projections/.

Porpentine. “collection of Twine games from me and other people.” Tweecode Google
Group, April 11, 2012. https://groups.google.com/g/tweecode/c/Jv_D7kx7CAo
?pli=1.

———. “Creation under Capitalism and the Twine Revolution.” Nightmare Mode [Ar-
chived], November 25, 2012. http://nightmaremode.thegamerstrust.com/2012/11/
25/creation-under-capitalism/.

Ramsay, Stephen. “On Building.” In Defning Digital Humanities: A Reader, edited by
Melissa Terras, Julianne Nyhan, and Edward Vanhoutte. Ashgate Publishing, 2013.

Salter, Anastasia, and John Murray. Flash: Building the Interactive Web. MIT Press, 2014.
Salter, Anastasia, and Amanda Visconti. “THATCamp Games.” THATCamp Games,

January 22, 2012. http://thatcampgames.org/tcg-2012.
Sandel, Caelyn. “Ruin Jam 2014.” itch.io, September 14, 2014. https://itch.io/jam/

ruinjam2014.
Squinkifer, D. Quing’s Quest VII: Te Death of Videogames. Self-published, September 1,

2014. https://games.squinky.me/quing/.
Sullivan, Rachael. “Session 754 ~ Lit Misbehaving: Responding to New and Changing

Modes of Production.” Digital Rhetoric Collaborative, February 3, 2014. http://
www.digitalrhetoriccollaborative.org/2014/02/03/session-754-lit-misbehaving
-responding-to-new-and-changing-modes-of-production/.

www.digitalrhetoriccollaborative.org/2014/02/03/session-754-lit-misbehaving
https://games.squinky.me/quing
https://itch.io/jam
http://thatcampgames.org/tcg-2012
http://nightmaremode.thegamerstrust.com/2012/11
https://groups.google.com/g/tweecode/c/Jv_D7kx7CAo
https://entropymag.org/electronic-literature-in-2016-definitions-trends-preservation-and

CHAPTER P-2

Variation

If there had been computers and the internet in ancient Rome, they
would most likely have been dedicated to Mercury—emissary, mes-
senger, trickster. Te planet named for this deity moves both backward
and forward across the sky. Te element called Mercury is quicksilver, a
physical puzzle, fuid and solid at the same time, hard to hold. All these
attributes can be applied to computational media. Te great designer
Alan Kay thought of personal computers as a “metamedium,” a technol-
ogy capable of mimicking or assimilating others (Kay and Goldberg).
Te theorist Lev Manovich has developed this insight to unfold the
cultural impact of sofware (Manovich 23). Tese ideas build on an
aphorism of H. Marshall McLuhan, who declared that the content of
one medium is always another medium (McLuhan 10). Alphanumeric
text is a container for language, and technologies like Twine bring text
into the metamedium of sofware. Words like contain and content may
suggest a static situation, like the nesting of Russian dolls, but actual ex-
perience is more complex and organic. Te embedding of text in digital
media more resembles the way very early microbes were assimilated by
slightly newer microbes, eventually becoming the mitochondria in ani-
mal cells. Which is to say, it’s more about biology than physics, involving
complexity, development, surprises. It’s alive!

102 TWINING

Tese remarks bring us to the limits of theory, at least for present pur-
poses. Tis practical chapter introduces possibilities beyond the basics
covered in chapter P-1. Te seven projects described here explore variation
in Twine, both in how we use the sofware—looking at various approaches
to textual variation—and in the sofware itself, surveying a variety of for-
mats and structures available in the Twine world. In this book, we gen-
erally prefer Chapbook, the story format and coding environment best
suited for learning Twine. Te last two of our examples shif to Harlowe,
a more powerful and somewhat more complex alternative. As in the frst
practical chapter, each exercise is a recipe you may follow as closely or
loosely as you like. If you carefully type or copy-and-paste the compo-
nents, each project should work as described within your local or online
instance of Twine. Alternatively, you might read through the project de-
scriptions, pick up their basic concepts, and adapt them to your own ideas.

We’re all about variation here. Michael Joyce, the frst person to write
something called a hypertext fction, famously said that, unlike print,
“electronic text replaces itself ” (Joyce 232). Refecting on that remark,
the critic N. Katherine Hayles wrote of “fickering signifers,” bringing the
contingency of the moving image to the aesthetics of literary writing
(Hayles). Tese insights originated in the days of cathode-ray tube moni-
tors, when the ficker of screen refresh was more noticeable than it is in
high-defnition displays we use now. Yet the pixels that form our words
still replace themselves many times per second under the control of
sofware that can instantly recompose the screen matrix. Tese changes
may come in response to our desires, or they may result from a glitch or
accident—and there is a third possibility, a sofware program whose me-
thodical rearrangement of elements produces something unforeseen. Tis
is the technique we will explore in this chapter. We specialize in surprises.

◊ As in other practical chapters, action items will be boxed

and set off with the symbol you see at left, in case you want
to skip the contextualizing discussion (more’s the pity) and go

straight to keyboard practice. We fondly hope you will read

the context passages at some point—ideally before you start
building things—but we’re just the writers.

 VARIATION 103

Supporting materials for this chapter can be found online at https://
github.com/AMSUCF/Twining. See our discussion at the beginning of
chapter P-1 about using the .html and .txt fles to follow along or adapt
our code to your own purposes.

At this point, we need to say something more about story for-
mats. For the frst fve examples in this chapter, we will be using
Chapbook. We’ll switch back to Harlowe for the fnal two. To change
formats, launch Twine but do not open a story (stay in library view).
Click on the “Formats” option in the right-hand column. You should
see a radio-button list of all available formats. Click the button next
to Chapbook—the highest numbered version if there is more than
one. Tis designates Chapbook as your default story format. Every
story you create from this point on will have Chapbook as its for-
mat. Existing stories in other formats will not be afected. Tey
will still run in Harlowe, SugarCube, or whatever format you made
them in. Likewise, you can change the format for any story during
development—though that isn’t a good idea if you’ve already begun
to code.

Speaking of coding, you’ll fnd that the examples in this chapter,
and the chapters that follow, increasingly involve various forms of code.
We’ll start with CSS, a key element of web page coding, moving on to
the native instruction set of Chapbook and its more powerful adjunct,
JavaScript. We hope you won’t feel stressed about coding. We’ll make
our way in small and gradual steps, with what we hope will be useful
explanations at each step. Tere is an entire section devoted to error-
checking and debugging at the end of this chapter.

Example 2.1: Loki on the Links

Before we get into deeper waters, let’s spend some time on the most
basic kind of variation that is possible in the Chapbook format: changes
to the story’s visual appearance, using its main CSS. Style sheets are sec-
tions of a document (sometimes independent documents themselves)
containing instructions to the web browser specifying how the ele-
ments of a page should look. Tough we speak of stories and passages

https://github.com/AMSUCF/Twining

104 TWINING

in Twine, remember that Twine is delivered through a browser in the
form of a page.

Te simplest demonstration of this technique might involve sim-
ply resetting text color and page background (red text on magenta,
midgray on deep black, blue on bluer, and other questionable choices).
However, remember our discussion of hypertext links in the previous
chapter, where we raised the possibility of links that are not visibly
marked, as in Joyce’s afernoon. We can do something similar with CSS
in Chapbook. Hence the name of our example, Loki on the Links, which,
we promise, does not involve the god of deceit playing golf with the god
of thunder. (Unless that’s where you think it needs to go. Just imagine
the mulligans.)

◊ Open the Twine application on your computer or connect to
the online version at www.twinery.org. As before, check your
story formats to be sure Chapbook is present and selected. If it
is not already selected as the default format, make it so. Start
a new story. Set its format to Chapbook if it isn’t that way by
default. You can name your story anything you like. Name the
first passage “Loki’s work.” Here’s some suggested text:

The trickster has done it again, hiding the
hypertext links. Some words lead to [[Asgard]],
some to [[Midgard]], but which? [[Ship]],
[[hammer]], [[meadhorn]], [[goatsbreath]]. You
feel a [[thunder]] coming on.

If you test this story, it will come up in the usual way—black text
on a white background. Te linked words will display red underlining.
We’ll leave the text and background alone, but prepare to go all Loki
on the links.

Tere are several ways to work with CSS in Twine. Tere is a link
in the lef-hand pop-up menu that reads “Edit story stylesheet.” Tere’s
also the possibility of making a special passage and assigning it “CSS”
in its tag feld. Both of these mechanisms work for other story formats

www.twinery.org

 VARIATION 105

like Harlowe, but Chapbook has its own way of doing things—as does
SugarCube, whose CSS features we discuss in chapter P-4.

To change the page styling in Chapbook, frst return to the struc-
ture view. Hover your mouse over the starting passage of your story, the
one with the green rocket. In the pop-up menu, click on the black
triangle or arrowhead, which happens to be the “Test” button. You
should see something like this:

Figure 11: Test view in Chapbook

Two things about fgure 11: First, the large arrow has been added as
a visual aid. Also, the state shown here is one step ahead of our current
progress. Once you’ve brought up the “Test” interface, locate the four
tabs at the top right. Click on the one marked “Style.” Below the tabs,
you should see an option marked “CONFIG,” with a rotated triangle. (If
it’s not rotated, click on the triangle to make it so.) Below that is a text
window containing several lines of code. See where that large arrow is
pointing. Drag over all the lines in that text window, being careful to
select every character. Ten do whatever you normally do to copy text
(CTRL-C, Apple-C, right-click “Copy,” etc.).

For insurance, open a word processor or (preferably) a text editor
and paste in the lines you copied. It might be a good idea to save this
document somewhere convenient like your desktop. Here’s what you
should have in that saved fle:

106 TWINING

--

config.style.page.font: "Iowan Old Style/

Constantia/Georgia/serif 18"

config.style.page.color: "gray-9 on white"
config.style.page.link.font: "underline"
config.style.page.link.color: "gray-9"
config.style.page.link.lineColor: "red-8"

config.style.page.link.active.color: "red-8 on
red-0"
config.style.page.header.font: "16"

config.style.page.header.link.font: "small caps"

config.style.page.footer.font: "16"

config.style.page.footer.link.font: "small caps"

If you’ve worked with CSS before, these lines should look vaguely
familiar. Tey’re not exactly what you see in web coding, but they do
what you might expect, laying down specifcations for several page
elements. For each line, changing the value on the right side of the
colon will alter what we see on-screen. Te idiosyncratic style sheet
you see here is the default installed by Chapbook. We can override it
by installing a copy at a key point within the starting passage of our
story.

◊ Your story will have eight passages if you’re using our sug-
gested text. Seven radiate out from “Loki’s work.” We’ll largely
ignore the child nodes—you can fill them in yourself if this proj-
ect sparks your imagination. Open “Loki’s work.” Reselect all
those “config” lines you copied and set aside. Paste them in

ahead of the prose you entered in our first step. At the end of
your inserted lines, on a separate line of their own, type two
dashes:

Have a cookie or maybe a drink. You have just created your frst
variables section in Chapbook. A variables section, sometimes also

 VARIATION 107

called a variables block, contains programming instructions that will
not appear on the screen. Tere’s no formal term for the visible part
of the passage code. In a web page, it would be the body, so we’ll call it
the text body. We’ll be doing quite a lot with variables and the simple
instruction set that comes with Chapbook, so you’ll see more variables
sections as we go.

Meanwhile, back to the one you just inaugurated. Te instructions
you pasted in provide a basis for the variations we desire. Let’s get to
work.

◊ Find the line for config.style.page.link.font. Change its right-
hand value from “underline” to “none.” (Keep the quotation

marks.)

Now run your story. Te red underline under the linked words has
disappeared, so we’ve made the frst step toward tricking up our links.
However, if you hover over one of the linked words, you’ll see that the
word itself turns red. We can fx that.

◊ Find the line for config.style.page.link.active.color. Change its
right-hand value from “red-8 on red-0” to “gray-9.” (As before,
keep the quotation marks.)

Run your story again. We’ve now gone about as far as we can, using
Chapbook’s confg scheme alone, to disguise the link words. We’ve re-
placed red styling on the active link with an Open Color text color, “gray-9.”
Te efect isn’t perfect. If you’re watching closely, you’ll see that the sys-
tem cursor still changes shape as the reader passes over a linked word.

At this point, our technical tinkering raises a question of design.
Maybe these two levels create just enough uncertainty. Perhaps we just
want our reader/players to look very carefully at the words as they pass
over them. (Which suggests we might be doing something interesting
with spelling or typography later in the story.) Or maybe we don’t want
to make the game aspect of our story too hard. At some point, many if
not most technical decisions become design decisions.

108 TWINING

For the true child of Loki, there is a way to suppress the cursor
change on link hovering, though it involves levels of JavaScript that
go beyond Chapbook and Twine. A bit of web searching should reveal
those secrets, and we leave that sleuthing and experimenting to you.
As for the rest of our story, that’s also yours to imagine. Tose seven
second-level passages spurring out from “Loki’s work” suggest the in-
famous Brillo pad problem we discussed in chapter P-1, but maybe you
can fnd a way to manage them. Maybe it is a golf game afer all.

Example 2.2: The Daily

Tis project makes up for the sprawl of its predecessor by staying within
a single passage. It shows how, working in Chapbook, we can set condi-
tions for the display of certain bits of text using a modifer.

◊ With Chapbook as the default format, create a new story and
name it The Daily. (You can name it anything you like, really.)
When the story opens, double-click on the supplied first pas-
sage and begin editing. Change the name of the passage to

“Good Day!” (In the past, we’ve used systems that ruled out
exclamation points and other special characters in the names
of elements, but Twine is civilized about this.) In the text area of
the passage, type the following:

{now.weekdayName}

Tis is a strange expression, prosaically speaking, so let’s give it some
context. Te main expression is enclosed in curly braces. In Chapbook,
curly braces mark an insert, which is where code comes into contact with
expressive text. In this case, we’re inserting a variable called a lookup ob-
ject. Tis variable exposes certain information that is available to Twine
through the web browser—in this case, the name of the day of the week
on which you are reading this story. Te now object encodes a lot of useful
information about the time of access, including the current time in hours,
minutes, and seconds (no milliseconds—sorry). Tough it’s not important

 VARIATION 109

for this project, it’s worth knowing that any information obtained in this
way is accessed only once when the object is accessed, which for our pur-
poses means when the passage is opened. JavaScript users may be familiar
with similar lookup objects that can be accessed by web pages on the fy.
Chapbook doesn’t support that kind of dynamism. You get only one peek
at the time, so don’t plan anything that involves second-by-second up-
dates, unless you’re ready for advanced JavasScripting. If you’re willing to
wait twenty-four hours for things to change, it’s all good.

◊ Skip a line after the first line and type the following:

[if now.weekdayName === "Sunday"]

Our story begins with a dreadful hangover.

[if now.weekdayName === "Monday"]

Our story opens with a deep sense of dread. Not
again.

[if now.weekdayName === "Tuesday"]

Our story starts out with a certain doomed
resignation.

[if now.weekdayName === "Wednesday"]

Our story figures it might as well get on with
itself.

[if now.weekdayName === "Thursday"]

Our story begins restlessly, eager to be over.

[if now.weekdayName === "Friday"]

Our story wants to know if it's 5:00 yet.

[if now.weekdayName === "Saturday"]

Our story will get back to you after this round
of drinks.

110 TWINING

Tis seems a good time to point out that the lines following the [if]
clauses are arbitrary and replaceable. Apologies if drinking and drudg-
ery aren’t things you can or wish to laugh at. Substitute other forms of
daily variation if you’d like.

As you’ve probably fgured out, this mélange of code and prose pres-
ents a diferent line for each day of the week. In Chapbook, anything
inside square brackets is a modifer. In this case, we’re using seven if
modifers to check the value in now.weekdayName. Tis example shows
some notable features of Chapbook’s coding style. First, notice that a
modifer is a self-contained, one-line expression. Tere’s no need to
wrap the line that follows in any kind of markup. By rule, every line
following a modifer is subject to the conditions of that modifer (in
this case, the if test) unless another modifer occurs. Tere is a special
modifer called [continue] that can be used optionally to disengage the
previous modifer from subsequent text. We don’t need to use it here
because each of our modifers terminates its predecessor, and each
modifer only applies to a single line.

Also, note the triple sequence of equal-signs. If you’ve written any
JavaScript, you probably remember that a double equal-sign is used in
that language to evaluate a variable. Te == symbol asks if the expres-
sion on the lef side is equal to the expression on the right. Because
Chapbook uses the double equal-sign for another purpose, we need
to triple up. JavaScript, Java, and C programmers take note. At some
point, you’ll probably slip up and type == where you need ===. See our
remarks on debugging at the end of this chapter.

Finally, a word about the usefulness of this example, which is ad-
mittedly dubious. People have written games and stories in Twine and
other systems using weekday-sensitive expressions, but it’s a highly spe-
cialized efect. We’re showing it to you here partly to make a point about
testing your code. You could spend 168 hours seeing if your story works
as intended. Or you could change the name value in the frst modifer
to “Monday,” then “Tuesday,” then “Wednesday,” and so forth, checking
each time. You can change your code any way you want in testing. Just
remember to change it back.

 VARIATION 111

Example 2.3: Our Story Unfolds (Stretchtext)

Here’s another relatively simple, one-passage project. We confess to
having had some fun with the writing. Also, despite the Badger State
references, for some reason, this is a Western.

◊ Check to be sure Chapbook is your default story format, make

any necessary changes, and create a new story. Name the de-
fault passage “Our Story Unfolds.” (Or anything you like.) In the
text area of the passage, type the following:

Sheboygan Slim made a {reveal link: 'remark',
text: 'rude and uncalled-for observation about
the dubious parentage of the Kenosha Kid, not
omitting to cast doubt upon the breeding of the
horse he rode in on'}.

Let’s contextualize. We’re using an insert here—curly braces—and
the type of insert is a reveal link. Tis expression places within the pas-
sage text a clickable link that replaces the initial argument—in this case,
the word remark—with whatever follows the text attribute. You can
use double quotes in place of the single ones used here, just be sure to
close your quotes before the fnal curly brace. Leave the period outside
of the insertion.

You can write as much or as little text as you want. Word-for-word
replacements are ofen very efective, though in this case, we’re imple-
menting a concept called “stretchtext,” in which one word or phrase is
replaced by something longer. Te name stretchtext was invented by
Ted Nelson, who coined the word hypertext.

◊ After the first line and insert, add the following:

The Kid {reveal link: "replied.", text: "allowed
as how this being a free country, every honest
feller was entitled to his opinion, but wouldn't

112 TWINING

the gent be more comfortable in some part of the
territory where the Kid's bowie knife wasn't
hard up against his fifth rib?"}

By now you probably understand how this structure works. No-
tice that we pulled the terminal punctuation into the initial argu-
ment because we’re changing it from a period to a question mark
when the second reveal happens. Small details like this matter in
Twine works.

All you need to do at this point is test. Your initial state should look
like this:

Sheboygan Slim made a remark.

Te Kid replied.

Clicking each link unfolds its associated text. One limitation (or
faw) of this example is the possibility of a player opening the second
link before the frst. Perhaps you can think of a way to use this bug as
a feature: could you write a stretchtext that rewards reading from the
bottom up?

Example 2.4: Seamus, or Progress

Tis example is literally a shaggy-dog story. We have known an actual
Seamus, though he never told the joke in question. Tere are two pas-
sages here. We use the [if] modifer and another lookup object, passage.
visits, to control access to the second passage.

◊ Check to be sure Chapbook is your default story format, swap

it in if necessary, and create a new story. Name the default pas-
sage “This Is Where You Are.” (This name is referenced in a link,
so change it at your own risk.) In the text area of the passage,
type the following:

 VARIATION 113

[if passage.visits === 1]

You are in a dimly lit room filled with gray
shapes.

[if passage.visits === 2]

You are in a dimly lit room filled with gray
shapes, one of which is moving.

[if passage.visits === 3]

You are in a dimly lit room filled with gray
shapes, the largest of which is moving rapidly
toward you.

[if passage.visits === 4]

You are in a dimly lit room filled with gray
shapes, the largest of which is human-sized,
covered with fur, and leaping onto your chest.

[if passage.visits > 4]

You are in a dimly lit room with a big, friendly
Irish Wolfhound. Down, Seamus. Nice doggie!

Tat’s a fair amount of typing. Tere’s yet more to add to this frst
passage, but let’s discuss the stack of modifers frst. Tey may look fa-
miliar from example 2.2, where we set up story openings for each day
of the week. Here we’re deploying fve variations for the text of “Tis Is
Where You Are.” One replaces another each time the player clicks the
link at the bottom of the passage (to which we are coming). Tis ef-
fect depends on the lookup object passage.visits, which is a very handy
feature of Chapbook. Te story format code silently maintains a record
of every passage you visit during a given play session, including the
number of times you return. Te variable in question gives us access to
that count. At this point, you may be wondering where we go when we
leave “Tis Is Where You Are.” In fact, you go nowhere:

114 TWINING

◊ Add the following to what you have typed previously:

[[Ticktock ->Next]]

[if passage.visits < 5]

[[Ticktock ->This Is Where You Are]]

Te workings of these new lines require some explanation. As you
can see, they are both standard, destination-specifc hypertext links of
the kind you learned in chapter P-1. However, they have some pecu-
liarities. Te frst link, which leads away from the present passage to
one called “Next,” is governed by the ffh of those modifers you typed
in the frst step, the one that reveals its text only when passage.visits is
greater than four. Tis may create some confusion for those who are
used to if structures with parentheses or braces that mark of what they
afect. (Tanks to Noah Wardrip-Fruin for pointing this out.)

In Chapbook, a modifer applies to everything that follows until
another modifer occurs. A modifer can apply to multiple lines even
when separated by spaces. If we wanted our frst “Ticktock” link to be
independent of the test passage.visits > 4, we could put [continue] on a
new line immediately following. However, we want to ofer the reader
a link to a new passage only if the visit count is fve, when all the pre-
ceding variations have been presented, so we don’t break out of the if
modifer for the frst of our two links.

We disengage the frst test with a second test, this time for a value of
passage.visits less than fve. Chronologically, this may look strange, since
we’re previously covered the end of the game; however, the logic of the
instructions (as we’ve written them, anyway) demands this bit of back-
wardness. Tis second condition covers the frst four loadings of the
page—because indeed, this page is designed to be loaded fve times
in succession. Te second link has the same anchoring text as the link
above it—the phrase “Ticktock”—but its destination is not the external
passage “Next” but the present passage “Tis Is Where You Are.” It is
perfectly acceptable in Twine to link a passage to itself. When the visit
count reaches fve, it is replaced by the frst link.

 VARIATION 115

For the frst fve turns in this story, the player remains at the pas-
sage “Tis Is Where You Are” and each time sees a link at the bottom
labeled “Ticktock.” For a while, it just returns us to the same place,
updated. On the ffh click, “Ticktock” leads to the passage “Next.”
Using the same text for the loop links and the eventual escape is a
design decision. In the grand tradition of interactive fction, where
the diference between “twisty little passages” and “little twisty pas-
sages” has been celebrated (Montfort 92–93), we could have made the
second link text “Tick Tock” (with a second capital T), or “Tock Tick,”
or maybe “Ding!” We’re trying to be subtle here.

It only remains to write that next passage, which we admit is more
than a little ridiculous:

◊ Create a new passage named “Next” and enter the following
text:

_Have I ever told you the one about the priest,
the optician, and the Belgian national anthem?
Seamus inquires.

Yes, well, a talking wolfound. Doubtless, you can think of some-
thing better. Finish and test. Your frst four clicks should advance
through the sequential descriptions. Te ffh should take you to the
second passage.

In closing, we will note that this example shows how you can de-
velop multiple moments or beats of your story without making a tran-
sition between passages. Structurally, this suggests a way to reduce the
number of passages in stories and possibly a means of keeping themati-
cally related bits of your writing in the same unit of the map.

Example 2.5: Seating Chart

In our ffh project, we’ll demonstrate a classic technique from games
and simulations: the consequential combination of two variables.
Tis pattern of logic has a clear application to real life, assuming you

116 TWINING

consider social etiquette and the seating of dinner guests a part of real
life. More to the point, this example shows how to get extensive varia-
tion, and thus replayability, from a relatively compact structure. We’ll
also learn some things about the way Chapbook handles variables.

◊ Be sure Chapbook is your default story format, make it so

if necessary, and create a new story called The Seating Chart
(or what you will). Name the default passage “Table 12.” The

name will be used in a link, so change it with care. There’s a fair
amount of typing in the initial passage, so let’s get some simple
prose out of the way first. Type the following:

You've almost finished the seating chart for
the Bunstables' annual beet roast and Scrabble
tournament. Just two places remain at table 12.

◊ So much for the setup. Now let’s get to the action. Skip a

line and enter the following, being very careful to differentiate
between curly braces and square brackets and to close all sets
of quotation marks.

In the first seat, let's put {cycling link
for: "gent", choices: ["someone","Lord
Magnavox","Nasty Louie","Cousin Sue"]}.

And on the left, {cycling link for: "lady",

choices: ["someone else","Lady Splatt-
Simple","Violet Femme","Second Cousin Laraine"]}.

[[OK then! ->Decision]]

We’re using an insert here called a cycling link, which creates a special
kind of hypertext link. Instead of sending us to a new passage, this link re-
places its current anchor with the next in a list, continuing through the list
each time it is clicked and cycling back to the start. Tis is an enormously

 VARIATION 117

useful design element with great potential for both text variation and the
kind of consequential choices upon which games depend. However, a cy-
cling link is also quite complicated syntactically. It will break if you forget
the colon afer choices, which we do all the time. It will break insidiously
if you forget the colon afer for, introducing your variable. Tat is, the
cycling element will work, but your variable will not be assigned a value.
You need to be very careful when typing out a cycling link.

You can write cycling links without specifying a variable if you sim-
ply want to allow for changes in readable text. We want changes to
have consequences, so we have a variable. Every time the link anchor
changes, its value is stored in the variable specifed by the for: argument.
In the frst instance here, we have a choice of four people for the gent
variable. We get four more choices for lady in the second construc-
tion. (We apply these quaint gender categories with irony—Cousin Sue
counts as a gent—but if the binary is unacceptable, feel free to use dif-
ferent categories: lef/right, north/south?) Te value of the respective
variables will be whatever the player has made it when she clicks “OK
then!” and heads to the next passage.

We’ll get to that passage in a moment, but let’s frst discuss what you
might do with a cycling link. Two sets of four options yield sixteen pos-
sible seating pairs, each of which you might treat diferently. Of course,
remembering the example of our overlinked sentence in example 1.2,
you’re not required to respond to every possibility—as you’ll see, we’re
only interested in a few pairings and will write a generic response to cover
those not featured. Tis strategy of selection makes it possible to ex-
pand the range of choices far beyond 4 × 4; though going to something
like 12 × 12 or 16 × 16 might well be excessive.

What do we intend to do with the pairings we’ve singled out as special?
Tere has to be a moment of reckoning, but that moment won’t necessarily
come in the next passage. Instead, we’ll give our player a pause to refect.

◊ Twine has already created for us a passage called “Decision.”
Open that passage and enter the following text:

You have seated {gent} next to {lady}.

118 TWINING

All we’re doing in this line is confrming the choices the player made
through the cycling links in the previous passage. We store the seating
assignments in variables called “gent” and “lady,” respectively. We use
two variable inserts to bring their values into the visible text. With the
variables announced, we ofer an initial response to the player’s choices.

◊ Skip a line and enter the following:

[if gent === "someone" || lady === "someone
else"]

You do realize 'someone' is not an actual
person, right?

[if gent === "Lord Magnavox" && lady === "Lady
Splatt-Simple"]

They'll SO enjoy reminiscing about how he threw
her younger brother from that balloon.

[if gent === "Nasty Louie" && lady === "Violet
Femme"]

Now THERE'S a pair.

[if gent === "Cousin Sue" && lady === "Second
Cousin Laraine"]

Oh dear. Cousins.

Here we have a series of [if] modifers, very similar to those you
have seen in previous examples. Note the use of Boolean operators.
And (&&) means both conditions must be met for the following text to
be revealed. Or (||) shows its text if either condition is met. In terms of
the story, we’ve decided that the most interesting pairs are Lord Mag-
navox and Lady Splatt-Simple, Louie and Violet, and the two cousins.
We’ve kept the list small to spare you typing; you can probably see how
it could be expanded. Notice that we haven’t accounted for pairs that
contain only one of our interesting parties (e.g., Lord Magnavox and

 VARIATION 119

 --

Second Cousin Laraine). We’ll need to do that in the fnal passage. But
frst, let’s fnish “Decision.”

◊ Skip a line after the previously mentioned text and enter the
following:

[continue]

[[Hmm ->Table 12]]

[[Outcome]]

Te [continue] modifer, which can also be written [cont] or [cont’d],
terminates the modifer that precedes it, which in this case is the test
for the two cousins. As we’ve noted, conditional-display modifers
apply to all the text that follows them, even afer skipped lines, unless
another modifer occurs. Tat’s why we have [continue]. If we didn’t
use it here, our fnal links would appear only when both cousins were
selected. Te links themselves are the standard type. It’s worth not-
ing that we give players an option to rethink their selections at this
point, in a (perhaps feeble) efort to lend the game dramatic tension.
Uncertainty can be fun . . . so long as it’s temporary. Let’s proceed to
the moment of truth.

◊ Twine will have created a new passage called “Outcome.”
Open it and enter the following text:

happy: gent === "Nasty Louie" && lady ===
"Violet Femme"
veryHappy: gent === "Cousin Sue" && lady ===
"Second Cousin Laraine"
unhappy: gent === "someone" && lady === "someone
else"
veryUnhappy: gent === "Lord Magnavox" && lady
=== "Lady Splatt-Simple"

120 TWINING

Once again, you are looking at a variables section, as in example 2.1.
In the last few examples, we’ve dealt only with variables that are auto-
matically created as part of other structures like the cycling link insert.
However, you can also make your own variables, which you do simply
by assigning them a value, using a colon. Remember those crucial two
dashes that divide the variables from the text body.

We create four variables here, refecting four pairings with which
we’re either happy, very happy, unhappy, or very unhappy. Te way we
do this may need some explaining, especially if you’re familiar with
variables from other programming and scripting languages. In Java-
Script, for instance, we might approach the current design problem by
giving a specifc value to a single variable, as shown in the following
code excerpt. Don’t enter this code—it’s for comparison only.

//DO NOT TYPE THIS CODE INTO YOUR STORY!
var outcome = 0
if(gent == "Nasty Louie" && lady == "Violet
Femme") outcome = "happy"
if(gent == "Cousin Sue" && lady == "Second
Cousin Laraine") outcome = "very happy"
if(gent == "someone" && lady == "someone else")
outcome = "unhappy"
if(gent == "Lord Magnavox" && lady == "Lady
Splatt-Simple") outcome = "very unhappy"

Tere are more elegant ways to implement this logic in JavaScript
(e.g., a switch statement), but the point is that Chapbook won’t allow
anything like them. Tat’s because we can’t use if conditions in the
variables section. Te [if] modifer can only be used to conditionally
reveal text, and that can happen only in the text section of the pas-
sage, not up in the attic where we keep the variables. We can speculate
that Klimas made this rule to minimize complexity in Chapbook. It
keeps the system simple for those who aren’t ready for a lot of logical
maneuvers—and crucially, it allows a relatively simple work-around,
which Chris kindly explains in the Chapbook guide.

 VARIATION 121

As you see in the material you did enter, in the code block before
the JavaScript example, we can render if tests unnecessary. Instead of
defning four states of a single variable, we create a variable for each
state and build our conditions into the defnitions of the variables. Tis
compromise keeps things simple but allows for sophistication—one of
the best features of Twine.

◊ With the variables section done and dusted, we can move on

to the text portion of the passage. Below the double dashes that
close the variables section, enter the following text. You can skip

a line after the dashes if you like, though it is not required.

[if happy]

We're sure {gent} and {lady} will get on like a
house afire.

[if veryHappy]

Bringing {gent} and {lady} together is the only
decent thing you have ever done.

[if unhappy]

We're sure something happened, but no one can
remember what.

[if veryUnhappy]

The evil encounter between {lady} and {gent}
was the first step toward disaster.

We can use if conditions here because we are in the main text body,
not the variables section. Chapbook allows us to do conditional check-
ing for the presentation of text—and for that purpose only. Tis code
should be very familiar: it’s a series of [if] modifers providing tailored
responses for each of the four privileged outcomes we’ve laid out. We
slip in the values of lady and gent where they’re interesting and omit
them where they’re not (the generic case). Each text will come up if

122 TWINING

its pairing condition is met—but what happens if the player makes
a match we haven’t provided for (for instance, Nasty Louie and Lady
Splatt-Simple?) Type on.

◊ Skip a line and enter the following:

[if !happy && !veryHappy && !unhappy &&
!veryUnhappy]

The evening was neither triumph nor disaster.

[continue]

{restart link, label: "Start over"}

When it precedes the name of a variable, the exclamation point
means “not.” In Chapbook, the “not” condition is met either if the vari-
able contains the Boolean value false or if the variable has not been
assigned a value. Te condition we match here is compound—all four
must be false or empty. If so, we assume the choice was one in which
we’re not especially interested, and we cover ourselves with an evasive
answer. At the end, we have our now familiar [continue] modifer, then
a structure you haven’t seen, the restart link insert. Tis link has the
same efect as clicking the “RESTART” link in the Twine application: it
wipes out the values of all variables, including passage.visits, and gives
us a fresh start.

Tis example shows what we can do with the simple afordances of
Chapbook, but it also reveals some limitations of that story format. For
the sake of exploration, the fnal two examples in this chapter will set
Chapbook aside in favor of Harlowe, an earlier and in some respects more
powerful alternative. Tere are good reasons to be familiar with more than
one format. Te best way to learn any coding practice is by reading other
people’s code. At this writing, much of that existing code uses Harlowe.
When you look into these other practices, you may fnd some of them
appealing. Remember, though, that it is not possible to mix Harlowe and
Chapbook code structures. (Maybe someday a story format will permit

 VARIATION 123

this. Who knows?) You must declare your story format before beginning
a story. Let’s see what happens if we declare diferently.

Example 2.6: The Changing Room (Harlowe)

◊ Create a new story in Twine and name it The Changing Room
or anything else you’d prefer. Open your story. Along the

bottom line of the Twine window, immediately to the right of
the story title, you’ll find a triangle. Click it to expand a menu. The

third item of this menu is “Change Story Format.” Select that
item and you will see a list of available formats. If you’ve

set Chapbook as your default, it will appear as the current for-
mat for this story. Switch to Harlowe by clicking its radio button.
If you have multiple versions of Harlowe available, choose the
one with the most recent release (e.g., Harlowe 3.1).

◊ Now create a new passage and name it “Changing Room.” No-
tice the Twine authoring interface is unaffected by the change
in story formats. Story formats only affect the way Twine code
is passed to a web browser for display. However, Twine being
an open-source, user-built system, each format comes with its
own dialect of code. The Twine world is a bit like Europe—you
can step across a border and find the language very different
from what you speak back home, so there’s a reason to learn
multiple languages. Consider the following experience a lesson

in language immersion. Enter the following text into “Changing
Room”:

You (either: "are","find
yourself","awaken","begin to
exist","materialize") in (either: "the UNREADY
ROOM","the CHANGE EXCHANGE","a SHIFTY SORT
OF LOCATION","a PLACE of POSSIBILITIES","ZONE
UNKNOWN").

124 TWINING

At frst glance, Harlowe might not look all that diferent from Chap-
book. Tere’s the same in-line mix of programming structures and nar-
rative prose. Looking more closely, you’ll see that Harlowe uses diferent
characters for demarcation—parentheses instead of curly braces and
square brackets. Both of those markers also occur in Harlowe, though
not in the present instance. Te structure you’re seeing here is called an
(either:) macro. Macros are a bit like inserts in Chapbook—they allow
for textual variation according to logical conditions.

Te (either:) macro allows the writer to create a list of elements from
which Twine/Harlowe will automatically select an item at random. As
we’ll see in chapter P-3, the same thing can be done in Chapbook, but
not as elegantly as in this holy macro. As you will surmise, we are inor-
dinately fond of (either:). It’s among the simplest ways we know, in
any coding idiom, of quickly creating a planetary cloud of language,
spinning it up, and seeing what rolls out. Tere is only one thing about
(either:) we can’t completely applaud—its name. In English, the prepo-
sition either should only be used with two alternatives—either my way
or the highway. Include a third option and you need another preposi-
tion. Strictly speaking, this macro should have been called (one of:),
and in fact, there’s a structure with that name, and a very similar func-
tion, in the interactive fction language Inform 7, to which we assign
grammatical bragging rights.

Name-wince aside, consider the power of (either:). Here we’ve ap-
plied it to the main verb clause and predicate of our opening sentence,
but we could give any word similar treatment. While that might once
again cast us back to example 1.2 and its attempt to link all the words,
an extensive use of (either:) is more feasible. It’s only a matter of writing
some quick lists. Let’s do a bit of that now.

◊ Skip a line and enter the following:

There is a(either: " zither","n astrolabe","n
Earthkey"," chef's hat"," trilobite"," ghost
weasel") to the (either: "left","right","nor

theast","windward") of a(either: " large","n

 VARIATION 125

obvious"," cryptic"," throbbing") (either:
"snowman","theater critic","armoire","pyramid","
tank trap").

Needless to say, you don’t have to use the words provided here.
Come up with your own absurdities, by all means. Tough do note the
way we’ve fnessed the a/an problem in the frst and third instances,
adding a space before words beginning with a consonant and a letter
n with a trailing space for words beginning with a vowel. You might
also notice that the option list in an (either:) macro can be as long or
short as you want and that every list is independent—though you will
need to think about possible combinations in case of hookups that are
ungrammatical or unintentionally obscene.

◊ Skip a line and finish the passage:

You can see (either: "a blank wall","an [[Open
Door!->Done]]","nothing of interest","a wall
that is blank","a blankish wall of a wall","a
wall of blankness","the blankest wall in the
world","an unsatisfying wall") here.

[[Change the world . . .->Changing Room]]

Te macro at the start of this fragment should pique your interest.
Te second option includes a link to another passage. Yes, you can in-
clude a link as a possible selection in an (either:) macro. Since this is one
of eight options, and since selections from an (either:) are efectively
unpredictable, it’s possible to run through quite a few iterations before
the link appears. It’s also possible for a player who doesn’t expect the
appearance of the link to overlook it when it does show. In other words,
this is a questionable bit of design. You might want to treat your player
with greater respect.

Finally, you’ll notice that the link at the bottom of the passage con-
nects to the passage itself, functioning as a refresh button. As we’ve

126 TWINING

said, that’s OK. All the (either:) macros operate when the passage is
reentered. Te place reconfgures itself. Te 1:8 lottery for the exit link
is run again—if the player comes up lucky, it’s possible to move on.

◊ The second passage, “Done,” will not be generated automati-
cally because its link structure occurs within a macro. You’ll
need to create it and enter within it the following text. Using
French is optional:

Plus ça change.

[[Try Again ->Changing Room]]

Example 2.7: Carousel

We’ll stay with Harlowe for our fnal example, which uses another tasty
macro called (live:). Like its corresponding structure in Chapbook, the
[afer] modifer, (live:) defnes a span of time between the opening of
the passage and some further transformation. In Chapbook, we’re lim-
ited to the display of text. Harlowe ofers much more range, allowing us
to trigger any other macro afer the delay. Tat includes the intriguing
macro (go-to:), whose counterpart in Chapbook is undocumented and
not ofcially supported. Te (go-to:) macro allows a code-defned tran-
sition from one passage to another without player action. In the sweet,
meticulously turn-based world of Chapbook, that would be outrageous.

Let’s be outrageous. We’ll apologize later.

◊ This project has five smallish pieces. After starting a new story

and setting its format to Harlowe, you might want to create all
five passages. You can name them numerically, “01” through

“05.” (The zeroes are just for show, and in fact, you can name
your passages anything you want, as long as you use the cor-
rect names in your (go-to:) macros.) Open “01” and enter the

following:

 VARIATION 127

Room 01

The Eye of Imus (click: "Eye") [(set: $hasAmulet
to false)]

(live: 2s)[

(if: $hasAmulet is false)[(go-to: "02")]

]

(stop:)

All our rooms will follow the same pattern. Tey will contain an
object—in this case, the Eye of Imus. (Doesn’t bear thinking about.) For
each of these objects, its main noun will be the subject of a (click:) macro,
which plants a special hyperlink on the word or phrase supplied. When
activated, this link sets the value of a variable. We say this with emphasis
because it’s something you can’t do in Chapbook, at least not in such a
direct way. Harlowe allows authors to set and reset variable values within
the passage, independent of passage transitions. Tis means that the ex-
perience of a Harlowe-based story—for instance, Porpentine’s With Tose
We Love Alive, discussed in the next chapter—can be much more eventful
than in basic applications of Chapbook. Possibilities for action abound.

Curiously, the action here sets the value of a Boolean variable,
“$hasAmulet,” to false. (In Harlowe, variable names begin with a dol-
lar sign.) You might expect a click on the name of a mystical object to
activate that object or perhaps add it to our inventory. We could have
provided for these possibilities, but as you’ll see, we only care about that
amulet. Te other four items are MacGufns.

Below the “Amulet” line, you’ll see the (live:) macro. Te argument
“2s” means two seconds. Tat’s all the time the player is allotted in any
of the passages, which all contain a variant of this macro. Afer two
seconds, we perform a test on “$hasAmulet,” and if it is false, we execute
the (go-to:) macro and fip to the second passage (or room). You’ll see a
(stop:) macro on the fnal line here. Tis macro terminates the previous
(live:). Teoretically, the timer will continue to run if we don’t do this.

128 TWINING

◊ Passages 02, 04, and 05 are nearly identical to 01, so let’s

write them in next. Then we’ll come back to the crucial pas-
sage 03. Open each passage in turn and type in the following

text. The only changes are the names of the mysterious objects
and the destination passages in the (go-to:) macros.

For passage 02

Room 02

The Stone of Blarney (click: "Stone") [(set:
$hasAmulet to false)]

{
(live: 2s)[

(if: $hasAmulet is false)[(go-to: "03")]

]

(stop:)
}

For passage 04

Room 04

The Chalice of Malice (click: "Chalice") [(set:
$hasAmulet to false)]

{
(live: 2s)[

(if: $hasAmulet is false)[(go-to: "05")]

]

(stop:)
}

For passage 05

 VARIATION 129

Room 05

The Charm of Bracelets (click: "Charm") [(set:
$hasAmulet to false)]

{
(live: 2s)[

(if: $hasAmulet is false)[(go-to: "01")]

]

(stop:)
}

We’ve already explained the code contained in these passages. As
you’ve probably fgured, they form a loop or carousel, spinning the
player from room to room with only two seconds in each destination.
More about this dubious design later, but frst a technical concern
raised by Dr. Wardrip-Fruin, who we should note has a graduate de-
gree in computer science. He wonders, “What will happen if the word
‘Eye’ [in the frst passage] isn’t clicked within the frst two seconds? Will
we be testing an undefned variable?” (Wardrip-Fruin). Tis question
shows the diference between actual expertise and whatever goes on
in our heads. It also shows the way Twine and Harlowe make life easy
for foolish experimenters. As best we can explain, with recourse to the
debug view that comes with Harlowe, the $hasAmulet variable doesn’t
exist for Twine until something is clicked, at which point its value is
either true or false. We do indeed test for these values in the subsequent
passages, but thanks to Harlowe’s JavaScript roots, it has no qualms
with nonexistent variables. It gives the sofware equivalent of a shrug
and moves on.

However, do not expect such generous treatment from other sof-
ware entities, including Chapbook, which may report an “unexpected
error” when asked to do something with a variable not previously
defned.

Now back to the outlandish design of this project. Why two sec-
onds per passage? We chose that number arbitrarily for purposes

130 TWINING

of demonstration. It’s almost certainly too short, and it raises un-
comfortable questions about ableist game design. Lots of people
have trouble reading short bursts of text in a few seconds or may
need more time to execute a manual response. Arguably, we don’t
need more games like this one, even (or maybe especially) as a
parody. We offer the example with the perhaps foolish hope that
its autotransition mechanism may be used for more humane pur-
poses. See, for instance, Anna Anthropy’s Queers in Love at the End
of the World, about which we will have more to say in the conclu-
sion of this book.

◊ For whatever it may be worth, let’s finish the Carousel of Story

by entering the following text into passage 03:

Room 03

The Amulet of Immobility (click: "Amulet")
[(set: $hasAmulet to true)]

{
(live: 2s)[

(if: $hasAmulet is false)[(go-to: "04")]

(else:) [Congratulations, you have stopped
the Carousel.]

]

(stop:)
}

Tere are only two small variations here. Clicking on “Amulet” sets
“$hasAmulet” to true, which deactivates the machinery of dislocation.
In recognition of this fact, we set an (else:) macro below the (if:), catch-
ing the happy condition and reporting the same.

And so we have whirled our way from Chapbook to Harlowe and
from simple hypertext to dynamic games. In the next chapter, we
take a similar journey, this time on the theoretical and critical side,

 VARIATION 131

considering how Twine’s various trajectories intersect the grand arcs
of literature and culture. Bring the amulet.

Before you go, however, there’s a subject we need to discuss at the
risk of raising some anxiety—and you thought you’d heard Tat Talk.
We need to say some things about debugging. Code requires close at-
tention to both details of expression (syntax) and arrangement of in-
structions (logic). You may need some practice to work up this kind of
attention. Even for experienced hands, mistakes are inevitable, so let’s
consider how to manage them.

Debugging

Tere are basically two ways things can go wrong with a Twine project.
Sometimes a story works, meaning it does not report any fatal errors but
doesn’t work as intended. Tis is usually a problem of logic or design.
We’ll talk about those problems in a bit. First, let’s discuss the more com-
mon and annoying source of trouble, which is ofen typographic—you
forget a character or type the wrong one. Te result, in the current ver-
sion of Chapbook, is what we call the Pink Screen of Pain:

Figure 12: “Unexpected error” report in Chapbook

When code is not written properly, Chapbook reports an “unex-
pected error”—now there’s an irony!—which can be as useful as your
mechanic saying “that wasn’t good” as smoke pours out of your car.
Te error window does include two links, “Go back” and “Hard re-
start,” that sometimes prove useful, though in many cases (for instance,
when there is no previous passage), they don’t help at all. In most cases,
you’ll need to dig through your code to fnd technical or syntactical
mistakes.

132 TWINING

If you use the “Test” feature instead of “Run,” Chapbook will open
a debugging window that may ofer a more detailed error report. For
instance, it might say something like

SyntaxError: missing] after element list

Tis hint alerts us to look for structures that use square brackets and
take the form of lists, including arrays. As a general rule, you should look
closely at (parentheses), [square brackets], and {curly braces}; try not to
mix them up; and make sure that each lef-hand character has a right-hand
counterpart. In the case of expressions where both [] and {} are required,
such as the cycling link in Chapbook (example 2.5), you may want to have
a reference document like the Chapbook guide open in your browser. We
ofen forget even basic syntactical forms if we haven’t written code for a
while. You don’t need to memorize rules if you can look them up.

If your code contains several complicated expressions, and thus
multiple openings to error, here’s a technique to try. Suppose you have
a pair of variables containing extended lists in the form of arrays with
lots of typographic complexity. Open a document in a word processor
or (preferably) text editor and cut one of the variables out of your code,
storing it in the document outside of Twine. If your story runs with-
out error afer the change, you know where the problem is. Sometimes
you’ll have to make multiple cuts and replacements to get things right.
You might think of this process as cornering the bugs.

Once you’ve dealt with each all-too-expected error, you can move
on to the more mysterious problems of logic. Te only way to solve
these is to think through your code and its consequences step by step.
An example of that thinking occurs at the end of example 2.7, where we
mention a critical note on our code given by an experienced sofware
designer. He caught a legitimate faw in our design by mentally inspect-
ing the state of the system at a certain moment of operation. You may
fnd yourself thinking in code afer a while. (If you start dreaming in
code, maybe you need a break.)

Talking about debugging is essential, though as we said, it may
raise anxiety. Te best nonchemical antidote to anxiety is playfulness.

 VARIATION 133

Screwing up code on your local device is unlikely to have terrible con-
sequences in the larger world. Yes, it can darken your mental weather,
but hopefully, that weather is changeable. So fail boldly if not better. No
error is ever unexpected. You’re going to foul things up. Tere’s a reason
that programmers use the names foo and bar for test variables—as in
FUBAR, efed up beyond all repair, which is the fate of most complicated
systems sooner or later. Fixing those systems can be pleasurable. Even-
tually, you may even learn to smile at your mistakes. Tey have value.
Ofen we need to make mistakes to investigate and learn. Try to experi-
ence the pink screen without pain—frustration may be unavoidable. Te
root word of error means wandering, which can also mean exploring.
Tere’s plenty of that still ahead.

You still have the amulet, right?

Works Cited
Hayles, N. Katherine. “Virtual Bodies and Flickering Signifers.” October 66 (Autumn

1993): 69–91.
Joyce, Michael. Of Two Minds: Hypertext Pedagogy and Poetics. University of Michigan

Press, 1995.
Kay, Alan, and Adele Goldberg. “Personal Dynamic Media.” In Te New Media

Reader, edited by N. Wardrip-Fruin and N. Montfort. MIT Press, 2003, 391–404.
Manovich, Lev. Sofware Takes Command. Bloomsbury, 2013.
McLuhan, H. Marshall. Understanding Media: Te Extensions of Man. McGraw Hill,

1964.
Montfort, Nick. Twisty Little Passages: An Approach to Interactive Fiction. MIT Press,

2003.
Wardrip-Fruin, Noah. Personal correspondence. April 28, 2020.

CHAPTER T-3

Twine and the Question
of Literature

Legacy?
Pfffffffffffffffffffff!

—Xalavier Nelson Jr.

Whoever

Twine is generally described as a tool for telling stories that involve
what Espen Aarseth calls “non-trivial” engagement or, as it is familiarly
known, interactivity (Aarseth, Cybertext 2). Writers using Twine have
made and continue to make compositions of striking vision and sophis-
tication, covering a range of expressive possibilities. Tere are richly
conceived science fction stories like Jedediah Berry’s Fabricationist
Dewit Remakes the World (Berry) and Tom McHenry’s Tonight Dies the
Moon (McHenry). Tere are deep excursions into fantasy, such as Kevin
Snow’s Beneath Floes (Snow), Porpentine’s Howling Dogs (Porpentine,
Howling) and With Tose We Love Alive (Porpentine, With Tose), the
latter a subject of this chapter. Some works interrogate terms and tech-
niques of interactive storytelling, as in Michael Lutz’s My Father’s Long,
Long Legs (Lutz), which visually tunnels into narrative, and D. Squinki-
fer’s Quing’s Quest VII: Te Death of Videogames (Squinkifer), which

136 TWINING

asks hard questions about the putative ends of play. Twine writers have
created parodic tours de force, including Porpentine’s Ultra Business Ty-
coon III (Porpentine, Ultra Business Tycoon III), Kris Ligman’s You Are Jef
Bezos (Ligman), and Jon Bois’s Bill Belichick Ofseason Simulator (Bois).

Te appeal of Twine crosses literary generations, as in the work of
John McDaid—to which we are coming—or Richard Holeton’s Twine-
based autobiography (Holeton). Resonance and references can im-
plicate nondigital work as well. Tonight Dies the Moon opens with a
sardonic quotation from David Barthelme; Howling Dogs begins with
a long passage from Kenzaburo Oe; You Are Jef Bezos is both a striking
piece of social commentary and an homage to Kafa’s Metamorphosis.

Tis chapter asks a controversial question: Can Twine works be
thought about as literature? In some ways, the obvious answer might
be no. Many if not most Twine creators call their works games, not fc-
tions, essays, or plays.1 As Astrid Ensslin and others have pointed out,
game and story need not be exclusive categories, and the categorization
itself can be questioned (Ensslin). Darius Kazemi, Twine writer and
game critic, has wisdom on this point:

I guess what I’m trying to say is: if games AREN’T working for you as a
tool for creative expression, don’t give up on games, but also try some
other stuf. Don’t try and bend ideas to ft into the mold of “game.”
MAYBE try and bend “game” to ft to your idea, that might work (I’m
thinking of Twine games here, which bend the concept of game so
much that it makes traditional game designers cranky that the authors
have the audacity to use the word “game.” Tis also works in the other
direction: please think about whether your Twine game should be an
essay instead.) (Kazemi)

Arguably, Twine works bend more than just the concept of game.
Tey ring changes on culture generally and writing in particular. For

1 Te term poem might remain in play. Porpentine refers to Pierre Chevalier’s Destroy /
Wait as a “poem” in a comment. Anthropy has a category for “Game Poems” on her
website. Outside of the Twine world, Bogost has published a series of Atari games meant
to be understood as poems (Bogost).

TWINE AND THE QUESTION OF LITERATURE 137

that reason, they are hard to write about. As we have said, one of the
things that makes this book such a strange combination of impulses
is the way Twine sits between cultural identities—story and game, art
and entertainment, personal statement and commercial production.
Categories are not good tools for thick description. Te emergence of
Twine as a creative platform, itself part of a sofware subculture that
includes things like interactive fction, the demoscene, e-poetry, and
metagaming, is, as Johanna Drucker says of all digital writing, less en-
tity than event (Drucker). Te event is still in progress.

Twine creations are many things. Teir frequent use of meaningful
choices brings them very close to games, as some have defned them.2

Tey may include images, sound, and temporal efects that make them
comparable to flm.3 For the most part, though, Twine works use words
to describe characters and tell stories. Tis begins to look like literature,
though the recognition may be more of resemblance than identity.

As our epigraph from independent game designer Xalavier Nel-
son Jr. reminds us, people who make things like Twine games ofen
distrust terms like legacy. Tese creators are part of an active, vital art
movement that lives very much in its early century moment, still un-
folding and far from conclusion. And yet, as Nelson went on to say in
the same talk, “I’m going to DIE one day”—not for a long, long while,
we hope, but the sentiment is as real as it is universal (Nelson). We
all live in time, bringing anxieties to any moment. Te discomfort is
twofold: legacy points backward as well as forward. We inherit as well
as bequeath. Te problem of the timeline can’t be dismissed, even with a
much-extended Pff.

Trying to wind Twine works around some traditional literary axis
may be as risky as fling jazz under American popular music or calling
the Marvel Cinematic Universe (MCU) cinematic. Tose descriptions

2 See the discussion of this criterion in Juul’s Half-Real, Myers’s Games Are Not, and
Consalvo and Paul’s Real Games. Te question of what is and is not a game has been
vexed by the Gamergate culture war. Here as elsewhere in this book we refer to various
constructions nonexclusively. Meaningful choices are one way to defne games, but not
the only way.

3 See chapter T-5, where we discuss Claudia Lo’s reading of Queers in Love at the End of
the World via slow cinema.

138 TWINING

are valid, but they need unpacking. Technically and aesthetically, the
digital fantasies of the MCU lie a long way from the heyday of smoke-
flled movie houses and celluloid flm.4 It might be more accurate to
say, as flm theorists have largely decided, that digitally rendered works
redefne cinema (Gaudreault and Marion 154). As for jazz, it is every bit
as American as chattel slavery. It is the signature of a nation that should
never have been, or ever again be, dedicated to whiteness. Both cases
teach us this: time keeps running, but there’s no escape from history.

Over multiple generations, any art is a dynamic system. Its state will
change both in gradual increments and abrupt, shearwise jolts. Such
disruptions involve both memory and forgetting, and their tension gen-
erates waves of irony. My frst lesson in this efect came when I was very
young, listening to a song by Paul Simon called “A Simple Desultory
Philippic (or How I Was McNamara’d into Submission).” First written
in 1965 and revised for the album Parsley, Sage, Rosemary and Tyme,
the song is a broad, talking-blues send-up of Bob Dylan (Simon and
Garfunkel). In an unmistakable twang, Simon reels of topical jokes on
the way to a fnal epiphany:

I’ve paid all the dues I’m going to pay
’Cause I learned the truth from Lenny Bruce
Tat all of my wealth won’t buy me health
So I smoke a pint of tea a day

I probably heard these words in 1969 or 1970. Like many prod-
ucts of the sixties, the “Philippic” aged too fast. Even then, it needed
decoding—Lenny Bruce, celebrated bad boy of standup; Robert S.
McNamara, major architect of the Vietnam war; tea, another word for
pot; but what else was Simon going on about? At that moment, Dylan
the protest-hero felt even more mythical than the recently broken-up
Beatles. My barely teenage self couldn’t process the cultural grudge, and
the second part of the song made things murkier:

4 Te exquisitely classical screen kiss that ends Avengers: Endgame proves this by
exception.

TWINE AND THE QUESTION OF LITERATURE 139

I knew a man, his brain was so small
He couldn’t think of nothing at all
Not the same as you and me
He doesn’t dig poetry
He’s so unhip that when you say Dylan
He thinks you’re talking about Dylan Tomas
Whoever he was

Tough it probably explains a lot, please set aside the tiny tragedy of
a seventies teen learning stale material. Focus instead on Simon’s cul-
tural unpeeling—“Dylan Tomas, whoever he was”—but remember, no
internet. In 1970, if you were lucky and relatively privileged, a parent or
teacher might tag the Welsh poet (1914–53) and quote something more
interesting than “Do not go gently.” You could then appreciate the shade
in Simon’s lyrics, the way they call out a counterculture hooded in his-
torical blindness. At the very least, you could feel the divide between old
world and new, even as, confusingly, you sensed the truly hip denied it.

History favors convergence. Fify years later, we had the hyperirony
of Bob Dylan’s 2016 Nobel Prize for Literature, desultorily accepted a
year later, which put the business of 1965/1966 in rather a diferent light.
Dylan/Tomas: “assuming that’s a distinction you observe, heh heh,”
to quote that other prophet of the terminal sixties, Tomas Pynchon
(Pynchon 411). Cultural fssures inevitably appear, displacing now from
then, but countervailing forces bend toward atonement.

What, you may ask, do these vinyl memories of the very late sixties
have to do with Twine writing, born and bred in the next century? It is a
question of history, if not legacy. Te Twine platform and the writers
who distinguish it are at least convergently millennial, but the story
to which they belong begins well before 2001. Te code resources on
which Twine is based, HTML and JavaScript, date from the late 1980s
and mid-1990s. Te internet protocols that underlie them were indeed
mid- to late-sixties productions (see Galloway). Tere is a history here.

Art tends to involve precedents. Te kind of storytelling com-
monly done with Twine has three main ancestors: game books
(choose-your-own-adventure stories), parser-based text adventures

140 TWINING

(interactive fctions), and hypertext fctions. A popular novel with op-
tional reading schemes was published in 1930 (Hopkins and Webster).
Game books for younger readers became broadly popular in the 1970s
(Nikolajeva). Interactive fction made its debut in procedural narratives
like Oregon Trail in 1971 (Rawitch, Heinemann, and Dillenberger) and
Colossal Cave Adventure (Crowther) fve years later.5 Hypertext fction
began in the mid-1980s with Judy Malloy’s Uncle Roger (Malloy) and
Michael Joyce’s afernoon: a story (Joyce, afernoon).

Opinions difer about whether these works belong to literary his-
tory. At a certain point in the early history of digital fction, it was
fashionable to accuse them of debasing literature (see most notoriously
Birkerts). Nonetheless, fgures associated with hypertext, such as Joyce,
Shelley Jackson, and John McDaid, have identifed mainly as fction
writers. Montfort aligns interactive fction with the ancient poetic genre
of the riddle (Montfort 14). Aarseth argued for an “ergodic literature”
that includes interactive fction and word-based virtual environments
(Aarseth, Cybertext). Afer the turn of the century, however, Aarseth
helped establish the independence of computer games from litera-
ture and other prior arts (Aarseth, “Computer Game Studies”).

Tese uncertainties also afect the Twine world. Some infuential Twine
creators moved into game design afer bad experiences in college creative
writing programs and game-design academies (see Anthropy’s comments
in Rise 95). Afer Gamergate, Twine work has been strongly associated
with independent, insurgent game creation, especially queer gaming. As
merritt k says in the indispensable manifesto/anthology Videogames for
Humans, “Many of the fgures who have risen to prominence in Twine
circles are trans women. Tat trans women are recognized as the leaders
of an artistic scene is a fact worth appreciating in its own right” (merritt k
12). We will say more about these connections to resistant and alternative
culture in the rest of the book, especially chapter T-4. Te present chapter
looks the other way across this divide, connecting Twine works at least
tentatively to a literary ethos—though with the present very much in mind.

5 As Salter points out, this millennium-adjacent cohort is ofen described as “the Oregon
Trail generation.” See https://mashable.com/2015/05/21/oregon-trail-generation/.

https://mashable.com/2015/05/21/oregon-trail-generation

TWINE AND THE QUESTION OF LITERATURE 141

In this, we are responding to another point raised by merritt k, who
hopes to promote “more communication and crossover between fringe
game design and literary communities” (merritt k 18). Communication
never comes without the risk of misunderstanding or disrespect, especially
in a cultural crisis. We need also to remember Brice’s poignant survey of
the literary landscape, already cited but worth repeating here: “Boundar-
ies, bones of old men before us, are only there to be transgressed” (Brice).
Tis chapter unearths various bones and pays some attention to old men,
real and imagined. It does so, we hope, in the spirit of connection merritt
k evokes—though this is hard. Reaching across historical gaps creates that
efect Jacques Derrida punningly called “hauntology.” In doing hauntol-
ogy, we need “to learn to live with ghosts, in the upkeep, the conversation,
the company, or the companionship, in the commerce without commerce
of ghosts. To live otherwise, and better. No, not better, but more justly.
But with them. No being-with the other, no socius without this with that
makes being-with in general more enigmatic than ever for us. And this
being-with specters would also be, not only but also, a politics of memory,
of inheritance, and of generations” (Derrida xviii).

Ghosts pose a serious problem for rationalist-materialist theories of
existence—much the same problem, Derrida also taught, that lies in
language itself. Tere is no “genuine being-with the other,” no way past
the enigma of otherness—whoever he was—and yet we persist in nam-
ing names. We tell ghost stories. Like cinema’s illusion of motion, the
act of naming invokes false presence and dubious ancestries. Unto every
Dylan, there will be some Tomas—doubtful if not doubting, and tech-
nically speaking no relation, except that in language and literature, there
is nothing but relation, however vexed. Te house of Twine is haunted.

Final Fictions and Delta-T

Postmodern haunting is complicated. Our ghosts no longer show up in
the Dickensian holiday three-pack, but come instead in trickier, fractal
numbers. Te return of the repressed may cross hauntological regis-
ters in strange, Escher-like loops. Tese radical efects are captured in
a work called We Knew the Glass Man, written by John G. McDaid and

142 TWINING

crafed in Twine with the assistance of his son, Jack McDaid (McDaid,
Glass Man; all other citations of this work are given in the text by pas-
sage name). Te title, which refers to Wallace Stevens’s “Asides on the
Oboe,” names an ancestral presence of literary modernism whose efect
on the work we will explore (Stevens). In its own way, McDaid’s Glass
Man recapitulates the Dylan/Tomas logic, folding Stevens’s modernist
abstractions over other cultural signatures—science fction, psychedel-
ics, occultism, garage-band rock, and, crucially for our purposes, Twine.

Tere is a literal haunting in the work. To echo our earlier catchphrase,
the signature of Glass Man might well be “whoever he was,” with notable
slippage under the pronoun. Te question applies most directly to Tyrell
Rand Walker, the main haunt of the story. Walker (“Ty”) was a friend of
the unnamed narrator from their days at Syracuse University. As old read-
ers of Sunday comics will recognize (see Falk and Herman), his surname
might as well be Phantom, the Ghost-Who-Walks. His given name echoes
the maker of the replicants in Ridley Scott’s Blade Runner and in shortened
form suggests connection or binding (“tie”). Te middle name remains
mysterious—Ayn Rand? Janice Rand from Star Trek? “Rand” for random
(as we will see)? Tis guesswork seems appropriate, as Mr. Walker is made
of mysteries. He seems to have died six times under diferent circum-
stances. Tese details are given in various funereal passages of Glass Man:

1. Drowned in the surf of Cape May, New Jersey (“Unitarian
Church in Fayetteville”)

2. Fell to his death from a water tower while tripping on acid
(“Eighteen”; see also the passage “Remain in Light,” where the
same scene ends without the fall)

3. Drove into a tree in Prospect Park, Brooklyn (“It Was Quick”)
4. Blown up on TWA Flight 800, July 17, 1996 (“Beach at Coney

Island”)
5. Sufocated in his sleep by a fre that destroys 219 Clarendon

Street (“A Jar in Tennessee”)
6. Died at home of undisclosed causes in 2016 (“Cemetery of

Last Resort”)

TWINE AND THE QUESTION OF LITERATURE 143

Tis narrative uncertainty registers how, in every sense of the
phrase, times have changed. Heterocosms, inconsistent or causally
divergent world-models, were popular in the last century. We could
point to postmodernist fctions, from Virginia Woof ’s Orlando to Mark
Danielewski’s House of Leaves, or just as plausibly to popular entertain-
ments, from Rashomon to Spider-Man: Into the Spider-Verse. In this
new century, multiversal thinking seems to be on tap wherever sto-
ries are told. Hypertext fction is certainly part of this phenomenon,
and Twine along with it. Because hypertext usually implies a graph, we
might begin by reading from the map:

Figure 13: Structure map of We Knew the Glass Man

144 TWINING

Tis is the story structure of We Knew the Glass Man as it appears
when the output HTML fle is opened in Twine. Much can be learned
about the design of the story from this graph. Tere is an initial track
from “Splash Screen” (far lef) to a passage from which many lines ema-
nate, with an equal number returning. Tis passage is called “Nighttime
in the Switching Yard,” echoing the title of a Warren Zevon song. Zevon is
another of the whoevers haunting this story. To the lef of the Switching
Yard lie fve linear tracks, each containing at least one of the death sce-
narios (the frst track includes both “Unitarian Church in Fayetteville”
and “Eighteen”). At far lef are two passages without linking lines—and
though they are important, we will pass over them for the moment.

Each of the extended tracks ends with a passage that loops back
to the Yard. Tese ends-of-the-line have numinous names: “Orphic
Egg,” “Anguinum,” “Glain Neidr,” “Aleph,” and the defnitive “Egg Mac-
Gufn.” Each passage begins with the same sentence, then diverges.
Tey describe a relic passed down to Ty Walker from Arthur “Buddy”
Newkirk (more about him presently). Te nature of this object is hazy:
it is an ancient Greek magic stone, a Druidic talisman (twice), a chip
of the Egg Stone of Glastonbury, or a totem of unknown properties
and origin, vaguely recalled. Te echoing endpoints round out the plan
shared by all fve lines—begin with a reminiscence, arrive at death and
a funeral, fnish with the arcane object.

McDaid alludes more than once to Jorge Luis Borges’s story “Te
Aleph,” but the structure of Glass Man also recalls another Borgesian
model: the “heap of contradictory drafs” that is the talisman of
“Te Garden of Forking Paths” (Borges 24). Tis literary assemblage, the
fantastic novel from which the story takes its name, appears to violate
causality—major characters vanish suddenly, change unaccountably, or
reappear afer dying. Te apparent inconsistencies are intentional, illus-
trating a radical theory of time: “Unlike Newton and Schopenhauer, [the
novelist] did not think of time as absolute and uniform. He believed it an
infnite series of times, in a dizzily growing, ever spreading network of
diverging, converging and parallel times” (Borges 28).

In much the same way, McDaid’s Glass Man seems ontologically
incoherent. Ty Walker dies in 1981, or 1996, or 2016. He meets his fate

TWINE AND THE QUESTION OF LITERATURE 145

outside of Syracuse, in Brooklyn, on a doomed airliner headed for
France. Readers run into all these possibilities as they move from pas-
sage to passage, which brings us to the navigation scheme of Glass Man.

Once readers have passed from the Switching Yard onto one of the
fve linear tracks, there are two mechanisms for movement through
the text: a button or pair of buttons to the lef of the body text6 and a
linked expression at the end of the passage. Te buttons are marked
with a three-dot sigil, either ∵ or ∴. Tese symbols are conjunctions
from symbolic logic that mean because and therefore, as hovering
glosses on the buttons indicate. In a work that plays fast and loose with
causality, these linear operators are inevitably ironic. Te operator but-
tons allow movement either back to the previous passage (because) or
to the next in the current line (therefore), but this arrangement does
not imply cause and efect. Setting these buttons aside, the reader can
advance to the next destination by clicking an expression that occurs
at the end of the body text:

Δt7

Like the pseudological buttons on the lef, this in-text operator car-
ries a double sense. In physics, delta-t indicates change over time—and
indeed, clicking this button does advance the timeline of the current
reading, though it may as easily take us back to something we have
seen as forward to unread material. Linear references are misleading in
this text. Tere is another way of understanding “change” and “time,”
if we factor in Borgesian possibilities. In addition to in, over, or through,
we might also consider of—a change of time, time-streams, or continu-
ities. Both “Te Garden of Forking Paths” and We Knew the Glass Man

6 Te appearance of these buttons is governed by one of the two unlinked passages in
the story structure—the lower one that appears blank. It actually contains JavaScript
instructions that assign the buttons their symbols and functions.

7 Te Δt expression has its most famous literary use in Pynchon’s Crying of Lot 49 (1966),
where it is associated with end-stage alcoholism (delirium tremens, or the DTs) and a
possible visionary experience. McDaid alludes to this dark magic at several points in
Uncle Buddy’s Phantom Funhouse. Δt is also the logotype of McDaid’s personal brand,
Torvex Communications—as might be expected of a science fction writer with a
recurrent interest in time travel.

146 TWINING

humanize post-Newtonian time. Borges evokes the tragedy of a descen-
dant who must assassinate the man who tells him about the greatness
of his ancestor. McDaid ofers a more prosaic tragedy, suspected senile
dementia:

My neurologist, Dr. George Zanniger, is an ass. Te kids, convinced
that my memory is shot, set me up with an appointment. In unctuous
doctor-speak, he spooled out his “As we get older,” speech. Reviewed
my med list. Made me touch my nose. Stand on one foot. Take the god-
damned Montreal Cognitive Assessment. Yes I can count backwards
from 100 by sevens. Draw a watch. Recite the Invocation of Mnemo-
syne: Face Velvet Church Daisy Red.

He wrote me up for a brain MRI, which will almost certainly show
absolutely nothing. Modern medicine is the apotheosis of analytic
hubris. If I recall counterfactuals, if there are acausal lacunae in my
narrative timeline, it is not beta amyloid or TIAs. (“My Neurologist
Is an Ass”)

And so we arrive at another variation on whoever he was: our name-
less narrator, beset with plaques or brain bleeds—or a condition best
diagnosed in the Twilight Zone. If we follow his insinuation, he is not
just “unstuck in time,” in Kurt Vonnegut’s phrase, but adrif across a
series of timelines (Vonnegut).

Te narrator of Glass Man is haunted by stories, or the sketchbook
approximation of stories, or maybe by narrativity itself. Just as plausibly,
though, we can trace his problems to bodily jeopardy, the fraught expe-
rience of an aging man in an old house. Hauntings ofen involve houses,
and this is especially the case with Glass Man—though as Huckleberry
Finn might say, you will not fully appreciate the reference unless you
have read Uncle Buddy’s Phantom Funhouse by Mr. John McDaid.

Te Funhouse is an artifactual hypernovel consisting of paper docu-
ments, audio tapes, and a set of digital fles created with Apple Comput-
er’s long-obsolete HyperCard application (see Moulthrop and Grigar).
It was published by Eastgate Systems as a multimedia assemblage in
1993 (McDaid, Uncle Buddy’s). Prefguring both the surreal architecture

TWINE AND THE QUESTION OF LITERATURE 147

of House of Leaves (Danielewski) and the unpeopled spookiness of
Gone Home (Gaynor), Funhouse incorporates a digital memory palace,
a hyperlinked image that maps its sofware components onto regions
of an old house. As in Glass Man, there are multiple dimensions to this
hauntology. Te virtual house and its textual contents are conveyed to
the reader as the literary estate of a vanished writer, Arthur “Buddy”
Newkirk, described as a relative we may not remember because of
“lapses of memory or other unspecifed divergences” (“READ ME
FIRST”). Te Newkirk of Funhouse is a contemporary of the Syracuse
crowd, front man and songwriter for the punk band called the Reptiles.
In Glass Man, he is an older, semilegendary science fction writer whom
Ty’s friends regard with some awe, whose main role involves passing
the MacGufn to Huck. What this revisionist history means for the
fcto-biography of John McDaid is perhaps of interest mainly to his
fans. Sufce to say that the twenty-frst-century Twine work Glass Man
is haunted by prior art, especially hypertextual experiments from three
decades back. In a sense, all Twine works share this haunting, whether
they know it or not.

Hypertext linking—the association of words, phrases, and images
with code that replaces or transforms the initial text—operates in
Funhouse through the HyperCard “stacks” that make up its digital ar-
chive. Although there are sequential links in most of these stacks, there
are also disruptive and digressive links on words, phrases, or images,
making the experience of reading Funhouse polylinear. In Glass Man,
hypertext is applied less fancifully, with most passages limited to the
linking scheme already described. Tis limited connectedness points
away, perhaps, from the experimentation of the mid-1990s toward older
conventions of print fction.

Tat shif may be related to the conceptual basis of the work. Glass
Man was published in an ongoing project of the literary journal cream
city review called i0, showcasing works in which print and digital ele-
ments are equally important. A page-bound version of McDaid’s story
appears in the print edition of the journal. In design and execution,
We Knew the Glass Man is a hybrid, bridging the domains of book and
sofware, haunted equally by technology and literature.

148 TWINING

In this sense, the major ghost of Glass Man, Tomas to its Dylan, is
the modernist poet Wallace Stevens.8 McDaid takes as an epigraph the
opening of “Asides on the Oboe,” a short poem written in 1940 and pub-
lished in the collection Parts of a World (Stevens). For what it’s worth,
Harold Bloom considers this volume “Stevens’ most underrated book”
(Bloom 136). Te poem is nearly contemporary with Borges’s “Garden
of Forking Paths,” published in 1941, though the texts are related (if
at all) only through the idea of a “fnal,” or as Stevens would later say,
“supreme fction”:9

Te prologues are over. It is a question, now
Of fnal belief. So, say that fnal belief
Must be in a fction. It is time to choose.

Tat last sentence stands out—maybe perversely so, if we think for
a moment like a certain hard-core traditionalist. Stevens is a model
of erudition and “quiet authority” on whose work critics like Bloom,
J. Hillis Miller, and Helen Vendler have honed their critical insights
(Vendler). He is the acknowledged master of difculty and abstraction.
According to Vendler, when a colleague complained of not understand-
ing Stevens’s writing, the poet replied, “Tat doesn’t matter; what mat-
ters is that I understand it” (Vendler). In other words, Wallace Stevens
is not a writer to take literally.

Yet when Stevens’s injunction to choose occurs in a work of digital
fction, it has to be taken that way. An important part of the ancestry of
Twine and other platforms for branching narrative lies in game books

8 McDaid’s overt engagement with Stevens inevitably recalls Jessica Pressman’s important
thesis about “digital modernism,” in which contemporary writers “[adapt] literary mod-
ernism as a means for challenging the status quo of electronic literature and our assump-
tions about it” (Pressman 303). However, Pressman has in mind “works [that] use central
aspects of modernism to highlight their literariness, authorize their experiments, and
situate electronic literature at the center of a contemporary digital culture that privileges
images, navigation, and interactivity over narrative, reading, and textuality.” Her primary
example is the cine-poem DAKOTA by Young-Hae Chang Heavy Industries, very dis-
tinct from the narrative emphasis of hypertext fctions and Twine games.

9 Tis phrase comes from “Notes toward a Supreme Fiction,” published in Transport to
Summer (1947).

TWINE AND THE QUESTION OF LITERATURE 149

or choose-your-own-adventure stories, where the “time to choose”
comes at the end of every narrative unit, as it does in Glass Man. Te
cultural gulf between Wallace Stevens and game books is about as great
as anyone could imagine. Tere are those who lament that divide and
those who have tried to erase it.10 Notable among these is Aarseth,
whose study of procedural narrative is based partly on Te Money Spi-
der, a game-book from the 1980s (Aarseth, Cybertext 69–70). McDaid’s
cultural politics align with the levelers, which makes his appropriation
of Stevens odd and at least partly ironic. “It is time to choose,” but de-
spite the simplicity of the sentence, its application to McDaid’s story is
deeply complicated—and perhaps not so literal afer all. In Glass Man,
both time and choice defy simple understanding.

Ty Walker has six histories and six catastrophes. Tere is no clear
way to diferentiate one from another. Te deceptively linear structure
of the work tilts toward seriality but leaves the reader and narrator in
a state of haunting or defective memory. Which time? What time?
How do we choose among them? McDaid’s story is fundamentally
anxious, yet if we turn to Stevens, we fnd the opposite, a movement
toward fnal clarity. Tere is considerably less uncertainty about its
central fgure:

In the end, however naked, tall, there is still
Te impossible possible philosophers’ man,
Te man who has had the time to think enough,
Te central man, the human globe, responsive
As a mirror with a voice, the man of glass,
Who in a million diamonds sums us up.

“Te man who has had the time to think enough” can be applied to
McDaid’s story, but with questionable results. Ty Walker has apparently
had several worlds and times, and we can wonder if the narrator will
ever be able to think enough about this enigma. Te “central man” of

10 See the much more nuanced account of contemporary canon formation in Fishelov’s
Dialogues with/and Great Books (Fishelov).

150 TWINING

the Twine story is elusive, more impossible than possible. In the poem,
by contrast, the philosophers’ man unfolds in a series of symbols: a
globe, a mirror, diamonds. Te globe is encompassing, the mirror re-
fective, but the key lies in that cascade of diamonds, shattering light
into a constellation of diference. Somehow this explosion of informa-
tion “sums us up.” What can this mean?

McDaid’s ghost story complicates such questions, warning that the
reference of any “us” becomes unstable across the timelines. Are we
the ones who mourned Ty at Coney Island, or came to the funeral
in Fayetteville, or watched him slip of the tower outside of Syracuse?
Recall Derrida: “No being-with the other, no socius without this with
that makes being-with in general more enigmatic than ever for us.” If
we apply this hauntology to the texts in question, we might ask if the
frst-person plural of 1940 includes a twenty-frst-century reader. How
was it ever possible to sum up then and now into an “us?” What does it
mean to know the Glass Man in the context of a fracturing that is not
metaphoric but actual?

Considering this essential question—which is the question with
which this chapter began—we come to a major diference between old
and new, one with important implications for understanding Twine
work in relation to literary tradition. Te crux comes at the end of
Stevens’s poem, afer its lament about the disruption of the idyll of “jas-
mine scent” by “death and war”:

It was not as if the jasmine ever returned.
But we and the diamond globe at last were one.
We had always been partly one. It was as we came
To see him, that we were wholly one, as we heard
Him chanting for those buried in their blood,
In the jasmine haunted forests, that we knew
Te glass man, without external reference.

To know the Glass Man, for Stevens, is to operate “without exter-
nal reference.” Tese are his last words on the subject. Knowledge of
the impossibly possible central man must be internalized, unworldly,

TWINE AND THE QUESTION OF LITERATURE 151

something outside of image, association, and language. In sharp con-
trast, McDaid’s fction strains toward externalities, arguably on two
levels.

Te frst reach toward external reference can be found within the
story world, in those talismanic stones at the end of each timeline. In
their mystic associations, they express a yearning for enlightenment
and presence. At a crucial point, we get a unifed vision of the stone:

Te stone was unremarkable in that it was veridical. Obstinately truth-
ful. It just was. In the words of my philosophy professor Fernando Mo-
lina, who received dharma transmission from Clarence Irving Lewis, it
stood, oblivious, beyond any assortment of qualia in my consciousness,
a Ding an sich forever beyond direct experience. Oh, I could have some
epistemically lazy notion that I knew about the stone, but Lewis would
have slapped me into clarity: there was no sense in which I could make
reliable, testable predictions about future experience. For pragmatic
phenomenologists—which is how I had been trained—I was stuck in
a bracketed reality, with the stone regarded as real. But any ontic claim
was beyond me, denied by the stone’s veridical centeredness, its da
stehn while around it, the rest of the cosmos revolved. (“Nighttime in
the Switching Yard”)

Tis centrality is a setup, betrayed to variation. Te stone’s fxed
placement is belied, narratively speaking, by what comes if we follow
the links. Te centering moment occurs in that deeply nested passage
called “Nighttime in the Switching Yard.” Te cosmos of the fction re-
volves or circulates around this point, the main junction from which the
death-tracks radiate and to which they return (see fgure 13). Tat pat-
tern reinforces the withdrawal of the thing-in-itself. At the end of each
track, the stone is painted with a diferent mythology, until the reader
clicks a locally fnal Δt and returns to the Yard. Returning reasserts the
stone’s centrality. Tere may be “veridical centeredness,” but there are
also stories, and these accounts create tissues of diference. Every such
departure rules out any fnal “ontic claim,” dissolving certainty into a
blur of possibilities. Relic becomes tchotchke, Egg Stone devolves to Egg

152 TWINING

MacGufn. Afer all, Glass Man belongs to consumer culture, which is
less a matter of object-oriented ontology than a cargo cult.

Te reach toward external reference within the story goes to
pieces, but there is a second plane of externality in this fction that
also demands attention. Te reference, in this case, is the text itself
as a technical object. Although this suggestion might seem outland-
ish for traditional, page-bound literature, it is always appropriate for
digital fctions and is explicitly framed here. Naming a key passage
“Nighttime in the Switching Yard” calls out the operative metaphor.
It reminds us that we are in a system of circulation, variation, and
control. As noted, the title points to Zevon’s song, a funked-up rail-
road blues about a midnight train that “runs both ways,” much like
the recirculating fction of Glass Man (Zevon). Te song closes with these
words:

Listen to the train
Listen to the track

Taking “listen” in its metaphorical sense of attending or considering,
we might indeed ask how the tracks laid out around “Switching Yard”
shape our sense of its curious system of stories and what mechanisms
are at work in the Yard.

Te frst notable thing about the “Switching Yard” passage is its
count of hypertext links—six instead of the three that occur in most
other passages—and the fact that fve of these links are anchored on
phrases within the body text, as in familiar hypertext fction. Each in-
line link points to the start of one of the tracks, by which the Switching
Yard lives up to its name as a junction point. Te sixth link, anchored on
the Δt symbol, does something more interesting. Here is its underlying
code (written in the Harlowe story format):

(set: $rand to (random: 1, $passageList's
length))
(set: $randTarget to ($rand) of $passageList)

<div class="deltat">[[Δt|$randTarget]]</div>

TWINE AND THE QUESTION OF LITERATURE 153

Te two set macros generate a random integer between 1 and the
length of a variable called $passageList, then use this variable to select an
item from $passageList. $passageList is an array, a special variable whose
components can be selected individually. Te list itself is defned in the
other of those two unlinked passages at the far right of the map in fg-
ure 13, the one with the title “startup.” It contains the following:

(set: $passageList to (array: "Unitarian Church
in Fayetteville","College Was Half A Lifetime
Ago","Glue On The Tracks","Eighteen","One Of
Ty's Songs","Orphic Egg","Met On First Day Of
College","Huck Never Lived On Clarendon","Ty's
Bag Of Tapes","It Was Quick","The Apotheosis
Of Analytic Hubris","Anguinum","Down In
The Basement","Beach At Coney Island","My
Neurologist Is An Ass","Mickey One--
Garbage","Bend Of Convenience","Glain Neidr","A
Jar In Tennessee","How The Bodhidharma Came
to Philadelphia","Remain In Light","Brenda
And Eddie, Or The Grecian Urn","Radio Control
Priest","Egg MacGuffin","Cemetery Of Last
Resort","I'm In Charge Here","Rabbit Test Of
The Apes","Night And Swamp","Mystic Heated
Wine","Aleph","Pret A Enterrer","Covington"))

Te array $passageList includes the names of all passages in the fve
tracks. Te scripting of the Δt link thus reveals a double articulation.
A reader of Glass Man could proceed methodically through the in-line
links in the Switching Yard, entering each of the fve timelines succes-
sively as they loop down and back, but those attracted to the mysteri-
ous Δt will have a diferent experience. Tey will drop into the textual
system at unpredictable points, ofen in the middle of an extended
meditation, able to grasp what is going on only afer returning to the
Switching Yard several times. Tey may thus see the system as doubly
disrupted, both by its unstable narrative contents and by the possibility

154 TWINING

of arbitrary leaps into randomness. Listening to the track—reading
what its script ordains—suggests less a railroad than a pinball machine,
a tool for indeterminacy.

What can we do with this understanding of the digital text as an “ex-
ternal reference” for McDaid’s Man of Glass? For one, we can conclude
that all the drifs and divergences of Ty Walker’s history ultimately fall
within an intentional system, one that ties understanding to circulation,
repetition, and contradictory memories. For another, we can recognize
the importance of contingency, the activation of outcomes not expected
or foreseen, to the meaning of this work. Embracing contingency iden-
tifes Glass Man as a special kind of sign system, one that has been
defned as “a semibounded and socially legitimate domain of contrived
contingency that generates interpretable outcomes” (Malaby).

Tis defnition was not written for literary texts, and yet Glass Man
satisfes its terms. Realist fctions are inherently “semibounded,” being
invented accounts of plausibly real experiences—an efect accentuated
by the contradictory fctions of Glass Man. Tere is certainly a claim
to social legitimacy, however ironized, in the invocation of Stevens.
How the work delivers “contrived contingency” should be clear. On
the last point, “interpretable outcomes” are what Glass Man relentlessly
reproduces through its rippling self-disruptions. Tese terms that Glass
Man fts so well were proposed by the anthropologist Tomas Malaby
as a contribution to the theory of play. Here is his complete sentence:
“A game is a semibounded and socially legitimate domain of contrived
contingency that generates interpretable outcomes” (Malaby 96).

Te striking correspondence between McDaid’s Twine fction and
Malaby’s defnition of game raises an ultimate question about its “exter-
nal reference.” What if we can know the Glass Man only through play?
What if we say, in our networked, algorithmic moment, that fnal belief
must be in a game?

Malaby’s defnition is designed to break down the “exceptionalism”
that separates play from other human experiences (Malaby 96). Stricter
theories of games would fail Glass Man on several points: it lacks eval-
uative feedback, diferentiated outcomes, and, above all, causal logic
(Juul 29). Yet with a certain suspension of disbelief, we might fnd in

TWINE AND THE QUESTION OF LITERATURE 155

McDaid’s Twine story elements of active engagement. If, following the
Borgesian logic, we are dealing not with a disordered narrative but with
limits of conventional/Newtonian time, then we can understand the
repeated link signature Δt as a matter of practice—time for change;
change the time. “Tere is a Hand to turn the time,” as Pynchon says
just before the end of Gravity’s Rainbow (Pynchon 760), though in the
case of Glass Man, the act is more click than crank, and the agency is
not mystical but human. In this gamelike, second-person context, the
Hand belongs to you. You fnd the time to choose; your engagement
turns over the time-streams.

However, even by the most generous standard, McDaid’s fction
counts as a minimal game, at the limit of formal requirements, like
the “minimum labyrinth” imagined in “Te Garden of Forking Paths”
(Borges 25). Its print-digital hybridity registers a link to conventional
poetry and fction, the Dylan Tomas side of the old Philippic. To the
extent that it firts with choice-of-adventure fction, the overture is
at least partly ironic. Yet the external reference of We Knew the Glass
Man does make an important statement with respect to Twine
and literature. It points toward writings more fully identifed with
games—for if fnal belief must still be in a fction, the nature of that
fction is in play.

Δt, everybody.

With Those We Love Still Alive

Although it was published fve years before We Knew the Glass Man,
Porpentine’s With Tose We Love Alive seems in many ways the younger
work: produced by a writer under thirty, untroubled by specifc po-
etic hauntings, and, above all, written in a way that weaves the inter-
secting lines of fction and game into an inviting moiré (Porpentine,
With Tose). With Tose We Love Alive takes us to a dark-fantasy city
ruled by a nightmarish, insectoid empress who lives on human sacri-
fce. Despite its frequent horrors—warning for “abuse” is given at the
outset—the game has the immersive potential of a darkly lucid dream,
complemented by Brenda Neotenomie’s entrancing soundtrack. Play

156 TWINING

begins with a striking promise: “Please remember: nothing you can do
is wrong” (“please”).

Tis statement overturns a major convention of computer game de-
sign, in which wrong options usually far outnumber those that are in
some way right (see Juul, Art). In contrast, Porpentine ofers blanket
indemnity as we begin “living this life.” McDaid’s temporally unstable
ghost story implicitly asks whoever he was, but that is not the only exis-
tential question we can fnd in Twine works. For stories that converge
with games, the foundational questions include Who will you be at the
end of play? Who are you this time?

Character confguration is a mainstay of games, from tabletop role-
playing systems to console epics and massively multiplayer online uni-
verses (see, e.g., Voorhees). With Tose We Love Alive has its own way
with this convention, ofering the player/reader at the outset three que-
ries: birth month, “element,” and eye color. Tese factors seem arbitrary,
very diferent from those in other games (races, tribes, professions,
moral axes). Te arbitrariness of the options continues the iconoclasm
of the opening message. Although With Tose We Love Alive is not a
print-digital hybrid like Glass Man, it takes up a similarly liminal posi-
tion between story and game, though on its own terms.

Te birth month question is resolved by choosing from a table of
links. For the other two factors, Porpentine uses an implementation
of cycling text: clicking a word or phrase replaces it with the next item
in a list, the last option looping back to the frst.11 A conventional,
transitional link (“Yes”) locks in the current selection and advances
to the next passage. Tis naming sequence tells us something im-
portant about Porpentine’s craf. Electronic text replaces itself, but
nothing says the replacement has to be simple or instantaneous. Links
may trigger scripted instructions as well as direct transitions. Tough
passage-to-passage transitions are common enough in With Tose
We Love Alive, the naming sequence reminds us that Porpentine has
other options.

11 We have encountered cycling links in the practical chapters and will come to them
again, but we should point out that this feature in Chapbook is notably streamlined in
comparison to the older constructions Porpentine uses.

https://first.11

TWINE AND THE QUESTION OF LITERATURE 157

Afer the third query, we come to a link that will reveal our name.
If we choose to be born in the frst month, taking petal as our ele-
ment and brown as eye color, we are called “Sparna Jarndot.” Dialing in
the seventh month, tears, and green eyes names us “Cade Ophigloss.”
Twelfh, fur, and gray yield “Langloss Umdas.” Every confguration of
Porpentine’s three variables produces a unique name. Tere are twelve
possibilities for month, six for element, and ten for eye color (including
“Heterochromic” and “Nothing here describes my eyes”). Multiplying
12 times 6 times 10 gives us 720 possible names. To a nonprogrammer,
this number might suggest a maximalist or brute-force approach, a se-
ries of 720 if/then conditions. Porpentine actually uses a more efcient
scheme, but the impression of large scope is correct—With Tose We
Love Alive is notably bigger than Glass Man, as is clear from its structure
map:

Figure 14: Structure map of With Tose We Love Alive

Tere are 267 passages here, compared with 38 for Glass Man. Ref-
erences to print works have limited usefulness for Twine, but the dif-
ference between short story and novella gives a rough measure. Te
map comparison can also be deceptive, however. Tough there is a
dense tissue of linkage among the passages, there are also many more
passages without link lines than in McDaid’s structure. Passages of
this kind ofen contain code, as we saw in Glass Man’s Switching Yard,

158 TWINING

and can also be invoked as in-line elements in dynamically assembled
passages. Both strategies are used here. With Tose We Love Alive is
both broad and deep, making intensive use of scripting.

A short digression is needed at this point. In just a few years as a
Twine creator, Porpentine has produced an extraordinary range of
work. With Tose We Love Alive is among her more formal, literary
eforts. Chapter T-4 looks at works that are more spontaneous, per-
sonal, and in-the-moment. Perhaps inclining toward this side of her
aesthetic, Porpentine has called her process “trash spinning” (Kaye;
see further discussion in chapter T-4), but that term is hard to square
with With Tose We Love Alive. Te way Porpentine transforms sto-
rytelling in this work seems anything but discardable. Tere may
be a lot of “spinning” going on here, but the machinery behind it is
impressive.

Noah Wardrip-Fruin, another pioneering maker and theorist of
digital writing, has written about an “ELIZA efect,” in which com-
puter programs appear larger and more complicated than they actually
are (Wardrip-Fruin, Expressive 23). Te term refers to a script used
in an early experiment in interactive text generation, undertaken in
the mid-1960s by the computer scientist Joseph Weizenbaum. ELIZA
mimicked the speech strategies of a Rogerian therapist so successfully
that users of the program, interacting via teletype, behaved as if talking
to a human doctor (Wardrip-Fruin, Expressive 32). Despite this striking
functionality, the code for ELIZA is remarkably simple. It exemplifes
a programming concept called elegance, in which compact expressions
yield versatile results.

Porpentine’s naming system is notably elegant. Looking at the code
embedded in the “Name” passage reveals a chain of if conditionals, but
only 30, not 720. Te script uses the month selection to choose one
of twelve frst names (everyone born in the frst month is a “Sparna”),
the “element” factor to set the frst syllable of the surname, eye color the
second. A few lines of code produce a large range of variations.

Games produce “interpretable outcomes,” in Malaby’s phrase, and
gamelike stories do the same. Tey can be understood as subjects of
interpretation, or texts. In the case of the naming ritual, the reader may

TWINE AND THE QUESTION OF LITERATURE 159

wonder about larger determinative efects. Will Sparna Jarndot have the
same options in the game as Caromine Melovir or Mia Hexador? Do
names matter, and if so, how?12

Reading a story/game hybrid requires a diferent procedure than
reading a print/hypertext hybrid such as Glass Man. In Cybertext,
Aarseth distinguishes between scripton, a sign presented to a reader
or player for interpretation, and texton, the arrangement of system-
atic signs whose activation produces readerly experience (Aarseth,
Cybertext 62). Te multiparagraph, page-like passages of McDaid’s
story foreground the scriptonic, aligned with traditional close read-
ing. In contrast, Porpentine’s passages tend, at least on frst presenta-
tion, to be terse and mainly descriptive, a common feature of some
textual games. Here, for instance, is the initial description of the
empress’s city.

Te streets are narrow, winding, mazelike. Ropes span between build-
ings like enormous spiderwebs blanketing the city.

Te temple is this way, across the dry canal.
Te dream distillery is surrounded by scafolding.
Return to the palace. (“City”)

Like McDaid’s Switching Yard, passages like “City” and “Palace” are
routing points, meant to be encountered many times during the game.
Te metaphorical narrative train runs both ways, out to other parts
of the story and back. However, the trips we take in this text are sub-
ject to more complex manipulation. In Glass Man, the Switching Yard
remains constant in expression and function. In Aarseth’s formalism,
the work has “static dynamics” (Eskelinen 45). In With Tose We Love
Alive, however, the switchyards can and do change during play, both in
visible text and invisible logic. Tis is what Aarseth calls “intratextonic”

12 Te syllables of the surname are written directly to the screen and are thus purely
local, but the given name is recorded in a variable, so it could be used in other passages
(which it is) and afect deeper logics of the game (though it doesn’t). Salter points out
the resemblance of this logic to that used in meme generators, image-based name gen-
erators, and other recent code crazes.

160 TWINING

dynamics, indicating a program that can be fexibly confgured. We can
understand this by looking at the code for “City”:

The streets are narrow, winding, [[mazelike]].
[[Ropes]] span between buildings like enormous
spiderwebs blanketing the city. <<if $dead_

person is "city">>A dead person is watching you
from a window.<<endif>>

The [[temple]] is this way, <<if $day gte
21>>across the [[flooded]] canal.<<else>>across
the [[dry]] canal.<<endif>><<if $day gte 14 and
$day lte 17>> [[Black petals]] cover the temple
steps.<<endif>>

<<if $day lt 7>>The dream distillery is
surrounded by [[scaffolding]].<<else>>The
[[dream distillery]] has a gruesome pull for
you.<<endif>>

[[Return to the palace|Palace]]

Tere are ordinary links here, as in McDaid’s Yard, but also sev-
eral items enclosed not in the double square brackets of standard
hypertext, but in two pairs of angle brackets: << >>. Tese are in-line
TwineScript statements, two if conditions and an if/else. Tey refer
to values stored in the variables $dead_person and $day. If the value
in the frst variable is “City,” the narration includes that ominous,
undead watcher. Te other conditions test for values in $day and ad-
just the description of the scene accordingly (“gte” and “lte” mean
greater-than- and less-than-or-equal, respectively). Te greatest value
of $day mentioned here is 21, implying that With Tose We Love Alive
spans at least three weeks of in-game time, although other scripts
could extend that range. Notably, the conditional block includes links
that will not otherwise be seen. If we have been through at least seven

TWINE AND THE QUESTION OF LITERATURE 161

game-days, for instance, the scafolding comes of the Dream Dis-
tillery and a link to the corresponding passage asserts a “gruesome
pull.” Tis switching yard never sleeps; it remains in operation around
the clock, constantly reconfguring expressions and afordances as we
conduct our in-game life.

If we want to understand the literary dimensions of Porpentine’s
work, we need to appreciate the way her code entwines—pun very
much intended—with the words that evoke its world. We cannot rely
solely on scriptonic readings, looking only at what appears at any given
moment of the game. Tis level of language overlooks mechanisms of
generation and control not presented to the reader. Tese mechanisms
make a diference to reading because they make or generate diferences
in the text presented. Any momentary confguration exists in relation
to other possible expressions.

With Tose We Love Alive goes quite far in exploring the possibili-
ties of Twine’s frst-generation release.13 Te work includes third-party
JavaScript extensions that add a routine for cycling text, visual efects,
and an audio handler for the soundtrack. Making these miscellaneous
resources work seamlessly within one’s own design takes considerable
efort. In this case, we might say that Twine work at its best is as much
like producing as it is like songwriting—art forms that have notably
converged in the last half century.

Reading code requires us to account for linkage and dependency as
well as local efects. We can see how $dead_person and $day work in the
“City” passage, but in what other structures are they implicated? Both
variables are introduced (declared) in a special passage called “Story-
Init,” whose instructions are performed when the game begins. Tis
placement means they are accessible and alterable from any passage in
the work. Te variables are eventually reset by code attached to a pas-
sage called “sleep_process,” activated when the player-character returns
to her room and decides to sleep. Here is its script:

13 With Tose We Love Alive was written using some version of the frst release of Twine,
probably in the 1.4 series.

https://release.13

162 TWINING

<<set $weather = random(1,7)>>

<<set $tasted = false>>

<<if $day neq 1>><<set $dead_person = either("ga

rden","workshop","city","lake","balcony","temple
")>><<endif>>

<<if $hormone_day is 7>><<set $hormone_need =
true>><<set $hormone_day = 0>><<endif>>

<<set $day += 1>><<set $hormone_day += 1>><<set
$energy = 1>>

Using the either macro to make a random selection from a given
list, the $dead_person variable distributes possible encounters over six
locations in the story, repositioning the ominous fgure while we rest.
Te crucial variable $day is incremented. We also see fve variables
not previously discovered: $weather, $tasted, $energy, and the related
pair $hormone_day and $hormone_need. Te frst randomly assigns
weather conditions. Te second records whether the player has sam-
pled the liquor of stolen dreams in the Dream Distillery. Te $energy
variable determines the player’s ability to perform tasks in her work-
shop. As we can see, the game applies both historical and budgetary
constraints, which brings us to $day and the two $hormone variables,
which need more detailed discussion.

As the name indicates, $day keeps time for the game, incremented
whenever we return to our chambers and click a link commanding the
player-character to sleep. Sleeping is pivotal in With Tose We Love Alive,
in terms of diegesis, gameplay, and the game’s overall concept. When the
sleep link is clicked, the screen fades momentarily to black. A story tran-
sition may occur during sleep if $day or some other variable reaches a
crucial value. If no transition occurs, we fade back to “Chambers.” Tis
curious process is the equivalent of McDaid’s Δt, the command with
which we turn the time, but time here has a distinctive character. Te

TWINE AND THE QUESTION OF LITERATURE 163

visual efect and the possibility of repetition make the sleep action more
organic than discrete. In terms of story, the sleep mechanism ties time
to our in-game body. Ludically, it connects progress to elective player
action.14

Te two $hormone variables relate to a major feature of our in-game
life: we play as a person in transition, dependent on “estroglyphs” to
maintain hormonal balance. As we will see, this is only one aspect of
Porpentine’s complex treatment of embodiment, about which there
is much more to say both here and in chapter T-4. For the moment,
we should note that cycles of our fctional body belong to a system-
atic representation of self and other, a cybernetic world model. Te
game creator and theorist Michael Mateas refers to “playable mod-
els” (Wardrip-Fruin, How Pac-Man Eats). Likewise, Montfort identi-
fes world-modeling as a primary constituent of the form (Montfort).
More recently, we have come to think about such models in and out
of games in terms of algorithms, those ofen-unseen mathematical ab-
stractions that govern digitally connected life.

Computer games are perhaps uniquely suited to comment on this
aspect of modernity, especially when they operate satirically. One par-
ticularly strong example in this line is Valve Sofware’s Portal, a geo-
metrical puzzle game oddly cross-bred with an in-house parody of
Half-Life (Swif). Bo Ruberg uses Portal as the basis for a remarkable
“too-close reading” of the game’s queer gender dynamics, to which we
will return (Ruberg 56–83). Reading without the lens of queer theory,
Michael Burden and Sean Gouglas extol the game’s “algorithmic expe-
rience” in ways that resonate with With Tose We Love Alive. As they
see it, Portal presents

the tension between the cold, hard certainty of algorithms and the crea-
tivity and freedom of an art. It is the tension between the algorithm’s
simplifcation of complex concepts versus the need for problematiza-
tion and criticism. It is the tension between a world without questions

14 Tis rest-to-advance pattern is also used in Howling Dogs, where it is explained more
directly to the player.

https://action.14

164 TWINING

and the inquiry that art embodies. It is the tension between knowl-
edge that emerges from the algorithms of the scientifc method and the
human knowledge encountered in art. All videogames are algorithms,
and therefore, Portal is an algorithmic exploration of human struggle
against algorithmic processes. Te game’s very nature is an adherence
to rules. Art’s very nature is to challenge rules, to the point of defying
defnition. (Burden and Gouglas)

In this view, Portal counts as art because it establishes a world-
model and concomitant story—the player-character’s struggle against
a homicidal AI—that satirically pits the algorithmic regularity of game
sofware against the antinormative impulses of art. As Burden and
Gouglas see it, Portal bends the nature of the computer game back
upon itself, yielding important insights into the human experience of
technology.

Setting aside obvious diferences of platform and context, we can
fnd parallels between Burden and Gouglas’s defnitive art game and
With Tose We Love Alive. Both are intensely algorithmic, intricately
tied to logical constraints and performance measures. Both are haunted
by dangerous maternal presences. Tough the mute empress of Porpen-
tine’s game shows none of the chatty ex-humanity of Valve’s GLaDOS,
their homicidal regimes are similar. Artistically speaking, both texts
display edgy relationships to their primary genres. Valve satirizes the
paranoid fantasy of Half-Life through the cartoonish antics of Aper-
ture Labs. Porpentine gives us a game in which “nothing you can do
is wrong,” challenging mainstream game design. It might follow, then,
that With Tose We Love Alive also constitutes a work of algorithmic art,
pitting machinic procedure against human striving and desire. Since
the primary medium of this work is written language, we might make a
strong case for integrating With Tose We Love Alive with at least some
version of literary history, one that unifes story and game.

Two eminent critics of writing and technology, N. Katherine Hayles
and Alan Liu, have independently proposed replacing the old name
literature with more expansive terms—“the literary” (Hayles 4–5) or,
as Liu has it, “the future literary” (Liu 8). Perhaps With Tose We Love

TWINE AND THE QUESTION OF LITERATURE 165

Alive ofers a harbinger and model of this future, but to fully understand
its prophetic potential, we need to examine more fully its curious moral
precept: nothing you can do is wrong.

We have earlier called this claim iconoclastic. It can also be simply
bafing even to the strongest reader. In an important early review of
With Tose We Love Alive, Emily Short begins with a classical reference.
She quotes a quatrain from the Bhagavad Gita in which Porpentine
seems to have found her title:

Better to live on beggar’s bread
with those we love alive,
than taste their blood in rich feasts spread,
and guiltily survive

Te lines suggest a convenient moral axis for the game, a call to re-
nounce worldly pleasures in favor of ascetic discipline. But With Tose
We Love Alive is not that kind of game. As its unseen structures suggest,
it does require a kind of discipline, the regular round of rest and glyph
application. Likewise, any careful gameplay could be interpreted as a
renunciation of bad paths to reach the good, but this game/story eludes
such reductive conclusions. Tis is not in any way a game of withhold-
ing or avoidance. We are “living this life,” and in it, we face certain
choices. One such decision point particularly bothers Short:

Te player has a choice: to be a person, one with others, or to be
separate and alone. Tis choice is presented in isolation, before we
understand how it will constrain us. In what follows, we discover its
importance. If we choose to be one with others, we are then forced
to participate in the eradication of the princess-spores, going around
stomping the new-formed creatures to death. We can show them
mercy only if we have determined to separate ourselves from the rest
of humanity. I did not like stomping them to death, and I did not
like declaring myself separate from all other people, and I also feared
letting them live to perhaps become new Empresses (but the world
building here is so allusive that it is hard to know for sure what will

166 TWINING

happen if they survive). Te entire passage disturbed me regardless of
which way I played it. (Short)

Cognitive dissonance may be baked into algorithmic art, where
human-centered impulses collide with logical procedures. We can sep-
arate ourselves from the monster-aligned human community, or we can
join the massacre of the empress’s “mewling” daughter-spores, which
is like treading to death several litters of kittens. Te moral axes in this
game are darkly drawn and complicated. We are ofen forced to choose
without a full grasp of the consequences.

Short is understandably displeased. “Afer this sequence,” she
notes, “we are invited to draw an icon representing what we feel about
this turn of events. My icon was a ball of spikes” (Short 2014). Tis
inscription is one of many that players of With Tose We Love Alive
are invited to draw on their bodies over the course of the story. Short
refects on the procedure:

Tis was a strange and striking mechanic. It is arguably inconvenient,
in that it restricts the contexts in which you can play this (probably
not at work, or on the bus, or right before a job interview) and it asks
the player to do something rather intimate in response to the game. It
incorporates a sensual experience, the touch of pen on skin, and it asks
the person drawing to think about how they would inscribe certain
ideas. And where to inscribe them: I not only found myself thinking
about how I would draw a symbol representing, say, “chasm,” but also
where on myself I would put that symbol in order to carry the most
weight. Our bodies are geographical; there are places on the skin that
mean “vulnerable” and parts that mean “strong” and parts that mean
“receptive, empathetic”; places that are scarred or calloused. (Short)

Te “intimacy” Short fnds in this body-drawing has been else-
where suggested as a general aesthetic of Twine works. Laura Hudson
quotes the designer and critic Cara Ellison in praise of “mechanics of
intimacy” that stand in sharp contrast to the kinetic and objectifying
mechanics of commercial game design (Hudson MM46). Porpentine’s

TWINE AND THE QUESTION OF LITERATURE 167

invitation to engage the “geographic” body ofers a clear instance of this
approach.

Short is pragmatically skeptical about body-drawing—you can’t
play this at the ofce—but we may want to set aside this objection.
Perhaps this transgressive story/game is not meant to be safe for work.
When she asks players to ink their fesh, Porpentine calls for a radical
commitment of presence. Drawing on our bodies asks us to be pres-
ent both to our personal geographies, as Short insightfully observes,
and to the fction/game/mechanism in a way that is outlandish and
perhaps excessive, even if the ink washes of. Porpentine’s glyph-play
reorients and reasserts the human with respect to the textual machine.

To grasp the full signifcance of this aesthetic move, we need to re-
turn to the critical discussion of Portal, but with an update and spoiler
warning. We need to consider the last word of the Portal saga (so far),
the end of Portal 2 (Weier). Ruberg revealingly notes that “Portal is a
game about a woman moving inside another woman,” exploring lesbian
and domme/sub themes in the relationship of GLaDOS and Chell (Ru-
berg 80). If we factor in the second game, we can see the entire trajec-
tory of this weird/queer pairing (see Moulthrop). In the ultimate scene
of the second game, Chell is ofered a truce by a restored GLaDOS.
She is free to “go make some new disaster,” in the words of the closing-
credits song (Weier, Portal 2), but she will have to do this somewhere
other than Aperture Laboratories. Before this moment, we have learned
that the human seed of GLaDOS’s personality was Chell’s mother, an
innocent abducted into the system. We watch GLaDOS purge the last
traces of this maternal presence from her cores, leaving us with a ficker
of suspense—will the now thoroughly inhuman AI kill us of at last?
Instead, GLaDOS sings a moving operatic aria (“Cara mia addio”) and
sets Chell free—but not before declaring that she will replace human
test subjects with robots from now on.

In the last frames before the credits, Chell walks through not a
transdimensional portal but an ordinary door that slams behind her.
Ruberg reads Chell’s exit from the frst game as an expulsion from the
monstrous/maternal body, but it is tempting to take the fnal act
of the second game more literally (Ruberg 77–79). Te door reopens

168 TWINING

to eject the lost, beloved Companion Cube from the frst game, then
shuts again forever. Chell turns away, and the last thing we see through
her eyes is an endless, post-Anthropocene prairie. Te impression is
less of birth or release than separation and exile. Jonathan Coulton’s
closing song this time is “Want You Gone,” a breakup ballad. As in the
frst game, the credits roll over a company document. In Portal, it was
a gleeful performance evaluation. In the second game, the form reads,
“NOTICE OF TERMINATION.” Chell is given her life back but she
is dismissed from employment. Te murder-science machine doesn’t
need human beings anymore.

At frst, there may seem little in common between this moment
in Portal 2 and Porpentine’s inky mechanic of intimacy. Perhaps we
could say that each disruptively winds computer games around a dif-
ferent medium and genre. Portal 2 replaces gameplay with cinema or
machinima—something we will see again in chapter T-5; With Tose
We Love Alive moves from the procedurality of story-game to the free
space of embodied writing. Tese lines of fight do not apparently
converge—and that is precisely the point. Te Portal saga’s collision
of algorithm and human desire ends in separation. Tere may be a
ghost in the fnal version of its machine, but its lone human subject is
cast into the wilderness. With Tose We Love Alive, in sharp contrast,
keeps humanity in the picture, reasserting embodiment in the face of
the machine. Porpentine extends the reach of her imagination to our
bodies—and remembering that promise that we can do no wrong, to
bodies that are implicitly beloved.

In the song that ends the frst Portal, GLaDOS dedicates the “tri-
umph” of her test regime for “the people who are still alive,” a phrase
that unwinds into several threads of meaning. In one sense, it refers to
Chell, who has managed to avoid all the murderous traps; more meta-
phorically, it also includes the player who has cleared the fnal level in
a nondead state; most directly, it applies to GLaDOS herself, denying
defeat to set up the sequel.

As Ruberg notes, alive is the keyword of Valve’s epic (Ruberg 81). Of
course, it also has pride of place in Porpentine’s title. Perhaps we can
use the slippery logic applied to this term in Valve’s game to unwrap the

TWINE AND THE QUESTION OF LITERATURE 169

enigma of Porpentine’s opening promise. In playing the story-as-game,
we may well do things that prove to be wrong: such is the algorithmic ex-
perience. Te world-machine is morally broken, and we are constrained
by its fawed conception—but never absolutely. Porpentine creates a fc-
tional enclosure that is semibounded, a permeable membrane. Her game
does not exclude our humanity but promotes our presence as embodied
selves. Te poet Stevens in his day aspired to a knowledge “without ex-
ternal reference.” In another century, in the vastly diferent techno-social
context of her generation, Porpentine comes to the opposite conclusion.
By being present to her text, we become the beloved who are still alive,
and in this corporeal presence, ofering our bodies as scriptable surfaces,
nothing we can do is wrong. As Ruberg would put it, games awaken and
serve our desire for alternative solutions, for a range of experiences not
bound by traditional norms (Ruberg 11). As embodied in With Tose We
Love Alive, perhaps this achievement defnes “the future literary” or a
literary future, at least if we believe that writing-as-art remains a human
enterprise—so long, we might say, as we have skin in the game. So long
as that remains the case, maybe nothing we can do with our imagina-
tions, as poets or as game-makers, can ever be wrong.

Works Cited
Aarseth, Espen. “Computer Game Studies, Year One.” Game Studies 1, no. 1 (July 2001).

http://gamestudies.org/0101/editorial.html.
———. Cybertext: Perspectives on Ergodic Literature. Johns Hopkins University Press,

1997.
Anthropy, Anna. Rise of the Video Game Zinesters. Seven Stories Press, 2012.
Berry, Jedediah. Fabricationist Dewit Remakes the World. Self-published, 2015. http://

www.makoian.com/jedediah/fabricationist/FabricationistDeWit.html.
Birkerts, Sven. Te Gutenberg Elegies: Te Fate of Reading in an Electronic Age. Farrar,

Straus and Giroux, 1996.
Bloom, Harold. Wallace Stevens: Te Poems of Our Climate. Ithaca, NY: Cornell Uni-

versity Press, 1974.
Bogost, Ian. A Slow Year. Self-published, 2010. http://bogost.com/games/aslowyear/.
Bois, Jon. Bill Belichick Ofseason Simulator. SBNation, 2015. https://www.sbnation

.com/2015/3/31/7979801/bill-belichick-ofseason-simulator.
Borges, Jorge Luis. Labyrinths: Selected Stories and Other Writings. Translated by Don-

ald Y. Yates. New Directions, 1962.

https://www.sbnation
http://bogost.com/games/aslowyear
www.makoian.com/jedediah/fabricationist/FabricationistDeWit.html
http://gamestudies.org/0101/editorial.html

170 TWINING

Brice, Mattie. “Triptychs.” Mattie Brice’s website, accessed September 21, 2019. http://
www.mattiebrice.com/triptychs.

Burden, Michael, and Sean Gouglas. “Te Algorithmic Experience: ‘Portal’ as Art.”
Game Studies 12, no. 2 (2012). http://gamestudies.org/1202/articles/the_algorithmic
_experience.

Consalvo, Mia, and Christian Paul. Real Games: What’s Legitimate and What’s Not in
Contemporary Videogames. MIT Press, 2019.

Crowther, Will. Colossal Cave Adventure. Self-published, 1976.
Danielewski, Mark. House of Leaves. Pantheon, 2000.
Derrida, Jacques. Spectres of Marx. Translated by Peggy Kamuf. Routledge, 1994.
Drucker, Johanna. What Is? Nine Epistemological Essays. Cuneiform Press, 2013.
Ensslin, Astrid. Literary Gaming. MIT Press, 2014.
Eskelinen, Markku. Cybertext Poetics: Te Critical Landscape of New Media Literary

Teory. Continuum, 2012.
Falk, Lee, and Andrew Herman. Te Phantom the Complete Sundays Volume 6:

1957–1961 (Phantom, the Complete Sundays 1957–1961). Hermes Press, 2019.
Fishelov, David. Dialogues with/and Great Books. Sussex Academic Press, 2010.
Galloway, Alexander. Protocol: How Control Exists afer Decentralization. MIT Press,

2006.
Gaudreault, Andre, and Philippe Marion. Te End of Cinema? A Medium in Crisis in

the Digital Age. New York: Columbia University Press, 2015.
Gaynor, Steve. Gone Home. Fullbright, 2015.
Hayles, N. Katherine. Electronic Literature: New Horizons for the Literary. University

of Notre Dame Press, 2008.
Holeton, Richard. Dream Book. Unpublished Twine work, 2020.
Hopkins, Doris, and Mary Alden Webster. Consider the Consequences. Century Com-

pany, 1930.
Hudson, Laura. “Twine, the Video-Game Technology for All.” New York Times, No-

vember 19, 2014. https://www.nytimes.com/2014/11/23/magazine/twine-the-video
-game-technology-for-all.html.

Joyce, Michael. afernoon, a story. Tinker’s Dam Press, 1986.
Juul, Jesper. Te Art of Failure: An Essay on the Pain of Playing Video Games. MIT

Press, 2013.
———. Half-Real: Video Games between Real Rules and Fictional Worlds. MIT Press,

2005.
Kaye, Finch. “Beautiful Weapons.” New Inquiry, June 25, 2013. https://thenewinquiry

.com/beautiful-weapons/.
Kazemi, Darius. “Fuck Videogames!” Tiny Subversions, 2013. https://tinysubversions

.com/fuckvideogames/#slide1.
Ligman, Kris. You Are Jef Bezos. Self-published, 2018. https://direkris.itch.io/you-are

-jef-bezos.
Liu, Alan Y. Laws of Cool: Knowledge Work and the Culture of Information. University

of Chicago Press, 2004.

https://direkris.itch.io/you-are
https://tinysubversions
https://thenewinquiry
https://www.nytimes.com/2014/11/23/magazine/twine-the-video
http://gamestudies.org/1202/articles/the_algorithmic
www.mattiebrice.com/triptychs

TWINE AND THE QUESTION OF LITERATURE 171

Lutz, Michael. My Father’s Long, Long Legs. Correlated Contents, September 23, 2013.
http://correlatedcontents.com/misc/Father.html.

Malaby, Tomas. “Beyond Play: A New Approach to Games.” Games and Culture 2,
no. 2 (2007): 95–113.

Malloy, Judy. Uncle Roger. Te WELL, 1986.
McDaid, John. Uncle Buddy’s Phantom Funhouse. Eastgate Systems, 1993.
———. We Knew the Glass Man. cream city review, 2019. http://io.creamcityreview.org/

43-1/McDaid/WeKnewtheGlassMan_v1.1.html.
McHenry, Tom. Tonight Dies the Moon. Self-published, 2015. https://tommchenry.itch

.io/tonight-dies-the-moon.
merritt k, ed. Videogames for Humans: Twine Authors in Conversation. Instar Books,

2015.
Montfort, Nick. Twisty Little Passages: An Approach to Interactive Fiction. MIT Press,

2003.
Moulthrop, Stuart. “Deep Time in Play.” In “Small Screen Fictions,” Paradoxa 29 (2018):

123–44.
Moulthrop, Stuart, and Dene Grigar. Traversals: Te Use of Preservation for Early Elec-

tronic Writing. MIT Press, 2017.
Myers, David. Games Are Not: Te Difcult and Defnitive Guide to What Video Games

Are. Manchester University Press, 2017.
Nelson, Xalavier, Jr. “A Very Normal and Encouraging Keynote.” NarraScope 2020, In-

teractive Fiction Technology Foundation, keynote address, May 28, 2020. Online.
https://www.youtube.com/watch?v=cXdAZip75j4.

Nikolajeva, Maria. Children’s Literature Comes of Age: Toward a New Aesthetic. Rout-
ledge, 2015.

Porpentine. Howling Dogs. Self-published, 2012. http://slimedaughter.com/games/
twine/howlingdogs/.

———. Ultra Business Tycoon III. Self-published, 2013. http://slimedaughter.com/
games/twine/tycoon/.

———. With Tose We Love Alive. Self-published, 2014. http://slimedaughter.com/games/
twine/wtwla/.

Pressman, Jessica. “Te Strategy of Digital Modernism: Young-Hae Chang Heavy In-
dustries’ DAKOTA.” Modern Fiction Studies 54, no. 2 (2008): 302–26.

Pynchon, Tomas. Gravity’s Rainbow. Viking, 1973.
Rawitch, Don, Bill Heinemann, and Paul Dillenberger. Te Oregon Trail. Minnesota

Educational Computing Consortium.
Ruberg, Bo. Video Games Have Always Been Queer. New York University Press, 2019.
Short, Emily. “IF Comp 2014: With Tose We Love Alive (Porpentine, Brenda Neo-

tenomie).” Emily Short’s Interactive Storytelling (blog), accessed September 21,
2019. https://emshort.blog/2014/10/16/if-comp-2014-with-those-we-love-alive
-porpentine-brenda-neotenomie/.

Simon, Paul, and Art Garfunkel. Parsley, Sage, Rosemary and Tyme. Columbia, 1966.
Snow, Kevin. Beneath Floes. Bravemule, 2015. http://www.bravemule.com/beneathfoes.

http://www.bravemule.com/beneathfloes
https://emshort.blog/2014/10/16/if-comp-2014-with-those-we-love-alive
http://slimedaughter.com/games
http://slimedaughter.com
http://slimedaughter.com/games
https://www.youtube.com/watch?v=cXdAZip75j4
https://tommchenry.itch
http://io.creamcityreview.org
http://correlatedcontents.com/misc/Father.html

172 TWINING

Squinkifer, D. Quing’s Quest VII: Te Death of Videogames. Self-published, September 1,
2014. https://games.squinky.me/quing/.

Stevens, Wallace. Parts of a World. Alfred A. Knopf, 1943.
Swif, Kim. Portal. Valve Sofware, 2007.
Vendler, Helen. “Wallace Stevens’ Voice Was ‘Life-Saving.’” New Republic, November 18,

2013. https://newrepublic.com/article/115628/helen-vendler-wallace-stevens.
Vonnegut, Kurt. Slaughterhouse Five. Delacorte Press, 1969.
Voorhees, Gerald. “Te Character of Diference: Procedurality, Rhetoric, and Roleplay-

ing Games.” Game Studies 9, no. 2 (November 2009). http://gamestudies.org/0902/
articles/voorhees.

Wardrip-Fruin, Noah. Expressive Processing: Digital Fictions, Computer Games, and
Sofware Studies. MIT Press, 2009.

———. How Pac-Man Eats. MIT Press, 2020.
Weier, Joshua. Portal 2. Valve Sofware, 2011.
Zevon, Warren. Night Time in the Switching Yard. Asylum, 1978.

http://gamestudies.org/0902
https://newrepublic.com/article/115628/helen-vendler-wallace-stevens
https://games.squinky.me/quing

CHAPTER P-3

Generation

In 2009, the year of Twine’s debut, the poet and computational linguist
Nick Montfort visited Taroko National Park in the Republic of China,
the site of a famously splendid gorge on the Liwu River. Take a poet to the
wilderness and the result is usually a nature poem. Crossing that ex-
posure with computer science yields what is arguably a new kind of na-
ture poem. Written (we could also say “coded”) during the fight home,
Montfort’s Taroko Gorge is a poetry generator; you can read (watch?) the
work at nickm.com/taroko_gorge (Montfort, Taroko Gorge). Its compact
rules weave several sets of words into a richly impressionistic account
of Montfort’s hike through the gorge—which is to say, a poem—but the
program runs on an endless loop, continually scrolling from bottom to
top, adding lines that are apparently unique, made fresh every few sec-
onds. Tis feature turns the nature poem into something like a simulation.
Taroko Gorge captures in words the basis of natural beauty: an endlessly
surprising permutation of given elements.

As we suggested in chapter P-2, electronic writing has a particular
afnity for permutation, which brings us to a second important aspect
of Taroko Gorge. Like the community of Twine developers, Montfort
believes strongly in open-source sofware. He shares his poem-making
code with anyone who wants to adapt it. Another poet, J. R. Carpenter,

https://nickm.com/taroko_gorge

174 TWINING

has written a collection called Generation(s) consisting of her own
reworkings of Montfort’s earlier programs (Carpenter). Something
similar, though less overtly organized, happened with Taroko Gorge.
Friends and family of Montfort began swapping out the vocabulary in
Montfort’s program and restyling the poem in evocative and sometimes
parodic ways (e.g., Tokyo Garage and Takei, George). Te web page for
the poem includes a table of intervening authors with links to their ver-
sions. Montfort ritually crosses out each name and reasserts his own at
the bottom of the list—less an exercise of ego than a playful recognition
that authorship isn’t what it used to be.

Taroko Gorge is not a Twine work, but perhaps a frst cousin. It is
written in Python, a language popular with web coders. Montfort has writ-
ten other works in JavaScript, the specialized programming language that
provides an infrastructure for Twine. However, the idea of generated text,
language programmatically assembled by combination or random selec-
tion, belongs to every branch of the sofware family. It is present in the
naming ritual at the beginning of With Tose We Love Alive, discussed
in the last chapter and imitated in one of our practical exercises in this
one. As another of our examples will show, text generation can be used to
make static poems as well as endless simulations. Most important for our
purposes, exploring this practice will show us more about the afordances
and limitations of Twine, building on our encounter with textual variation
in the previous practical chapter.

◊ As in other practical chapters, action items are boxed and set
off with the symbol you see at left, in case you want to skip the
contextual discussion. Examples in this chapter use Chapbook
exclusively.

Supporting materials for this chapter can be found online at https://
github.com/AMSUCF/Twining. See our discussion at the beginning of
chapter P-1 about using the .html and .txt fles to follow along or adapt
our code to your own purposes.

https://github.com/AMSUCF/Twining

 GENERATION 175

 --

Example 3.1: Mad Computer Libs

If we want to seem serious and dignifed, we can describe the subject
of this example as a substitution grammar, borrowing a scientifc term
from computational linguistics. However, like many serious and digni-
fed things, our subject here is actually rooted in party games. In 1958,
a pair of comedy writers, Leonard Stern and Roger Price, published
Mad Libs, a book containing phrases, sentences, and paragraphs for
which the player was meant to supply missing words, as outrageously as
possible. In the “Mad-Mad” era of cocktails and party games, the book
was a huge hit, even though it was hardly original. A generation earlier,
the surrealists invented a practice called the exquisite corpse, in which
standard patterns of language were intentionally disrupted by sharing
a text with multiple authors, imposing new rules for each new writer,
or allowing each writer to see only the most recent fragment of the text.

Tough neither the surrealists nor the comedians knew it, they
were working at the margins of computer science. In 1952, a British
researcher named Christopher Strachey created a program to gener-
ate love letters (Wardrip-Fruin). Its sentence-template mechanism was
closer to Mad Libs than the surrealist game, and the title of our frst
project refects that fact (along with a glancing homage to Ted Nelson’s
Computer Lib/Dream Machines of 1974, the manifesto of our move-
ment). Give your fngers a good fex before digging in. Tere are fve
passages, each with a fair number of words to type.

◊ Create a new story and call it anything you like. We’ll be using
Chapbook, so select that story format if it is not your default.
Create a new passage and name it “Step 1.” This name is refer-
enced in a link, so change it with caution. In the new passage,
enter the following text:

propNoun: 'Somebody'

Type a proper noun: the name of a real or
imaginary person, place or named thing, e.g.,

176 TWINING

--

--

'Louise Pringle,' 'Jimmy One Nose,' 'H.M.S.
Winnebago.'

{text input for: 'propNoun'}

[[Next ->Step 2]]

We’re working here with a Chapbook feature you haven’t seen yet,
the text input insert. As you may suspect, this insert creates a box into
which the player is expected to type something at will. When the player
leaves the “Step 1” passage, the contents of the input box are stored in
the variable propNoun. Te initial value we assign in the variables sec-
tion shows up in the text-entry box and can be used as a default if the
player declines to type anything.

◊ Create another new passage and name it “Step 2.” It’s very

similar to “Step 1,” except we’re looking for an adverb this

time.

adverb: 'furiously'

Type an adverb, e.g. 'triumphantly,' 'softly,'
'twice.'

{text input for: 'adverb'}

[[Next ->Step 3]]

◊ Create another new passage and name it “Step 3.” Enter the
following text:

verb: 'ignores'

Select a verb:

 GENERATION 177

--

{dropdown menu for: 'verb', choices: ['avoids',
'wrangles', 'removes','finagles','blasts','enjoys

','terrifies','exhausts','tickles','amuses']}

[[Next ->Step 4]]

We could have kept on with the text input insert, but for the sake of
exploration, we’ll instead use the dropdown menu insert. It does pretty
much what you’d expect, creating an expandable menu from which
the player is expected to select. Obviously, it imposes more constraint
than free input, a move you may want to make from time to time, even
in such a minimally structured game. As with text input, we assign an
initial value (“ignores”) to the key variable. Tis word comes up as the
default selection. Each time the player selects a word, it is assigned to
the verb variable. Te fnal selection (or default, if no selection is made)
is passed on when the player clicks the “Next” link.

◊ Create another new passage and name it “Step 4.” Enter the
following text:

org: 'the Modern Language Association'

Select a civic organization:

{dropdown menu for: 'org', choices: ['Friends of
Linda','the Ancient Order of Voles', 'the Liars
League', 'International Mothers Helpers','Men
with Hats','the Committee of the Hole']}

[[Next -> Step 5]]

Again, this step follows the pattern of the one that preceded it: another
dropdown menu, this time listing civic organizations. Feel free to shorten,
expand, or modify this list. Tis project does not test for specifc selections.

178 TWINING

--

◊ We’re almost done. Create another new passage and name it
“Step 5.” Enter the following text:

enders: ["in bed","for a limited time","in
stores everywhere","as seen on TV","in your
loudest dreams","where not prohibited by law"]

ender: enders[Math.floor(random.fraction*enders.

length)]

{propNoun} {adverb} {verb} {org} {ender}.

[[Play again? ->Step 1]]

Te variable ender adds a fnal phrase to our basic noun-adverb-
adjective sentence. Coming unforeseen, it’s meant to add a punchline,
like the phrase people insuferably recite afer reading the contents of
a fortune cookie—“in bed.” (It’s still technically a punchline even if it’s
dumb.) Joke-theory aside, have a look at the code with which we deliver
this fnal phrase: it contains a trick you haven’t seen before, which you
will encounter again in the next project. Te variable enders is an array,
a list of values (in this case, strings) to which we can refer by number.
Te variable ender contains a selection from the array, using a compli-
cated but powerful expression:

enders[Math.floor(random.fraction*enders.length)]

With a little variation, this is the same syntax used in JavaScript
to make a random selection from an array. We’re deliberately mixing
JavaScript and Chapbook syntax.1 In JavaScript, we indicate an item of

1 Twine is built on JavaScript, so its relationship to various Twine dialects, like Chap-
book coding or Harlowe scripting, somewhat resembles that of an older language to
English—JavaScript : Chapbook || Latin : English. Tis is an imperfect analogy, but it
does help explain what’s going on when we blend JavaScript and Chapbook syntax. It’s
like dropping a Latin phrase into an English sentence, exempli gratia.

 GENERATION 179

an array by using the array name, followed by a number or expression
in square brackets. Te frst element of the array is enders[0], the second
is enders[1], and so on. Te expression used here resolves to an integer
value between 0 and its maximum range, inclusive of 0 but excluding
the maximum. Te foor() function of the Math object, which rounds
a fractional value down to the next lowest whole number, comes from
JavaScript. Te random.fraction lookup is from Chapbook—the corre-
sponding JavaScript would be Math.random(). Likewise, enders.length
calls on the built-in length property of JavaScript arrays. When we wrote
the frst draf of this chapter, this technique was not documented; we
discovered it by experiment. Since all Twine formats communicate with
JavaScript, it’s always worth probing for hidden connections—we’ll see
another in example 3.5. Sometimes the attempt is futile. It’s not always
possible to mix JavaScript and Chapbook features—some of our later
examples in this chapter will explore the limits—but in this case, it
works to welcome efect. We’ll give more details of this technique in
the next example.

First, though, we invite you to give our Mad Lib generator a few
spins. You can of course break and abuse its grammar rules all you
want. Te next examples are more severe, if not more serious.

Example 3.2: Subject-Verb-Object
Generation in Chapbook

◊ This example is quite compact, consisting of a single passage
and one line of code in the text body. All the typing comes in the

variables section. Create a new story and name it anything you
like. (We suggest S-V-O as a handy nickname.) Start a new pas-
sage and name it “Sentence me.” You can change this name if
you want, provided you reflect the change in the final link. Here

are the complete contents of the lone passage. Type away!

subjs: ["Edgar","The cat","Edgar
the cat","Gorgomon","Stephane
Grapelli's typewriter","An

180 TWINING

--

astrolabe","Mrs. Macaleister","An implausible
gravy"]

theSubj: subjs[Math.floor(random.fraction*subjs.

length)]

verbs: ["eschews","thrashes","adores","invalidat
es","steals","withholds","accuses","dethrones"]

theVerb: verbs[Math.floor(random.fraction*verbs.

length)]

objs: ["Niall","the planet Mercury","Episode
Three","our better angels","Stephane Grapelli's
typewriter","furiously","space and time","to no
discernible purpose"]

theObj: objs[Math.floor(random.fraction*objs.

length)]

{theSubj} {theVerb} {theObj}.

[[Again! ->Sentence me]]

All the hard work comes at the top, in the variables section. We defne
three arrays and three string objects, each one containing a random
selection from one of the arrays. Tere’s one array/string pair each for
subject, verb, and object. We’ve already discussed the hybrid Chapbook/
JavaScript selection mechanism that made its frst appearance at the end
of example 3.1. Tere’s no diference in that structure here. Te Chap-
book expression random.fraction resolves to a decimal between zero and
one, which is exactly the same as the JavaScript Math.random() func-
tion. Multiplying by the length of the array gives us a fractional number
between zero and the length of the array. So random.fraction might give
us a value of 0.356792. Suppose our array has seven items. Multiplying

 GENERATION 181

that number by a value between 0 and 7, say 4, gives us 1.427168. Only
integers can be used as array selectors, so we need to do some rounding.

We use the JavaScript Math.foor() method to convert this decimal
to the next lowest integer. Tat’s because the numbering of arrays be-
gins with zero and stops one short of the array’s length value. If the
array Joey has seven items, they’ll be as follows:

Joey[0]

Joey[1]

Joey[2]

Joey[3]

Joey[4]

Joey[5]

Joey[6]

Tere’s never a Joey[7]. Rounding down keeps us safely within the
range.

With the array selections conveniently stored in our three respective
string variables, all we need to do is deliver them, which we do with a
line of three variable includes on the other side of the two dashes that
close of the variables section. Et voilà.

Example 3.3: S-V-O in JavaScript

Tis example is something of a digression, so we won’t go through the
process of breaking it down for sequential construction. You can do the typ-
ing if you like. Even though you’ll be typing in JavaScript, set your story
up with Chapbook. Tat may seem odd, but it’s time to reveal an impor-
tant Chapbook afordance: you can include extended bits of JavaScript
code in Chapbook passages. We’ll take some frst steps with this technique
in the next few examples. If you’re interested in going further, be sure
to read the fnal section of this chapter, where we ofer some important
technical considerations.

It’s been possible to include JavaScript in Twine projects from early
on, but in version one of Twine, this code had to be entered in specially

182 TWINING

marked passages. Twine 2 lets you put JavaScript directly into story
passages. You do this with the JavaScript modifer, which is just what
you see on the frst line. You will use a continue modifer eventually to
switch back to standard Chapbook mode.

◊ Here’s the text to type, if you’re inclined:

[JavaScript]

t=""
subjs = new Array("Edgar","The
cat","Edgar the cat","Gorgomon","Stephane
Grapelli's typewriter","An
astrolabe","Mrs. Macaleister","An implausible
gravy")
verbs = new Array("eschews","thrashes","adores"
,"invalidates","steals","withholds","accuses","
dethrones")
objs = new Array("Niall","the planet
Mercury","Episode Three","our
better angels","Stephane Grapelli's
typewriter","furiously","space and time","to no
discernible purpose")

t = subjs[Math.floor(Math.random()*subjs.length)]
+ " "

t += verbs[Math.floor(Math.random()*verbs.

length)] + " "

t += objs[Math.floor(Math.random()*objs.length)]
+ "."

write(t)

[continue]

[[More ->Tales from the Script]]

 GENERATION 183

Te basic architecture of this example is similar to that in 3.2: we
set up three arrays, containing subject nouns, verbs, and object words
or phrases. We make selections from the arrays using the three-step
procedure explained earlier—generate a fraction, multiply by the array
length, round downward.2 Te delivery mechanism is diferent. Vari-
ables defned in JavaScript can’t be passed into Chapbook—this is the
frst of those functional limitations we’ll need to explore. Chapbook al-
lows only one thing to be done with a JavaScript variable, at least with-
out some serious programming: you can pass it to a custom method
called write(). Tis method, which should not be confused with the
JavaScript / document object model (DOM) method called document.
write(), does for the JavaScript variable what the Chapbook insert does
for Chapbook variables. It writes the value into the visible text of the
Twine passage. Te value we write here comes from the variable t,
which we use to build up our sentence one word at a time.

If you run this JavaScript-infected example, you’ll see the same
output as in example 3.2: a subject-verb-object sentence. Since we can
achieve the same end without wading into JavaScript, you may ask
why we led you on this tour. Tere’s a reason. In working with random
selections, you’ll sometimes want or need to do things that are not
possible in Chapbook. We’ll come to one of those cases in our next
example.

Example 3.4: Nonrepeating Randoms
and the Knuth Shufe

Let’s start by identifying a problem:

Tell us your story
I am a red wheelbarrow painted orange
Shake the boards and howl

2 For consistency, we are using the JavaScript generator for a random fraction, Math.
random(). However, we have accidentally discovered that it is possible to substitute the
Chapbook alternative, random.fraction, even inside a JavaScript modifer!

184 TWINING

I am a red wheelbarrow painted orange
Shake the boards and howl
I am a red wheelbarrow painted orange
I am a red wheelbarrow painted orange
Struggle to defne existence

Does this look like something someone has written? If so, we might
wonder about all that repetition: two of the eight lines occur twice,
and a third appears in quadruplicate. Maybe this is the work of a neo-
minimalist poet who is really into repetition. Maybe these are lyrics from
a song and the repeated lines are connected to something that makes
sense musically. Or maybe this is just output from a bad text generator.

Let’s suppose the generator in question works at the sentence level:
our next example (3.5) will feature one of those. Perhaps this sentence-
level generator just needs more sentences to draw from, though it’s also
possible its random-selection tool has a basic faw.

Te fundamental tools for generating random numbers in Chap-
book are variations on an object named “d” for “die,” the singular of
“dice.” Tere are variants for integer ranges of 4, 5, 6, 8, 10, 12, 20, 25,
50, and 100. We’ve already seen random.fraction in use, where it does
the same thing as the JavaScript Math.random(). All these mechanisms
have the same weakness: like physical dice, they can produce the same
number twice (or more) in succession. In the Chapbook guide, Klimas
alludes to Tom Stoppard’s play Rosencrantz and Guildenstern Are Dead,
which opens with a coin fip that stubbornly refuses to produce tails. A
tenfold run of heads is vanishingly unlikely in both the real world and
sofware (1024:1 against); but d.8 returning back-to-back threes is much
more probable. Te odds may look long at 64:1, but sofware ofen in-
volves repeated and rapid iteration—not to mention a thing called luck.

◊ In this example, we’ll eliminate the possibility of repeating

numbers for a defined range of random selections. This can’t
be done with Chapbook tools, so we’ll turn to JavaScript. Create
a new story in Twine using the Chapbook format. (We’ll embed
our JavaScript in a Chapbook story.) Create a single passage

 GENERATION 185

and give it a useful name. We call our version “Loopy.” Start
with these lines:

[JavaScript]

sourceArray = new Array('Sunday','Monday','Tuesd

ay','Wednesday','Thursday','Friday','Saturday')

Tis bit should look familiar: it’s a standard array declaration. We
use the days of the week because they’re a familiar sequence. Te tech-
nique will work with a list of any kind.

◊ Next, we’ll enter some more variables:

trackArray = new Array()
trackArray.push(99)
rNum = 99

Te frst of these lines creates an empty array called trackArray. Te
second line uses the push() method to place the number 99 into the frst
(and so far, only) position of trackArray. In the third line, we declare a
variable called rNum and give it the value 99. Te number 99 is essen-
tially arbitrary: we need to use the same number both for the frst array
item and for rNum, but that number could be anything.

◊ Next, we’ll write a JavaScript function:

function randy(){

while(trackArray.includes(rNum)){
rNum = Math.floor(Math.random()*sourceArray.

length)
}

trackArray.push(rNum)
return sourceArray[rNum]

}

186 TWINING

A function (also referred to as a custom method) is a group of state-
ments introduced by the keyword function and a set of parentheses.
Te function body is then defned within a set of curly braces. Te state-
ments within a function have a special status. Tey are not immediately
put into efect (executed) but are held in reserve until the function
is activated or called. Statements in a function can be called multiple
times, ofen from diverse parts of a longer program.

Tis function contains a crucial piece: something called a while loop.
We’re using JavaScript in order to access this structure—Chapbook does
not include any kind of loop. By contrast, there are two types of loops
in JavaScript: limited loops, usually for loops, that run a specifc num-
ber of times, and indefnite loops, which run as many times as needed
until their stop conditions are met. Te indefnite loop we’re using here
runs while we’re waiting for a certain outcome. While loops are enor-
mously powerful. Tey are, in fact, the only way to prevent repetition
in a random-number sequence.

Programmers tend to be wary of indefnite loops because, in theory,
they can turn into loops of a dangerous third kind: infnite loops. Unless
you are trying to outwit a being of pure energy on Star Trek, infnite
loops are bad.

Properly written, an indefnite loop is harmless. At the dawn of
computing machinery, indefnite loops were avoided because they are
inefcient, and computing cycles cost real money back then. In the
not-too-distant future, as we recognize the energy impact of all our
irresponsible computing, opinion may once more turn against these
structures—though the worst ofenders are cryptocurrencies and porn.
For the moment, concern is muted. Use while while you can.

Our magic loop runs under one condition: the value of rNum
occurs somewhere within the array trackArray. If this condition is
true, we execute the line contained within the loop, which gener-
ates a random value for rNum. Tis is, by the way, the reason we set
rNum initially to a number we also push into trackArray. We need
a match in order to get our frst generated random. Once we have
that number, the loop then checks if this value is in trackArray
already—in other words, if our number is used or unused. If the

 GENERATION 187

number is fresh, the loop terminates. Outside of the loop, we push
our guaranteed-unique number onto the tracking array and return
the value in sourceArray (a day of the week) that corresponds to that
number. When a function returns a value, it is fed back into other
parts of the script or program.

Our little program eliminates repetition by sorting our original
array into a nonsequential pattern. Tis is like shufing a deck of cards.
In fact, the scheme upon which this program is very loosely based is
called the Knuth shufe algorithm, named for the computer scientist
Donald Knuth, author of the classic textbook Literate Programming
(Knuth). Once we’ve established the basic principle of shufing, we
can proceed to action.

◊ Here’s the last of the JavaScript:

for(var i=0; i<sourceArray.length; i++){

write(randy()+'
')

}

Tis is that other sort of loop, a for loop. It runs seven times (the
length of our source array) and calls our unique-selection function
(randy()) each time. Because we embed the call to randy() in a write()
statement (which you’ll remember from the previous example), the re-
sult of the selection is made part of the visible text.

◊ All that remains is the final Twine link, allowing us to replay
the whole business:

[continue]

[[Again ->Loopy]]

If you haven’t made any mistakes, this example should display the
seven days of the week in a diferently randomized order every time
you reload its single passage. Why is this outcome signifcant? Well,
each of these seven-day sequences is both random and nonrepeating;

188 TWINING

in the second of our next pair of examples, you’ll see why that matters.
For the moment, though, let’s try a fresh approach to text generation.

Example 3.5A: Situation Reports (Passages)

◊ Create a new story using Chapbook. Call it anything you like.
This example is surpassed only by our too-many-links experi-
ment (1.2) for number of passages. There are eleven in all, so
the setup will involve a little tedium. You can spare yourself
some repetitive strain by first creating ten new passages. Name

each one numerically from one to ten—we won’t count from
zero this time. Open each passage in succession and enter the
corresponding sentence from the following list—one sentence
to a passage. Do not include the numbers in the passage text:

1. The specimen emits radiation in the X-band.

2. The density of the specimen appears to be
increasing.
3. The specimen does not respond to repeated
perturbation.
4. Whoooo da good specimen?!

5. The specimen may be entirely anechoic.

6. The density of the specimen has in fact
decreased.
7. Attempts to ascertain the origin of the
specimen are ongoing.
8. We were briefly unable to locate the specimen.

9. The specimen may have assimilated Technician
Anderson.
10. The specimen has no observable effulgence.

Remember when we promised an example of text generation at the
sentence level? Well, here it is. More signifcantly, this generator also
works at the passage level, which is an interesting way to operate in
Twine.

 GENERATION 189

--

◊ There’s just one more passage to build now. Create a new

passage and name it “Readout.” Let’s start with its variables

section:

passages: ["1","2","3","4","5","6","7","8","9",

"10"]

passage1: passages[Math.floor(random.

fraction*passages.length)]

passage2: passages[Math.floor(random.

fraction*passages.length)]

passage3: passages[Math.floor(random.

fraction*passages.length)]

passage4: passages[Math.floor(random.

fraction*passages.length)]

passage5: passages[Math.floor(random.

fraction*passages.length)]

Te frst variable we create is an array called “passages.” It simply
stores the numerals from 1 to 10 as strings. Why not an array of num-
bers, you may ask? Tis is because passage names must be strings.

We’ve also set up fve variables, each assigned a random selection
from “passages”—in other words, a selection of fve passages out of
our set of ten. Yes, we can pick the same passage more than once. I am
a red wheelbarrow painted orange. We’ll fx this in the next example.
You may wonder why we used a series of numbered variables instead
of an array. While we could type out a fve-item array in the same way
we built our ten-piece array in the frst line, all those randomizations
would create typographic chaos, with their tricky embedding of ele-
ments. In JavaScript, we’d use a for loop to fll our array by repeating
the random-number assignment fve times. However, Chapbook has
no loops at this writing. (Who knows if they’ll be added later.) When
you have a relatively small number of items, sometimes a simple series
of variables will do.

190 TWINING

◊ Now for the finishing touches, which follow
directly after the -- that closes the variables
section:

Situation Report {now.date}:
{embed passage: passage1}

{embed passage: passage2}

{embed passage: passage3}

{embed passage: passage4}

{embed passage: passage5}

[align right]

[[Update ->Readout]]

And there it is, a tiny bit of sci-f horror in fve sentences, making use
of a very important Chapbook insert called embed passage. As the name
suggests, this modifer copies the contents of the specifed passage into
the present passage at the point indicated. Using SugarCube and Har-
lowe, Twine writers have already developed similar techniques into
a very fne art. Random selection among a range of passages—ideally a
much larger set than the present ten—can be a powerful tool for build-
ing an unpredictable structure. It’s interesting enough if all we’re doing
is scooping up one sentence at a time, but there’s no reason the embed-
ded passage can’t contain Chapbook code like our S-V-O substitution
grammar from example 3.1. We’ll demonstrate that idea in example 3.6.
Randomly choosing output from a set of independent generators could
produce very surprising and potentially delightful results. Or maybe
just the opposite. Such is the challenge of art.

 GENERATION 191

--

Example 3.5B: The Horror . . .
the Nonrepeating Horror

Meanwhile, let’s take on a more approachable challenge: modifying our
passage-based generator so it won’t pick the same passage twice. We
already know how to do this for selections from an internal array. Now
we’ll adapt our JavaScript code to integrate the Chapbook-based pas-
sage selector from the previous example.

◊ Set up a new story using Chapbook. We’ll be using JavaScript
within Chapbook—with an interesting twist or two.

Like 3.5A, this is a big one: eleven passages. Tere are two ways to go
here. Since the ten embeddable passages are identical to those in 3.5A,
you could start by duplicating and renaming your version of that story.
If you take this work-saving option, open the passage called “Readout” and
delete its contents. Ten you’re ready to go. If for some reason you enjoy
tedious typing, then start a fresh story and repeat the procedure in the frst
step of example 3.5A: make ten new passages and enter a sentence in each.
Whichever way you go, we’ll assume you have eleven passages, each con-
taining a sentence, and a passage called “Readout” with no contents. Ready?

◊ We’ll start by entering a variables section in our new version
of “Readout”:

ep1: ''

ep2: ''

ep3: ''

ep4: ''

ep5: ''

You may ask yourself, Hey, aren’t we supposed to use JavaScript for
this thing? So why do we have a Chapbook variables section? It turns out
that Chapbook has an originally undocumented quirk—if you declare

192 TWINING

a variable frst in Chapbook and then declare it again in JavaScript, you
can do more than pass the value of the variable for screen display. Using
this exploit, we can compute a value for a variable using JavaScript, then
pass it to a Chapbook insert. (Klimas confrms this is permissible; he
just overlooked the possibility when he wrote the frst version of the
Chapbook guide.) While we’re asking skeptical questions, you might
also ask why we’re using fve separate variables instead of an array. It
turns out our JavaScript pass-through exploit doesn’t work with arrays,
at least at this writing. Oh well.

◊ With our obligatory Chapbook work out of the way, let’s get
started on the JavaScript. Enter the following:

[JavaScript]

sourceArray = new Array('01','02','03','04','05'

,'06','07','08','09','10')

trackArray = new Array()

trackArray.push(99)

rNum = 99

Tese lines should look familiar from example 3.4. Tey’re the stan-
dard setup for our Knuth shufe implementation. Te source array con-
tains the names you gave to the arrays that contain our sentences.

◊ Here’s the next piece of our JavaScript:

for(i=0; i<5; i++){

while(trackArray.includes(rNum)){
rNum = Math.floor(Math.random()*sourceArray.

length)
}

 GENERATION 193

trackArray.push(rNum)

if(i==0) ep1 = sourceArray[rNum]

if(i==1) ep2 = sourceArray[rNum]

if(i==2) ep3 = sourceArray[rNum]

if(i==3) ep4 = sourceArray[rNum]

if(i==4) ep5 = sourceArray[rNum]

Tis is our while loop again, this time wrapped not in a function
but in a for loop with fve iterations. As before, we push our guaranteed
nonrepeating value onto trackArray. Tat’s why we use a series of if
tests to route our successive selections into fve distinct variables whose
values can be passed back to Chapbook.

◊ The remainder of the project is pure Chapbook. The struc-
tures should be familiar:

[continue]

{embed passage: ep1}

{embed passage: ep2}

{embed passage: ep3}

{embed passage: ep4}

{embed passage: ep5}

[[Again ->Readout]]

Te continue modifer shifs us back to Chapbook mode. Te embed
inserts pull in the contents of the passages whose names were selected
(without repetitions!) in our JavaScript shufe maneuvers. Tat’s the
project. It has all the advantages of passage-based generation without

194 TWINING

the faw of inelegant repetition. Te JavaScript-Chapbook trick play
shows again why it’s worth tinkering with code, especially when it’s
young. Sofware sometimes doesn’t know its own strength.

Example 3.6: Free Verse, or You Get What You Pay For

Two examples back, we promised a project that uses embedded pas-
sages that generate text through local computation. Ideally, we’d try
embedding a passage containing something like our S-V-O sentence
generator. Tough we have something else in mind for this example,
let’s think through the S-V-O experiment frst.

◊ To try later: set up a Chapbook story, create passages named
“bedfellow” and “testbed,” and copy the Chapbook S-V-O

code from example 3.2 into “bedfellow.” In “testbed,” type the
following:

{embed passage: 'bedfellow'}

{embed passage: 'bedfellow'}

{embed passage: 'bedfellow'}

Lo and behold, you can embed the same passage more than once!3

Since “bedfellow” generates a plausibly fresh sentence each time it’s ac-
cessed, you should end up with three unique pieces of nonsense. Te
world needs more nonsense.

With this conceptual exercise behind us, let’s turn to something
more concrete and hopefully less nonsensical: a genuine free-verse

3 At this point, a certain bad thought may come into your head: What if I write a passage
for embedding, which in turn embeds the passage that embeds it? In other words,

Passage A embeds passage B
Passage B embeds passage A (which embeds B, which embeds A embedding

B, and so forth)

Te saints in heaven cry when you do this. Also, your browser and JavaScript make
Twine knock it of afer about a thousand iterations. Now you don’t have to try this
thing, right?

 GENERATION 195

generator. Free verse is poetry without constrained rhyme or meter—
low-hanging fruit for demonstration purposes, though you could
build out the technique shown here to write more demanding forms,
such as haiku, sonnets, or villanelles. As in example 3.5A, we’ll work
at the level of complete lines. Tat decision raised the specter of
repetition in the earlier example, but as you’ll see, we have no such
worries here.

◊ Set up a Chapbook story called anything you like (ours is

called Free Verse). Create seven passages in that story. Name

the first one (the default starting passage) “Versify.” Name the
others “Opener,” “Middle 1,” “Middle 2,” “Middle 3,” “Middle 4,”
and “Finisher.” Open “Versify” and enter the following:

{embed passage: 'Opener'}

{embed passage: 'Middle 1'}

{embed passage: 'Middle 2'}

{embed passage: 'Middle 3'}

{embed passage: 'Middle 4'}

{embed passage: 'Finisher'}

[[Again ->'Versify']]

No mysteries here: our main passage embeds all six subsequent pas-
sages in sequence, without any random choices. Tat business happens
in the embedded passages themselves.

◊ Open “Opener” (that was awkward) and enter the following:

r: random.d6

open (r === 1): 'something I heard no one say'

open (r === 2): 'now this'

open (r === 3): 'between some dreams I thought I
heard'

https://random.d6

196 TWINING

--

open (r === 4): 'you might not believe this'

open (r === 5): 'this much the night allowed

me'

open (r === 6): 'a spider spun this for me once'

{open}

Tis is a reasonably simple structure. To the variable r we assign
the results of the random.d6 function, which is an integer between
1 and 6 inclusive. Next, we take a variable called open and assign it
a value based on r. In Harlowe or JavaScript, we would use if state-
ments or perhaps a switch construction, but we’ve learned to work
diferently in Chapbook (see example 2.4). We give the variable
name, enclose the condition we want to match in parentheses, and
afer a colon, we give the value we want the variable to have if the
condition is met. In example 2.4, we used this technique to create a
scoring scale. Here it’s a randomizer. (Notice we’re using one of the
whole-number random functions from Chapbook, this time without
any funny business.)

Afer we close the variables section, we simply insert the variable.
Chapbook automatically knows which permutation has been chosen.
It’s worth noting that when we perform the insertion here, the action
efectively migrates to our main action passage, “Versify,” where the
present passage (“Opener”) is embedded. Anything made visible in an
embedded passage is made visible in the embedding passage.

◊ As you may guess, the remaining five passages are versions
of “Opener” with different text. Here’s “Middle 1”:

r: random.d6

m_1 (r===1): 'water is a silence'

m_1 (r===2): 'a silence has come upon the
waters'

https://random.d6
https://random.d6

 GENERATION 197

--

--

--

m_1 (r===3): 'we are the sum of waters'

m_1 (r===4): 'drink your water in silence'

m_1 (r===5): 'the silence of waters'

m_1 (r===6): 'water is never really silent'

{m_1}

◊ Enter the following in “Middle 2”:

r: random.d6

m_2 (r===1): 'imagine the invention of water'

m_2 (r===2): 'every moment is the beginning of
invention'

m_2 (r===3): 'the spark of nothing less is

this'

m_2 (r===4): 'for seeing the word so far'

m_2 (r===5): 'having carried words no further'

m_2 (r===6): 'water could not be silent'

{m_2}

◊ Enter the following in “Middle 3”:

r: random.d6

m_3 (r===1): 'quantify your blessings'

m_3 (r===2): 'render your account'

m_3 (r===3): 'spill out that bag of content'

m_3 (r===4): 'say what you contain'

m_3 (r===5): 'read the bill of particulars'

m_3 (r===6): 'gather up the washing'

{m_3}

https://random.d6
https://random.d6

198 TWINING

--

--

◊ Enter the following in “Middle 4”:

r: random.d6

m_4 (r===1): 'dreams beasts sex'

m_4 (r===2): 'monkeys jewels and fabulous
stories'

m_4 (r===3): 'a rock a mandarin a twisted pike'

m_4 (r===4): 'larks crows kingfishers calumets'

m_4 (r===5): 'gazettes and galley proofs'

m_4 (r===6): 'whelks whales and waterfowl'

{m_4}

◊ And finally, enter the following in “Finisher”:

r: random.d6

finish (r===1): 'and that was something said'

finish (r===2): 'and nothing more of time'

finish (r===3): 'and then the rain came'

finish (r===4): 'until we end our song'

finish (r===5): 'or this and nothing more'

finish (r===6): 'the machine stops'

{finish}

We’ll just say one more thing about this project: the writing doesn’t
aim at artistic merit, but it does stumble closer to seriousness, or at least
coherence, than our other eforts. We do this to suggest the possibilities
of this free-verse generator, or something like it, as a genuine literary
device—or perhaps a gateway experience. Computational poetry is an
established and fourishing feld. Substitution grammars are just the
beginning. More advanced work can involve N-gram text generation,

https://random.d6
https://random.d6

 GENERATION 199

--

operations on large digital text bases, and various forms of machine
learning. If you want to know more about the history of computational
poetry, check out Chris Funkhouser’s Prehistoric Digital Poetry (Funk-
houser, Prehistoric). For recent trajectories, see his New Directions in
Digital Poetry (Funkhouser, New Directions), as well as the website of
the School for Poetic Computation: https://sfpc.io/.

Example 3.7: Game of Names (afer Porpentine)

We’ll fnish with one from the heart. Te naming ritual at the begin-
ning of Porpentine’s With Tose We Love Alive creates a moment of
high enchantment. We’ve discussed its mysteries in the previous criti-
cal chapter. Here we’ll subject it to shameless imitation, partly for one
more demonstration of the creative possibilities of Twine, and mainly
because we think (well, one of us does) that making up character names
is huge fun.

◊ Create a new Chapbook story and call it what you will. Make
two passages. Name the starter passage “Choose Your Time.”
Name the other one “Your Name Will Be.” Let’s start with the
variables section in the first passage. Open “Choose Your Time”
and type the following:

theDays: ['Scum','Monster','Tomb','Weed','Thirst

','Fear','Scatter']

theSeasons: ['Waking','Making','Darkening','Ni

ght']

We make two arrays, one for the seven days of a fantastical week,
the other for four eldritch seasons. Tis is less detail than Porpentine
works with; we need to keep things manageable for demonstration
purposes.

https://sfpc.io

200 TWINING

◊ After closing off the variables section with the required dou-
ble dashes, add the following to “Choose Your Time”:

Today is a {dropdown menu for: 'theDay',
choices: theDays}day in the season of {dropdown
menu for: 'theSeason', choices: theSeasons}.

[[So it is; who am I? ->Your Name Will Be]]

It’s our old friend, the dropdown menu. We could have used cycling
links as in the Porpentinian original, but no one likes a robotic imitator.
Going with the dropdown menu insert also allows us to demonstrate a
small but useful trick: you can defne your menu options as an array, up
in the variables section, then simply reference the array as the argument
to “choices” within the insert. If for some reason you have a long menu
of choices, this separation might be convenient.

◊ Open the second passage, “Your Name Will Be.” This passage
has a long variables section, which we’ll break into pieces. Start
with this:

firsts: ['Drag','Mars','Mol','Bren','Hal','Dom']

seconds: ['rak','ra','della','bim','bang','rica'

,'dottir','goth','gren','thing']

thirds: ['Hamble','Rumble','Storm','Mountain','R

iver','Valley','Moose','Squirrel']

fourths: ['hand','mind','foot','body','thumb','w

easel','love','song']

We have four arrays, each containing options for syllables in a four-
syllable name. We’ll have two kinds of names—some that are generated
from these arrays, and another set arrived at diferently.

 GENERATION 201

◊ Here’s the next piece of the variables section in “Your Name
Will Be”:

nameFirst: firsts[Math.floor(random.

fraction*firsts.length)]

nameSecond: seconds[Math.floor(random.

fraction*seconds.length)]

nameThird: thirds[Math.floor(random.

fraction*thirds.length)]

nameFourth: fourths[Math.floor(random.

fraction*fourths.length)]

id: nameFirst+nameSecond + " " +
nameThird+nameFourth

Te four sequential variables receive random selections from the sylla-
ble arrays. Te combination of these variables is assigned to the variable id.
Note that the plus sign (+) works here as a concatenation operator, simply
sticking together some strings. Tat’s because JavaScript (and Chapbook)
automatically changes the function of the plus sign when a string is in-
volved. (If only numbers are involved, “+” signifes mathematical addition.)

◊ One more push to complete the variables section:

id (theDay==='Monster' && theMonth==='Waking'):
'Slam Danghandle'

id (theDay==='Weed' && theMonth==='Making'):
'Leah Romavant'

id (theDay==='Tomb' && theMonth==='Darkening'):
'Gnowth Marvydink'

id (theDay==='Thirst' && theMonth==='Night'):
'Crassa Foomstoffer'

202 TWINING

--

id (theDay==='Fear' && theMonth==='Waking'):
'Blastgret Stimsocket'

id (theDay==='Scatter' && theMonth==='Making'):
'Meera Upfallen'

id (theDay==='Scum' && theMonth==='Darkening'):
'Kristel Vannafoy'

id (theDay==='Monster' && theMonth==='Night'):
'Markie Mistmother'

Don’t forget the dashes closing the variables section. Here we have
another instance of conditioned variables, as in examples 2.4 and 3.6.
We single out eight combinations of day and season for special names
not made from the syllable sets. We throw in this feature arbitrarily, but
it does add some stakes to the naming game. Tere are twenty-eight
permutations of days and seasons and eight special names, giving a
2:7 chance of obtaining one. If there were a story attached to these
two passages, maybe a character with a special name would be treated
diferently than one with a generic, generated name. Or maybe, as in
With Tose We Love Alive, the name would essentially be a MacGufn,
elaborately generated but not otherwise consequential. Creativity is all
about choices.

◊ The rest of the second passage is simple:

[align center]

Born on a {theDay}day of the {theMonth} month,
you are:

~~{id}~~

[continue]

[[Try again? ->Choose Your Time]]

Finish and test. Who will you turn out to be?

 GENERATION 203

So ends our encounter with text generators. Like other applications
of Twine, they may be silly, serious, or somewhere in between. Tey can
incline toward the party-game fare of Mad Libs, to the revolutionary
aesthetics of the exquisite corpse, to the endlessly iterative fascination
of Taroko Gorge. Whichever way you turn, you’ll be working with a sys-
tem fundamentally dedicated to possibility, variation, contingency, and
play. Chapter T-4 looks at the cultural implications of that iconoclastic,
radically playful turn.

Technical Notes on JavaScript and Chapbook

Tis chapter has introduced the JavaScript modifer, opening the door
to hybrid constructions. If you’d like to explore that path, you may want
some experience with JavaScript frst. Our bonus practical chapter
presents a series of projects that work exclusively with JavaScript with-
out touching Twine. Tey might be a good place to start, and of course,
commercial guides to JavaScript authoring are abundant. An excellent
resource for creative applications is Montfort’s Exploratory Program-
ming for the Arts and Humanities (Montfort, Exploratory). What fol-
lows here is fairly detailed and is meant primarily for those who have
become interested in doing more ambitious things with JavaScript and
Twine.

A subject of great concern to modern programmers is the order of
operations—just when the computer processes your instructions. In
Chapbook/JavaScript hybrids, you need to consider this issue in ar-
ranging your code. Let’s say you have two custom methods or functions,
A and B. Method A invokes method B. In browser-based JavaScript,
you can place the defnition of B afer A in your code. Not so with
Chapbook, which in our experience will throw a pink ft if you refer to
a method you haven’t previously defned.

Te order of operations also has implications beyond the structure
of code. If you’ve worked with JavaScript in web pages, you may have
encountered a situation where a script’s behavior depends on where it
is placed within the page code. Te “HEAD” division is usually safe,
but not always—if, for instance, your script needs to interact with an

204 TWINING

element that is dynamically added to the page by another script. Te
browser needs to load related elements before your script operates
on them. A similar problem can arise with Chapbook if you write a
script that changes a page element and do not either (a) make the script
dependent on a user action, such as reloading the page, or (b) delay
the frst execution of the script by using setTimeout() or setInterval().
Tese are advanced topics that go beyond the purview of this book, but
we thought we’d mention them in case Twine starts complaining that
you’ve tried to modify a “null” object.

Finally, a general note about the Twine/JavaScript relationship. As
we’ve noted, it’s incestuous. Twine runs in JavaScript, so its hybridized
structures are always a little . . . kinky. On occasion, you may fnd that
JavaScript instructions, especially those with compound and complex
syntaxes, don’t behave as expected. JavaScript in Chapbook is not quite
the same as JavaScript in a conventional web page. However, these in-
stances are rare, and we can do a remarkable range of things without
running into difculties. As we’ve said, you can see more of those pos-
sibilities in the bonus chapter at the end of this book.

Works Cited
Carpenter, J. R. Generation(s). Traumawien, 2010.
Funkhouser, Chris. New Directions in Digital Poetry. Bloomsbury, 2012.
———. Prehistoric Digital Poetry. University of Alabama Press, 2007.
Knuth, Donald. Literate Programming. Cambridge University Press, 1983.
Montfort, Nick. Exploratory Programming for the Arts and Humanities. MIT Press,

2016.
———. Taroko Gorge. 2009. https://nickm.com/taroko_gorge/.
Nelson, Teodor H. Computer Lib/Dream Machines. Mindful Press, 1987.
Wardrip-Fruin, Noah. “Christopher Strachey: Te First Digital Artist?” Grand Text

Auto, August 1, 2005. https://grandtextauto.soe.ucsc.edu/2005/08/01/christopher
-strachey-frst-digital-artist/.

https://grandtextauto.soe.ucsc.edu/2005/08/01/christopher
https://nickm.com/taroko_gorge

CHAPTER T-4

Queer Twine and Camp

Twine is inarguably situated in queer discourse: some of the most
infuential designers and games produced with Twine are narratives
that center trans identity, dysphoria, coming out, and coming of age as
queer. Play with pronouns, bodies, monstrosity, and eroticism is com-
mon, particularly in the works of leading designers such as Porpentine,
Anna Anthropy, Christine Love, and many more. Tere are two ways
we might talk about Twine as queer. Te frst is straightforward and
thus overly simplistic: Twine is a platform made rich by queer stories.
If we were to defne a Twine canon, it would be impossible to do so
without including rich narratives of trans bodies in sci-f horrors, of
lesbian cowgirls fnding romance, of queers in love at the end of the
world—can we imagine making such a claim about any other game
platform? Tis distinction alone is enough to place Twine works frmly
on the margins of how gaming is generally discussed, even in scholarly
circles, where an increased interest in queer gaming has permeated.
What is subtext elsewhere is frmly text in Twine—while it is possible to
construct depictions of unnuanced, heteronormative relationships, the
platform itself seems to challenge such depictions and asks authors to
reconsider binary choices for richness of exploration. And this aspect,
perhaps, leads us to a less straightforward reading of Twine as queer.

206 TWINING

Given its origins in open-source, its insistence on a nostalgic interface
that recalls early hypertext even as it dismisses such antecedents, and
its extreme potential for an over-the-top aesthetic that recalls the days
of GeoCities, is Twine itself a queer platform?

Te early web was delightfully queer: a walk down memory lane
through a 1999 feature in the sexualities category suggests that “the gay,
lesbian, bi, transgendered and other anti-gender communities were
ahead of the game here,” noting the existence of a 540-page “tome the
size and shape of a computer manual” by Jef Dawson in 1998 entitled
Gay and Lesbian Online: Your Indispensable Guide to Cruising the Queer
Web (Gauntlett 327). It is hard to imagine such a guide today—indeed,
it is hard to recall the type of mind-set that would have a writer typing
out websites such as the lengthy URL to For Queer Mice, a website ap-
propriately housed in the WestHollywood neighborhood of GeoCities
(Gauntlett 328).

Twine is a throwback to this aesthetic, drawing on what artists Olia
Liana and Dragan Espenschied defne as a type of digital folklore lan-
guage in their unusual and important volume documenting the types
of web art practices that ofen go derided or unremarked: “Users’ en-
deavors, like glittering star backgrounds, photos of cute kittens and
rainbow gradients, are mostly derided as kitsch or in the most extreme
cases, postulated as the end of culture itself. In fact this evolving ver-
nacular, created by users for users, is the most important, beautiful and
misunderstood language of new media” (Espenschied and Lialina). Te
examples these artists draw on emphasize the feminine and the decora-
tive, two intertwined aesthetics that already attract derision.

In the introduction to their mix of theoretical and pragmatic exami-
nations of this user-powered web, Liana and Espenschied further note
that the attention to the history of dominant technologies means “we
have studied the history of hypertext, but not the history of Metallica
fan web rings or web rings in general,” a reminder that is particularly
compelling given whose web is centered by this divide (Espenschied
and Lialina).

Notably, popular coverage of these same artists’ project to delve into
the GeoCities archives and share their fndings on Tumblr has come with

QUEER TWINE AND CAMP 207

headlines like “Remember the Hilarious Horror of Geocities” (Chan).
Tis derision dismisses the investment of individuals working in the
web in a tradition not so removed from outsider or visionary art, which
is defned by the American Visionary Art Museum as “Art produced by
self-taught individuals, usually without formal training, whose works
arise from an innate personal vision that revels foremost in the creative
act itself ” (“American Visionary Art Museum”). Te personal web page
embodies shaping webrings, building coordinated background sets and
buttons to avoid HTML defaults, crafing animated GIFs, and optimiz-
ing resolution to account for limited modem bandwidth.

Tese individuals were the original artists-in-residence of the web.
Artist Richard Vijgen draws our attention to the spatial metaphors of
GeoCities through his project Deleted City, which he described in an
interview as capturing the settler mind-set that GeoCities encouraged:
“Te idea that in the beginning, cyberspace is an empty space that has
to be populated, was I think easily linked to this idea of America being
an ‘empty’ continent. . . . Tey provided web space with a story, with
a narrative” (Howard). Notably, the most popular of the communities
was Heartland, which suggests a GeoCities with a highly normative
main street: “With an emphasis on ‘parenting, pets, and home town
values,’ the Heartland neighborhoods (including 41 suburbs with names
like Plains, Meadows, Prairie, and Woods) also spoke to Geocities’ im-
mense popularity with a specifc demographic: wealthy, white, and
American, those with the disposable income to become some of the
net’s frst users” (Howard).

Step outside of “Main Street,” however, and the neighborhoods
change dramatically: WestHollywood ofered the forthright listing:
“Gay, lesbian, bisexual and transgendered” (GeoCities, “GeoCities—
Neighborhoods”). Notably, this same neighborhood was at the center of
an early case of online censorship when CyberPatrol blocked the entire
community rather than reviewing its content: “Te blocking of West
Hollywood raises the issue of whether it is possible to flter the Internet
at all” (Wallace, “Tere Goes the Neighborhood”). Te pages linked in
one archived WestHollywood neighborhood hub tell a diferent story,
to list just a few:

208 TWINING

Lesbian Epiphanies
GENDER is so confusing. ??
Te Wonderful Homepage of Two Huge Indigo Girls Fans

(GeoCities, “Geocities WestHollywood LGBTQ”)

Such pages are arguably as much a part of the history of hypertext as
any novel associated with the history of electronic literature, yet most
of this work goes undocumented outside of the work of a few web his-
torians, and the aesthetic expression of early queer hypertext (and the
communities it enabled) is typically treated separately from the literary
potential, despite the many impromptu literary journals and narrative-
driven spaces within these neighborhoods (see fgure 15), particularly
on the fandom side. Such pages ofen included personal touches along
with vivid color and images. Tese pages, taken collectively, demon-
strate a number of early solutions to personalizing what was once more
appropriately called the home page: boring line rules were replaced
with GIFs, including the examples here of a rainbow bar or a spider
moving across the page. Visitor counters tracked one’s impressions,
ofen accompanied by guest books for leaving comments. Under-
construction GIFs of every variety reminded the viewer to return to

Figure 15: An example of a literary home page in WestHollywood, emulated
from 1996 (Twilite909)

QUEER TWINE AND CAMP 209

appreciate changes. Tiled backgrounds allowed for smaller images to
serve as the basis of extensive patterns. And of course, the deeply per-
sonal nature of the web is well refected in the contact information and
personal collection of links that appear on these pages.

To call these pages evidence of a camp aesthetic in the early web
would be oversimplifying matters—however, the decorative elements
here, taken to an extreme, produced pages that live on for their visual
infamy as a testament to what hypertext can do.

Aesthetically, a classic model of hypertext in electronic literature
leaves much of the lifing to the words. Te literary model and heritage
we’ve discussed thus far emphasize hypertext not on interface (though
it is certainly present) but on structure, and several of the early plat-
forms and iterations of hypertext refect that preoccupation. While early
Storyspace novels integrated graphics and works like Shelley Jackson’s
Patchwork Girl (1995) demonstrate the platform’s ability to integrate
graphics and use visualizations to make the linking structures more
visible, the emphasis is on text frst (see fgure 16).

Figure 16: Diferent visual elements of Shelley Jackson’s Patchwork Girl (1997)

210 TWINING

By contrast, web-based hypertext is more inherently multimediated,
and authors experimenting with the web as a platform frequently ex-
ercised their greater aesthetic control. For example, Jackson’s My Body
(1997) integrated image maps, although many of the other aesthetic
choices of these works were functional. For example, My Body incor-
porates small image fragments illustrating each page of the body as the
reader navigates the work, then uses the standard practice of highlight-
ing active and visited links in diferent colors to demonstrate what the
reader has already explored. Te work uses some of the afordances of
hypertext, such as image backgrounds, to create the tiled repetition
of the brushstrokes.

As a medium grounded not in text but in hypertext, with the markup
that entails, and adopted not necessarily by makers of “literature” but
by makers driven by games and interactive media, broadly conceived,
Twine is a platform where aesthetic restraint is not so dominant. In-
deed, one of Twine’s defning characteristics is the ability to harness
layered, multimedia expressions of emotion rapidly, and remixing is
particularly easy for live works drawing on everything from YouTube
videos for backgrounds and music to a digital art heritage of animated
GIFs, vector graphics, blinking text, and more. Twine thus ofers a tech-
nological throwback that recalls the age of GeoCities and an interface
that points back to HyperCard. Te use of HTML tags and in-line style
hearkens back to when the web was flled with animated GIFs and per-
sonalizing a page with everything from animated GIFs to elaborate fan-
tastical backgrounds and blinking line-break bars was simply the norm.
Te modern web has its own aesthetic: Facebook does not give users
leeway to change a color, much less a font.

Tis expressive space allows Twine artists to work in an aesthetic un-
common to games: camp. Mark Booth homes in on the challenge of de-
fning camp: “Te key to defning camp lies in reconciling its essential
marginality with its evident ubiquity, in acknowledging its diversity while
still making sense of it” (Booth 66). Susan Sontag suggests that camp is fre-
quently intertwined with the decorative, “emphasizing texture, sensuous
surface, and style at the expense of content,” explaining that “the hallmark
of Camp is the spirit of extravagance” (Sontag 59). Jack Babuscio notes

QUEER TWINE AND CAMP 211

that Sontag obscures the queerness of camp, which is essential to the camp
of hypertext and Twine: “Camp is . . . in part, a reaction to the anonymity,
boredom, and socialising tendencies of the technological society. Camp
aims to transform the ordinary into something more spectacular. In terms
of style, it signifes performance rather than existence” (Babuscio 122).

Twine has been positioned as an outsider platform, a connection
Matt Kirschenbaum suggested in his survey of the feld in 2017: Twine
seems aligned with punk and disruptive, in spaces ranging from aca-
demic to industry. Te saga of Depression Quest (perhaps the most in-
fuential Twine game in history) is a testament to the power of Twine
to anger. Feminist and queer code studies invite us to ask if there is
something about Twine that is responsible for this potential—does the
platform’s emphasis on accessible disruption make it inherently queer
or feminist? Making such a claim is signifcantly risky and potentially
painfully reductive. David Halperin warns against a normalization
that pulls queer back into an abstraction: “A generic badge of subver-
siveness, a more trendy version of ‘liberal’” (Halperin 341). Certainly,
Twine’s subversiveness is well documented. A case can be made that
Twine’s ease of use and distribution is the key to this subversion, and
Leonardo Flores sets Twine forth as part of the third generation of lit-
erature, with an emphasis on accessibility: “Te sofware tools at their
disposal are varied and increasingly lower the barrier to entry, with
programs like Twine, Unity, Javascript Libraries, simple and free pub-
lication platforms (like Cheap Bots, Done Quick! and Philome.la), and
social media apps like Vine, Instagram, Snapchat, GIPHY, and others”
(Flores). Such tools notably include many free corporate platforms ap-
propriated for the purpose of personal creativity.

Alongside these other tools of the third generation, Twine evokes
what Kathi Berens refers to as the “Try it Yourself ” model of e-literary
intention: “As the technical barrier-to-entry lowers, a wider range of
people are empowered to ‘try it yourself ’ making digital art. Tey ‘re-
ject or are unaware of ’ e-lit’s aesthetic of difculty. ‘Try it Yourself ’
doesn’t prescribe an aesthetic. It discloses an intention” (Berens). Por-
pentine invokes a similar intention in an interview entitled “Beautiful
Weapons,” where she notes both Twine’s accessibility and the role of

https://Philome.la

212 TWINING

herself and other queer designers in making it popular. Porpentine
describes Twine in the interview in terms of confict:

Twine is guerrilla warfare. It is cheaply-made pipe bombs and land
mines that can proliferate and crop up in the dominant space. Besides
being easy to create, it is not enough that our art be beautiful. It must be
a beautiful weapon. We must ensure that our art is weaponized and can
destroy other things.

We can food sites and the Web with our games because it’s so easy
to upload and share. Tere’s just no obstacle to playing them—you just
load it like a webpage. We’re competing now with AAA games. Tat’s
what I mean by weaponization. It’s hard to argue with that kind of viral,
proliferating, breeding spirit. (Kaye)

Tis discussion of Twine’s accessibility allowing for the ease of pro-
liferation is notably part of the essential appeal of modern hypertext
and is what distinguishes web-driven hypertext from the platforms
associated with electronic literature. Platforms such as StorySpace
forefronted the literary (as discussed in chapter T-3): this is not to say
that such platforms can’t be similarly accessible for creation, but their
models of distribution are more tightly controlled, and the obstacles
to their proliferation and play are intensely diferent. Twine ofers no
obstacles—a concept can be built, circulated, and played without spe-
cialized knowledge, which lends itself to expressive works that can be
rapidly experienced and responsive to immediate discourse.

In this, Twine is an heir to Flash but without the baggage of a
browser extension. While Flash certainly brought an era of weird ca-
sual games and experimental electronic literature with it, the corporate
control of the platform and the need for an installed extension always
limited its scope and eventually its life-span (Salter and Murray). Flash
emerged because hypertext was seen as insufcient to the task of play
and marketing—Twine is a rebuttal and a reminder of how much native
web technologies can accomplish.

Te open-source aspect of Twine is particularly resonant with its use
for queer and disruptive play, which Adobe’s ownership of Flash (and

QUEER TWINE AND CAMP 213

the cost of development sofware) inherently hindered by tying it to
corporate economic models that similarly make the iOS and Android
app stores less queer-friendly spaces. Twine’s queer potential has pre-
viously been described primarily in terms of this type of democratiza-
tion: Alison Harvey notes that the queer alternatives Twine provides
for game-making are emerging in part due to its lack of alignment with
“games” as a construct: “Because Twine was not conceptualized as a
technology of game-making, assumptions about what these kinds of
tools do are not embedded in its structure and paratexts in the same
way as other dedicated digital game design programs” (Harvey 97).
Tis returns us to our opening discussion of Twine’s formalism: the
mechanics most associated with dominant game genres—violence, ac-
quisition, and conquest—are absent from the platform’s afordances.
Tey are possible but not embedded or default.

With that said, it is impossible to separate the history of queer Twine
from the history of queer gaming, particularly given the number of
Twine works examined here that make explicit interventions in gaming
discourse. Similarly, it is not in the realm of electronic literature where
most Twine works seek to make their intervention but instead in the
broader context of the web and games. Matt Kirschenbaum’s jest of
Twine as punk occurred before its counterpart, an apparent number-
one hit of electronic literature born of Twine: the special episode of
the Netfix series Black Mirror called “Bandersnatch,” discussed in
chapter T-1. Te mundane focus of “Bandersnatch” on a cis, straight
white man as a lone-wolf game designer is the epitome of traditional
games discourse and does not seem to easily mesh with a discussion of
Twine’s punk potential. Instead, it emphasizes exactly the qualities that
many Twine creators react against. Yet this is not an inherent refutation
of Twine’s potential as a disruptive force—rather, it is a reminder that
the goals of the creators and particularly the role queer designers have
played in shaping Twine’s aesthetics and its impact cannot be separated
from our discussion of Twine’s potential for infuence.

Te queer creators who have shaped Twine have claimed a diferent
aesthetic place for the platform. Tus I argue that Twine is not punk;
it is camp. It is the potential of the web, and its history, for decorative

214 TWINING

and dramatic play; it is the invitation to excess and personal style; it is
frequently too much and does not collapse under the weight of style.
Its emphasis on in-line tags allows users to jump from blinking text
to rumbling to marquees and everything in between in the space of
a single passage. Tis is not to say that all work in Twine is camp (it
isn’t) or that Twine is uniquely a queer game platform (it’s not, nor is
it the only home of queer gaming.) However, its fundamental embrace
of the aesthetics of an early, defantly personal web makes Twine an
invitation to explore style and decoration, and the resistant narratives
queer Twine creators have produced have embraced camp as a form of
defance against the painfully traditional masculinity associated with
gaming.

Camp and Porpentine

No work better demonstrates Twine’s potential for glorious excess and
camp than Porpentine’s Cry$tal Warrior Ke$ha (2013), a tribute to the
named pop artist whose anthem “Warrior” plays in the background
when the game is launched. One reviewer describes that album as
demonstrating “Ke$ha’s willingness to experiment with everything,
up to and including hitherto unexplored corners of the kitchen sink.
Tere’s Animal’s scuzzy synthpop, classic rock, EDM and, on occasion,
dubstep. In ‘Crazy Kids’ we get all the above with bonus cut-and-paste
points, completely changing between genres like a light switch” (Nel-
lis). Te music blasts the moment you open the browser to Porpentine’s
Cry$tal Warrior Ke$ha. Hover the mouse over a link, and the bold tur-
quoise lettering is replaced by larger, bright-pink letters with a tiled,
animated GIF of a pink star fashing repeatedly behind the words. Te
story (set at a concert from the artist’s perspective) quickly moves into
the absurd and fantastical as an attack interrupts the performance and
Ke$ha’s internal monologue responds:

your elite bodyguards/back-up dancers are undone.

it wasn’t just an energy attack. whoever did this had chrono magic.

QUEER TWINE AND CAMP 215

the time bomb didn’t kill them. it scattered them to distant lonely
worlds of time, temporal backwaters. they could be the kid you meet on
the street, the old woman hobbling through her garden. (Porpentine,
Cry$tal Warrior Ke$ha)

Porpentine frequently introduces the supernatural elements of her
narratives with similar matter-of-fact introductions. However, in this
iteration, they are also evocative of the imagery of Ke$ha’s album and
concerts, both infamous for theatricality and excess that the game
captures through rhythmic, spaced lines in a bold color palette (see
fgure 17).

Te game was announced on Porpentine’s Tumblr in 2013 with the mes-
sage, “THIS GAME IS 100% CANON.” Te original post received
287 notes (mostly hearts and reblogs) with comments including “Te
greatest game so far in 2013” and “Play this now” (Porpentine, “POR-
PENTINE”). Te release location of Tumblr is particularly signifcant
given Tumblr’s role as a hub for queer culture and particularly trans-
gender, genderqueer, and gender-nonconforming community building
during this time (Fink and Miller). Te community building and role
of queer trans aesthetics in shaping Tumblr follows a trend of shif-
ing from platform to platform as corporate policies make some spaces

Figure 17: A pivotal moment of confict in Cry$tal Warrior Ke$ha (Porpentine)

216 TWINING

uninhabitable for queer discourse: the people reshape the platform, and
through their infuence, “the website becomes a laboratory for erotic ex-
perimentation, a canvas for the collective depiction of trans desires, and
a living archive of sexual attraction” (Fink and Miller). Tis reimagining
of space recalls Kara Keeling’s framework of queer as resistance in sof-
ware: “Queer ofers a way of making perceptible presently uncommon
senses in the interest of producing a/new commons and/or of proliferat-
ing the senses of a commons already in the making” (Keeling).

While the experience of Cry$tal Warrior Ke$ha is short (about
ffeen minutes or less), it is memorable. Notably, this game made
Amanda Wallace’s Storycade list of three recommended games to in-
troduce people to Twine. Wallace’s description of the game highlights
the message about popular culture and particularly its resistance to the
antifan, noting that just as the protagonist “fghts of crowds of haters,”
so too can the game be used “to point out when someone is going too
far with their pop-culture hatred” (Wallace, “3 Twine Games”).

Tis emphasis on fghting back against haters, and particularly those
who would limit her artistic expression, is not just a theme of Ke$ha’s
music but also a pivotal part of her career. One poignant review notes
that the game thus has ongoing, and changing, resonance thanks to the
singer herself:

Te year is 2013, and this is long before Dr. Luke and the rape allega-
tions became common knowledge, back when Kesha was simply a pop
princess crossed with a glitter encrusted party girl. Back when she sang
about brushing her teeth with a bottle of Jack, back when she sang to
the misfts and the bad kids. Back when she wasn’t held in contractual
limbo, unable really to sing at all.

Because the character in Porpentine’s game isn’t the Kesha of 2016.
She’s the 2013 Ke$ha, who was still sufering in silence. Who was the sym-
bol for at least one developer, of being capable of facing down the haters
and surviving. Of smiling while doing it. (Hudgins)

Tis postassociation is particularly powerful given the similar nar-
ratives of abuse and silencing of women that would play out in the

QUEER TWINE AND CAMP 217

games industry, changing the game’s signifcance and keeping it in
the minds of many players. Porpentine’s more literary games, from the
darkness of Howling Dogs (2012) to the bleak meditation on suicide in
Everything You Swallow Will One Day Come Up Like a Stone (2014) and
the psychologically haunting body horror With Tose We Love Alive
(2014), attract the bulk of her critical enthusiasm and praise. Cry$tal
Warrior Ke$ha is something else: a game that demands the player be
immersed in a world of pop music and feminist glitter just to play, a
game that’s lyrical components defy the nonfan to even comprehend.
Yet it deserves as canonical a place as Porpentine’s other works, in part
thanks to its crucial role in cementing an essential part of Twine’s aes-
thetic potential—excess. Mat Jones goes even further in his review
of the game: “It’s not very long and it’ll change your entire life. You’ll
view everything from this moment on as taking place post-CRY$TAL
WARRIOR KE$HA world and ensure that any Game Of Te Year list
you produce from now until afer the universe consumes itself main-
tains a special place for it in any Top Ten. All of time freezes in place
and yet existence carries on, morosely, as we’ve already reached the
apex of human achievement—perhaps that of any living being known
or unknown. We’ve limited reason to carry on” (Jones).

It is impossible to talk about the game without positioning this
excess in relationship to the hypermasculinity of the games industry—
notably, the game appears on Zoë Quinn’s “Top 10 Games of 2013,”
released on Giant Bomb just as the attacks on her would bubble up.
Tey describe the game as “best played outloud in a group of friends so
that you can collectively feel like badasses as you shout out MANTIS
VICTORY SCREAM together” (Quinn). As a Gamergate snapshot,
this captures the signifcance of the game in indie discourse—
unsurprisingly, the comment thread devolved rapidly, with one mod-
erator asking that people cease from posting attacks with the note
“Also, I don’t see any mention of feminism in Zoe’s list, so I’ll be treat-
ing any mention of it as of-topic, irrelevant, and distracting from a
conversation that should be happening about the games” (Quinn).
While the height of harassment would not start until August 2014, the
toxicity was already well seeded.

218 TWINING

Another succinct review captures the game’s essence and puts it
frmly in confict with AAA game development expectations: “I f-
nally played Cry$tal Warrior Ke$ha. CWK is the Saints Row 3 of twine
games, but it’s better because it’s not full of a bunch of generic side
missions masquerading under the guise of absurdist premises. Instead
CWK is part a fuck you empowerment statement and part the greatest
Magical Girl video game I’ve ever played. It not only made me appreci-
ate Ke$ha, but it made me appreciate myself ” (M).

Te empowerment seeded in Cry$tal Warrior Ke$ha is not simply
narrative or text—it is a defance that runs through the game’s entire
over-the-top design. Te game is bold and attention-demanding, the
soundtrack designed to blast and impossible to ignore or silence with-
out removing much of the contextual meaning. Te color choices are
bold and tacky; the imagery straight from Ke$ha’s album covers; and
the continual moments of animation and fashiness are certainly worthy
of a “magical” girl. Some of the characteristic elements of camp twine
emerge from an examination of Cry$tal Warrior Ke$ha and its legacy:
an emphasis on the decorative and the excessive; an unapologetically
queer thrust to both narrative and design; and an embrace of multi-
media that can feel discordant or cacophonic.

Porpentine’s work also embraces camp in process and discourse. In
an interview, Porpentine discusses her approach to hypertext and mak-
ing with Twine as “trash-spinning,” emphasizing spontaneity and emer-
gence of meaning through the act of creation:

I’ve always just called it trash-spinning. Just like rolling up trash. But
most of my games are just spontaneous improvisations where I roll up
everything in my environment and I wad them together. Tey’re a big,
crystalized trashy ball of everything that’s happened to me over the
24 hours or 48 hours in which I made the game. Like conversations, or
you’ll notice how I incorporate all of the music I’m listening to in my
games. It’s just very organic. Ten I try to turn it into a weapon, some-
thing people can feel. How can my emotions be transmitted to another
human being? A dart of nausea, arousal, triumph, crying, even radical,
transformative joy. (Kaye)

QUEER TWINE AND CAMP 219

Tis description of “radical, transformative joy” is, we would argue,
at the heart of what Twine brings to the web—the very traits that Por-
pentine describes as allowing for “trash-spinning.” Porpentine’s ap-
proach has inspired others, particularly thanks to her role in amplifying
the platform through Tumblr and other queer, indie, and experimental
communities online. Her work is defnitive of Twine’s camp potential,
but it is also in conversation with a number of other creators who per-
form similar radical, transformative acts with their work.

Much of the radical work of Porpentine is less grounded in recog-
nizable popular culture and moves into more speculative, and surreal,
territory. Porpentine’s compilation of Twines works, “Eczema Angel
Orifce,” includes a number of contemplations on bodies. Unlike dys4ia
(Anna Anthropy’s original “empathy” game), Porpentine’s work centers
the physical and emotional experience through metaphor. Porpentine
described her embrace of the inhuman in an interview: “A lot of my
games have been kind of submerged. . . . Tey’re written from a very
dissociated perspective where the point of view is almost smeared into
the environment. Tey have trouble conceiving of themselves as a per-
son” (Muncy).

Porpentine’s Girlwaste draws on the aesthetic of the retro web,
zines, and low-res art and particularly embodies this reckoning with
the physical body through a submerged, inhuman self. Te color pal-
ette is initially reminiscent of the stark red, lined landscapes of Nin-
tendo’s Virtual Boy, while the “movement” recalls the earliest graphical
RPGs, ofering the player arrows to navigate on the search for estrogen
(see fgure 18). Te lines of the body moving are emotionally charged,
and the transparency works to craf a sense of incompletion and dis-
connection. Te player encounters others who help her out on the
quest, such as a “slimebabe” who “is not from this layer.” Te mon-
strous bodies accompany your personal need: selecting “ache” raises
the text “Your glands rumble. Icicles of withdrawal pierce through the
reverberation.”

220 TWINING

Figure 18: Representative graphics from Porpentine’s Girlwaste

Queer, Camp Twine in the Wild

Another signifcant example, Christine Love’s Even Cowgirls Bleed was
released on Tumblr around the same time as Ke$ha (2013 being the
height of Twine camp, perhaps?)—she posted with an important warn-
ing: “I was not feeling great that day” (Love). In an interview, she elabo-
rated on the origin points: “Te whole thing is based of something that
happened to me with a girl in real life. It lef me feeling pretty shitty,
and . . . well, here’s the thing about crying yourself to sleep: it seems like
it’d work eventually, but mostly it just gives you insomnia. . . . So afer the
second or maybe third night of that, I decided I was sick of crying and
decided to funnel those feelings into something productive” (Johnson).

Te emphasis on sorrow rather than joy places a catharsis at the
heart of the game that leads in a far darker direction than the bright
colors immediately suggest. Te game chronicles a lesbian romance
between two cowgirls amid confict, featuring an interface that removes

QUEER TWINE AND CAMP 221

all the black and white usually associated with Twine in favor of shades
of orange and red. One reviewer describes how Christine Love breaks the
expected Twine interface to draw the player in:

During the passages where nothing much is happening, the “Holster”
button alternates between either side of the screen, mimicking the in-
game description of you anxiously tossing your pistol from hand to
hand. And when the game starts to take a dark turn, you try to carefully
thread your crosshairs between the ominous targets to what seems like
a safe one, only for the text layout to force the exact misfre you were
trying to avoid. Even if the player is not, in fact, a lesbian city slicker
with dreams of becoming a cowgirl, the identifcation reinforced by the
synchronicity between the text and the player’s actions is enough to put
you into that mindset, however briefy (Maragos).

Tis use of the crosshairs is particularly jarring in a narrative that
includes signifcant eroticism and dialogue, two things not associated
with game genres that typically ask players to look at the world through
the lens of a gun. Te game forces the player to be conscious of vio-
lence, and the potential for violence, throughout and asks the player to
“holster” as a metaphor for inaction. Christine Love is particularly well
known for her more visual works, such as Digital: A Love Story (2010)
and Ladykiller in a Bind (2016), both built with Ren’Py, a more com-
plex Python-driven game-making tool infuenced by Japanese anime
aesthetics and aimed at the development of visual novels. It is thus not
surprising that she brings some of these aesthetics to her twine works,
including Magical Maiden Madison (2013), a story that unfolds sur-
rounding sexual tensions following a magical girl’s battle with a tentacle
monster (Love).

Another exemplar of camp twine with an explicit political emphasis
is D. Squinkifer’s Quing’s Quest VII: Te Death of Videogames (2014).
Released as part of RuinJam, an event responding to the attacks on
Zoë Quinn and the broader abuses of Gamergate, the game features an
animated galactic background; bold, pink, and green text; and hover
efects with animated links (refer back to fgure 10). Te game’s text

222 TWINING

is similarly flled with references and commentary—the player fnds
themselves on a ship entitled the Social Justice Warrior, in reference
to the derisive label given to feminist and queer infuencers perceived
as pushing for representation in games and other media at the cost of
“quality” or “authenticity” (defned, of course, as fdelity to canons cen-
tered on the stories of straight, cis, white men). Te character refects
on the “misogynerd” claiming of gamer identity at the expense of those
already present, making games: “‘Gamers.’ Tat’s what the misogynerds
started calling themselves, once they invaded your planet. To make it
worse, they act as if this is the way it’s always been, as if Videogames
was a planet that they alone discovered, as if your people hadn’t been
there frst” (Squinkifer).

Ruberg responds to the queer experience of D. Squinkifer’s Quing’s
Quest as encapsulating both content and aesthetics, noting that “the text
shimmers and sparkles; upbeat lounge music plays in the background. . . .
Te game’s message is ultimately one that mixes sadness and anger with
hope” (Ruberg 219). Deeply embedded in classic hypertext and games, the
aesthetics are both familiar and striking, but one reviewer describes
the game’s fundamental appeal as a power fantasy, bringing a twist to the
video game mechanics the work resists: “In a game where your choices
don’t matter at all, it was strange to fnd myself feeling empowered at
the completion. . . . I was lef wanting to fst-pump and dance, full of
renewed energy to fght the misogynerds I encounter everyday in my web
space” (Reynolds). Notably, the type of power explored in all these ex-
amples is framed in terms of resistance—in particular, placing the bold,
antihaters battle royal of Cry$tal Warrior Ke$ha alongside the dance
battles and face-ofs with “misogynerds” in Quing’s Quest ofers a com-
mentary on the dull predictability of combat in most game systems.

Other exemplars of queer twine have less connection to camp aes-
thetic and instead push at the representational narratives of games. For
example, Anna Anthropy’s Queers in Love at the End of the World (to
which we will return in chapter T-5) is a powerful example of a game
that focuses on the moments leading up to an ending and thus recalls
Shira Chess’s work on the queer narrative potential of games that can
“play in the middle spaces” rather than relying on the moment of climax

QUEER TWINE AND CAMP 223

(Chess). Aesthetically, Queers in Love at the End of the World does not
match the other Twine games discussed here—the palette is minimally
altered from one of Twine’s defaults, and the user’s attention is drawn
to the rapidly passing countdown of the ten seconds promised until
the world ends. Te ending of the game is always abrupt, and there’s no
way to get a sense of completion, only desperation. However, the game
challenges expectations in another way: it takes the expected pace of
hypertext and breaks it, pushing the user to frantic physicality as ex-
pressed through the few verbs available and the need for rapid action
that is ultimately meaningless.

Anna Anthropy’s Twine and Punishment collects some of her Twine
games and is decidedly immersed in queer, camp aesthetics, including
the sardonic work Te Hunt for the Gay Planet and the prelude work
Keep Dreaming, Space Cowgirl (Anthropy). Te Hunt for the Gay Planet
is particularly signifcant as a commentary on games culture, as the
work engages with the lack of queer representation in massively mul-
tiplayer universes.

Sav Ferguson’s Tat Boy Is a Monstr takes a fantastical spin on
Grindr and makes more signifcant use of the aesthetic expressive-
ness of Twine for its mock-app interface, ofering the player messages
from characters with usernames from “AngryBear” to “xWereSelkiex.”
However, the messages the player encounters are quickly revealed to be
darker. Sam’s refections shared with the player throughout the game
are immediate and poignant, emphasizing a personal voice: “With a
glance, he’d see band posters, polaroid’s with friends, those little triangle
things—bunting? rainbow and glittery, and fairy lights. Maybe if he got
up and looked at the polaroid’s, he’d see me with my old girlfriend. Or
me pre-T. Or, what if he looks at the band posters too close and realises
I just printed them myself? Is he gonna think I’m a hipster? God I hope
not. AM I a hipster?” (Ferguson).

Aesthetically, the game includes pointers to its narrative—the trans
fag colors inform the gradient background, visible even before the player
is brought into the details of the character’s struggle with rejection
and discrimination from the other users of Monstr. Te metaphor of
monstrous bodies explored in Porpentine’s work is made more literal

224 TWINING

and humorous through the character identities here. Te game also
employs a list of references as part of the credits, including an article
serving as a point of inspiration: “More Americans claim to have seen
a ghost than a trans person” (Williams).

Te 2018 game Pirate Queen by twinegamesareboring is described
on its itch.io page as “gay as hell” and lacks many of the aesthetics of
the other examples profled here but demonstrates some of the key op-
portunities for representation (twinegamesareboring, “Pirate Queen”).
Another work by the same author, “Didn’t,” similarly ofers representa-
tive play: “And remember when you were fourteen-years-old, and her
hair was chlorine-bleached and her lips were blackberry-stained, and
she kept asking is-there-something-in-my-teeth, and you wanted to
kiss her, but you didn’t?” (twinegamesareboring, “Didn’t”). Such works
are part of an ecosystem of personal, usually individually crafed games
tagged as queer or LGBTQ on itch.io, a platform whose economics are
primarily grounded in donations and a “pay what you can” system.

Te visibility of Cry$tal Warrior Ke$ha and the other games discussed
here in game publications reviews is part of its larger discursive impact
and puts it alongside other queer, camp Twine games that use the me-
dium to push back against all the dominant structures and assumptions
that go with the word game. Importantly, the queer Twine games em-
phasized here were all originally released for free (although occasionally
released later as part of paid collections) and thus are also not part of
the traditional economics of game production. As Harvey points out,
“Queerness acts as a destabilizing force, challenging norms of who gets to
be a producer and what should be made, but it is wrought with the dan-
gers and precarity of this position. Operating beyond hegemonic spheres
of production and reproduction entails a number of real risks, and we
should be careful not to equate emancipatory promise with poorly paid,
insecure work and life below, on, or near the poverty line, dependent on
the vicissitudes of crowdfunding” (Harvey 104). Te larger discourse of
games labor (and the binaries and hegemonies of the games industry) is
being resisted through Twine but is far from dismantled.

Te traditional economics of the game market leave little room for
experimentation or diversity in representation, as Matt Conn points

QUEER TWINE AND CAMP 225

out in his discussion of the importance of GaymerX and queer gaming
communities: “In the transition to 3D, as costs for game development
skyrocketed in front of a hungry market, risks hit an all-time low and
the nearly comically omnipresent white, straight, cisgendered, able-
bodied, thin, classically handsome main character became a staple.
Although there’s nothing wrong with making a game about this guy,
doing so over and over is akin to an entire feet of artists all painting
the same man” (Conn). Conn’s words evoke the embodied avatars of
nearly every shooter, the graphically enhanced but otherwise relatively
unchanging bodies we’ve inhabited awkwardly as players through the
decades.

Notably, that same transition to 3-D is ofen blamed for the death of
other narrative game genres that Twine resembles—just as those genres
have survived through alternative market modalities, so too has hyper-
text continued divorced from any models of clear proftability (Salter).
Te reconciliation of queer gaming and the current AAA labor market
seems insurmountable. While queer narratives are making headways
in flm in indie productions (with notable recent standouts such as
Booksmart, Moonlight, and Call Me By Your Name all receiving criti-
cal acclaim for coming-of-age stories of the type common to Twine as
well), queer-centric videogames are still relatively absent. Indie suc-
cesses such as Life Is Strange, Gone Home, and Dream Daddy: A Dad
Dating Simulator (discussed in detail in Playing the Outsider, forthcom-
ing from Bloomsbury) are outliers, receiving more critical acclaim than
fnancial success and inspiring few commercial imitators.

Similarly, conferences such as Queerness and Games have been
central to increasing the awareness and visibility of queer gamers, de-
signers, critics, and scholars in games discourse (Pozo, Ruberg, and
Goetz), while queer game studies is still even more marginal than femi-
nist game studies in the feld. Discussions of queer representation in
electronic literature are even more unusual and not strongly embedded
in the theoretical or aesthetic models of the feld. At the same time,
the designers of queer games resist some of the discourse of scholar-
ship and criticism that can take a reductive approach. In 2015, Anna
Anthropy exhibited a new piece entitled Empathy Game to comment

226 TWINING

on the trend of amplifying games by queer and marginalized creators
as a way of “understanding.” Te game featured a pair of boots with a
pedometer, with one mile of walking equating to a single point in the
game. As Anna Anthropy described, “You can get a high score on
that game . . . but you’re probably not going to beat mine. You can spend
hours stomping around in those boots and it will only bring you a frac-
tion closer to knowing what it’s like to be me, to be trans” (D’Anastasio).
Anthropy’s own work on indie game design (and particularly the need
for inclusive, accessible, game design communities and tools outside of
conventional commercial platforms) predicted a rise in personal game
development that brought with it what Bo Ruberg called the “queer
games avant-garde” (Ruberg 6).

However, that queer games avant-garde must be understood through
the lens of attack and with an awareness of risk. In June 2019, at Narra-
Scope, D. Squinkifer gave a talk entitled “How Making Videogames
Turned Me into a Depressed Gay Communist” in which they addressed
the making of videogames pre- and post-Gamergate through an inter-
active, choice-driven performance piece. Te piece was augmented
with a knock-of Google Glass that highlighted the uneasy relation-
ship with technology that living in a “cyberpunk dystopia” evokes. Tey
addressed Gamergate directly through the choice to talk about 2014,
noting the lessons the hatred directed at designers lef: “When you’re
part of any number of marginalized groups, fame is an occupational
hazard. . . . Before, I used to believe in the fction that there was no
such thing as bad publicity. Tat it was important to be bold and brave
and controversial. . . . But when the controversy isn’t over your art or
your ideas, but over your right to exist as a human being . . . What can
I even say? It’s terrifying.”

D. Squinkifer acknowledged a complicated relationship with the
concept of empathy, and indeed with the role of the personal in game-
making, noting that many players had complained about the choice
D. Squinkifer made to use the second person (a common interactive
fction trope) in their work: “When you write in the second person,
and you bring in your own very specifc experiences, people start to
complain . . . you shouldn’t have used you, you should have used I. So

QUEER TWINE AND CAMP 227

you continue to write in the second person, knowing this, being more
deliberate in creating these disorienting feelings.”

D. Squinkifer noted that inviting players into their experience is part
of the goal of their work, even while resisting the idea that this type of
understanding could be easily reached or that empathy for the mar-
ginalized was more than a “commodity” to players and the industry:
“I’d also be lying if I said that getting people to understand me doesn’t
factor into why I make games. I make games based on my own lived
experiences, in hopes that other people will relate to that experience
in some way.”

While Zoë Quinn has written about the impact of Gamergate on
their life, and a few others have spoken publicly, even the act of speak-
ing invites further silencing. Te cycles of the alt-right that now oc-
cupy the attention of internet researchers both in the academy and on
technical platforms are inescapable. As D. Squinkifer put it in their
talk, the idea that “you will never be accepted, and this world has no
place for you” is amplifed. D. Squinkifer’s performance is a reminder
of the consequences of visibility—that exposure, the currency of the
web, was fundamentally weaponized in Gamergate, and the awareness
of that weaponization cannot be reverted. Te consequences of Gamer-
gate on game development (and its participants) are still not known
and perhaps cannot be apprehended. Gamergate is not over. Indeed, as
of 2019, Zoë Quinn lef Twitter briefy following extensive harassment
afer recounting an experience of sexual harassment by a game designer
who later lost his life to depression (Penny). As one critic powerfully
recounted of the harassment without end, “Some days it feels like the
whole world is being held hostage to male fragility. Sometimes it seems
that there’s no limit on what women, girls, and queer people are ex-
pected to tolerate in order to protect men from a moment’s uncom-
fortable self-refection. Sometimes I don’t know who to trust anymore”
(Penny).

In the face of this toxicity, the queer, camp Twine that persists is
defant in its very existence.

228 TWINING

Works Cited
“American Visionary Art Museum—What Is Visionary Art?” American Visionary Art

Museum, February 1, 2019. https://www.avam.org/.
Anthropy, Anna. “Twine and Punishment.” itch.io, November 1, 2014. https://w.itch.io/

twine-and-punishment.
Babuscio, Jack. “Te Cinema of Camp (AKA Camp and the Gay Sensibility).” In Camp:

Queer Aesthetics and the Performing Subject: A Reader, edited by Fabio Cleto. Uni-
versity of Michigan Press, 1999, 117–35.

Berens, Kathi. “Third Generation Electronic Literature and Artisanal Inter-
faces: Resistance in the Materials.” Electronic Book Review, May 2019. http://
electronicbookreview.com/essay/third-generation-electronic-literature-and
-artisanal-interfaces-resistance-in-the-materials/.

Booth, Mark. “CAMPE-TOI! On the Origins and Defnitions of Camp.” In Camp:
Queer Aesthetics and the Performing Subject: A Reader, edited by Fabio Cleto. Uni-
versity of Michigan Press, 1999, 66–79.

Chan, Casey. “Remember the Hilarious Horror of Geocities with Tis Website.” Giz-
modo, February 11, 2013. https://gizmodo.com/remember-the-hilarious-horror-of
-geocities-with-this-we-5983574.

Chess, Shira. “Te Queer Case of Video Games: Orgasms, Heteronormativity, and
Video Game Narrative.” Critical Studies in Media Communication 33, no. 1 (Janu-
ary 2016): 84–94. https://doi.org/10.1080/15295036.2015.1129066.

Conn, Matt. “Gaming’s Untapped Queer Potential as Art.” QED: A Journal in GLBTQ
Worldmaking 2, no. 2 (July 2015): 1–5.

D’Anastasio, Cecilia. “Why Video Games Can’t Teach You Empathy.” Vice, May 15, 2015.
https://www.vice.com/en_us/article/mgbwpv/empathy-games-dont-exist.

Espenschied, Dragan, and Olia Lialina. Digital Folklore. Merz and Solitude, 2009.
Ferguson, Sav. Tat Boy Is a Monster, Long, Complete. 2017. http://www.philome.la/

TimesNTroubles/that-boy-is-a-monstr/play.
Fink, Marty, and Quinn Miller. “Trans Media Moments: Tumblr, 2011–2013.” Televi-

sion & New Media 15, no. 7 (November 2014): 611–26. https://doi.org/10.1177/
1527476413505002.

Flores, Leonardo. “Tird Generation Electronic Literature.” Electronic Book Review,
April 2019. http://electronicbookreview.com/essay/third-generation-electronic
-literature/.

Gauntlett, David. “Digital Sexualities: A Guide to Internet Resources.” sexualities 2.3
(1999): 327–32.

GeoCities. “GeoCities—Neighborhoods.” Internet Archive, January 23, 1998. https://web
.archive.org/web/19990129033446/http://www17.geocities.com/neighborhoods/.

———. “Geocities WestHollywood LGBTQ.” Geocities.Ws Archive, 1999. http://www
.geocities.ws/server2/.

Halperin, David M. “Te Normalization of Queer Teory.” Journal of Homosexuality
45, nos. 2–4 (2003): 339–43.

http://www
https://Geocities.Ws
https://archive.org/web/19990129033446/http://www17.geocities.com/neighborhoods
https://web
http://electronicbookreview.com/essay/third-generation-electronic
https://doi.org/10.1177
http://www.philome.la
https://www.vice.com/en_us/article/mgbwpv/empathy-games-dont-exist
https://doi.org/10.1080/15295036.2015.1129066
https://gizmodo.com/remember-the-hilarious-horror-of
https://electronicbookreview.com/essay/third-generation-electronic-literature-and
https://w.itch.io
https://www.avam.org

QUEER TWINE AND CAMP 229

Harvey, Alison. “Twine’s Revolution: Democratization, Depoliticization, and the Queer-
ing of Game Design.” GAME 1, no. 3 (2014). https://www.gamejournal.it/3_harvey/.

Howard, Tanner. “How Geocities Suburbanized the Internet.” CityLab, January 22,
2019. https://www.citylab.com/life/2019/01/geocities-archive-netscape-browser
-frst-web-suburbs-aol/580285/.

Hudgins, Amanda. “Haters Gonna Hate.” Unwinnable, September 1, 2016. https://
unwinnable.com/2016/09/01/haters-gonna-hate/.

Johnson, Jason. “Christine Love Explores Unbridled Expectations, Lesbianism, and
Jilted Love in Even Cowgirls Bleed.” Kill Screen, February 27, 2013. https://killscreen
.com/articles/even-cowgirls-bleed-christine-love/.

Jones, Mat. “Indie Rock: Unravelling CHAOS JAM, a Twine-Only Game Event.” Aver-
age Gamer, January 16, 2013. http://www.theaveragegamer.com/2013/01/16/indie
-rock-unravelling-chaos-jam-a-twine-only-game-event/.

Kaye, Finch. “Beautiful Weapons.” New Inquiry, June 25, 2013. https://thenewinquiry
.com/beautiful-weapons/.

Keeling, Kara. “Queer OS.” Cinema Journal 53, no. 2 (January 2014): 152–57. https://doi
.org/10.1353/cj.2014.0004.

Love, Christine. “Love Conquers All Games.” Tumblr, February 14, 2013. https://love
conquersallgam.es/post/43092144216/this-week-i-spent-the-day-making-a-game
-in-twine.

M. “Cry$tal Warrior Ke$ha.” Abnormal Mapping, January 1, 2014. https://abnormal
mapping.wordpress.com/2014/01/01/cry-tal-warrior-ke-ha/.

Maragos, Nich. “Love Week: Twine.” Gaming Intelligence Agency, September 13, 2013.
http://www.thegia.com/2013/09/13/love-week-twine/.

Muncy, Julie. “Porpentine’s New Twine Game Isn’t Just a Twine Game.” Wired, Septem-
ber 13, 2017. https://www.wired.com/story/porpentine-twine-game/.

Nellis, Krystina. “Kesha: Warrior.” Drowned in Sound, November 30, 2012. http://
drownedinsound.com/releases/17369/reviews/4145804.

Penny, Laurie. “Gaming’s #MeToo Moment and the Tyranny of Male Fragility.” Wired,
September 6, 2019. https://www.wired.com/story/videogames-industry-metoo
-moment-male-fragility/.

Phillips, LeAnne. “Te Web of the Spider Woman.” GeoCities, December 1, 1995. http://
www.geocities.ws/server2/homestead/westhollywood/1027/.

Porpentine. Cry$tal Warrior Ke$ha. Self-published, January 12, 2013. http://slimedaughter
.com/games/twine/kesha/.

———. “PORPENTINE.” Tumblr, January 12, 2013. https://porpentine.tumblr.com/
post/40366802882/porpentine-presenting-cry-tal-warrior-ke-ha-this.

Pozo, Diana, Bo Ruberg, and Chris Goetz. “In Practice: Queerness and Games.” Cam-
era Obscura: Feminism, Culture, and Media Studies 32, no. 2 (95; September 2017):
153–63. https://doi.org/10.1215/02705346-3925167.

Quinn, Zoë. “Zoe Quinn’s Top 10 Games of 2013.” Giant Bomb, December 23, 2013.
https://www.giantbomb.com/articles/zoe-quinn-s-top-10-games-of-2013/1100
-4813/.

https://www.giantbomb.com/articles/zoe-quinn-s-top-10-games-of-2013/1100
https://doi.org/10.1215/02705346-3925167
https://porpentine.tumblr.com
http://slimedaughter
www.geocities.ws/server2/homestead/westhollywood/1027
https://www.wired.com/story/videogames-industry-metoo
https://drownedinsound.com/releases/17369/reviews/4145804
https://www.wired.com/story/porpentine-twine-game
http://www.thegia.com/2013/09/13/love-week-twine
https://mapping.wordpress.com/2014/01/01/cry-tal-warrior-ke-ha
https://abnormal
https://love
https://doi
https://thenewinquiry
http://www.theaveragegamer.com/2013/01/16/indie
https://killscreen
https://unwinnable.com/2016/09/01/haters-gonna-hate
https://www.citylab.com/life/2019/01/geocities-archive-netscape-browser
https://www.gamejournal.it/3_harvey

230 TWINING

Reynolds, Kate. “Twine Quing’s Quest VII: Te Death of Videogames!” Storycade, Sep-
tember 11, 2014. http://storycade.com/twine-quings-quest-vii-death-videogames/.

Ruberg, Bo. Video Games Have Always Been Queer. New York University Press, 2019.
Salter, Anastasia. What Is Your Quest? From Adventure Games to Interactive Books.

University of Iowa Press, 2014.
Salter, Anastasia, and John Murray. Flash: Building the Interactive Web. MIT Press,

2014. http://books.google.com/books?hl=en&lr=&id=hhJmBAAAQBAJ&pgis=1.
Sontag, Susan. “Notes on Camp.” In Camp: Queer Aesthetics and the Performing Subject:

A Reader, edited by Fabio Cleto. University of Michigan Press, 1999, 53–65.
Squinkifer, D. Quing’s Quest VII: Te Death of Videogames. Self-published, September 1,

2014. https://games.squinky.me/quing/.
Twilite909. “Poet’s Corner.” GeoCities, October 20, 1996. http://www.geocities.ws/

server2/homestead/westhollywood/5032/.
twinegamesareboring. “Didn’t.” itch.io, June 15, 2018. https://twinegamesareboring.itch

.io/didnt.
———. “Pirate Queen.” itch.io, June 15, 2018. https://twinegamesareboring.itch.io/pirate

-queen.
Wallace, Amanda. “3 Twine Games to Introduce People to the Medium.” Storycade,

March 28, 2014. http://storycade.com/3-twine-games-introduce-people-medium/.
Wallace, Jonathan. “Tere Goes the Neighborhood.” Ethical Spectacle, December 22,

1997. http://www.spectacle.org/cs/holly.html.
Williams, Joe. “More Americans Claim to Have Seen a Ghost Tan a Trans Person.”

Pink News, December 18, 2015. https://www.pinknews.co.uk/2015/12/18/more
-americans-claim-to-have-seen-a-ghost-than-a-trans-person/.

https://www.pinknews.co.uk/2015/12/18/more
http://www.spectacle.org/cs/holly.html
http://storycade.com/3-twine-games-introduce-people-medium
https://twinegamesareboring.itch.io/pirate
https://twinegamesareboring.itch
http://www.geocities.ws
https://games.squinky.me/quing
http://books.google.com/books?hl=en&lr=&id=hhJmBAAAQBAJ&pgis=1
http://storycade.com/twine-quings-quest-vii-death-videogames

CHAPTER P-4

Too Much Twine

If we return for inspiration to their provocative 2014 Twine hypertext
Quing’s Quest VII: Te Death of Videogames, D. Squinkifer takes on the
specter of Gamergate by placing the player in a retro, animated-GIF-
background-bearing space adventure where, driven from their home
planet of Video Games, the hero expresses a longing to “build some-
thing again”: “You were born to build things. As a member of the
royal family of Videogames, building things is in your blood. You
grew up apprenticing under your elders, whose queer, beautiful,
complex structures you could only dream of coming close to emu-
lating someday. You listened non-stop to their stories of the Golden
Age of Videogames, envying the creative freedom and abundance
they enjoyed” (Squinkifer).

D. Squinkifer’s words are an invitation to learn from the elders,
and in that mind-set, we look to several glorious, powerful, campy
Twine works for inspiration throughout this and other practical sec-
tions. In this chapter, of all chapters, we cannot begin to tell you
what to “build.” If anything, camp Twine is the invitation to excess,
and aesthetic play, which we will explore here as we explore existing
techniques.

232 TWINING

◊ As in other practical chapters, action items are boxed and set
off with the symbol you see at left, in case you want to skip the
contextual discussion.

Supporting materials for this chapter can be found online at https://
github.com/AMSUCF/Twining. See our discussion at the beginning of
chapter P-1 about using the .html and .txt fles to follow along or adapt
our code to your own purposes.

Example 4.1: End Times

In this making chapter, we will primarily be working with SugarCube,
to continue our tour of Twine story formats. SugarCube builds on the
most popular of Twine’s frst iteration story formats, Sugarcane, and
thus has a legacy of useful macros built in to allow for versatile design.
Start by creating a new story and selecting SugarCube 2.X.

Te timed mechanics of Queers in Love at the End of the World create
a sense of urgency that can lead to more frantic choice—such timers
can be used within a work to add pressure to a conversation or piv-
otal moment, or they can envelop a work, ofering the reader a limited
amount of time in which to experience it (Anthropy). Te Twine Cook-
book includes iterations of this fundamental mechanic in every story
format, which you can use to compare the complexity and approach of
each format (Cox).

SugarCube allows us to embed passages within other passages eas-
ily, so we can think of our story as progressing in fragments. Note the
characteristics of SugarCube: like HTML, SugarCube relies on < > to
designate the beginning and end of tags but adds a second layer to dif-
ferentiate from HTML itself. Tus HTML and SugarCube markup can
comfortably coexist, as in this code:

◊ Let’s start by creating a passage entitled “Countdown,” where
our ticking timer will lurk as the player progresses. Enter the
following code into the passage:

https://github.com/AMSUCF/Twining

TOO MUCH TWINE 233

Planetary implosion in
$seconds seconds

<<silently>>
<<repeat 1s>>

<<set $seconds to $seconds--1>>

<<if $seconds gt 0>>

<<replace "#countdown">>Planetary
implosion in $seconds seconds<</

replace>>
<<else>>

<<replace "#countdown">><</
replace>>
<<goto "Lost">>
<<stop>>

<</if>>

<</repeat>>
<</silently>>

In this code, several elements are at work: frst, the $seconds vari-
able holds the timer itself. Note that we haven’t initiated a value for it
here—we need to decide when our timer begins and declare it else-
where. We might also change this variable to add complexity (for in-
stance, if we want the reader to be able to infuence or extend the timer
through certain choices), so it’s best to keep its value separate from
the passage that displays its contents.

On its own, this passage doesn’t do anything, but it provides the
framework for counting time. Note the macros that are similar to those
in Harlowe: set still assigns a value, and replace takes a parameter to
replace the content. In place of Harlowe’s (go-to:)—Chapbook has no
equivalent—we use goto, which similarly takes the name of a passage
and automatically reloads the page. Tis is similar to the two-second
countdowns we used earlier during our hunt for the amulet in chapter
P-2, but here we’ve isolated the timer so we can use it across multiple
passages.

234 TWINING

◊ Next, let’s create the first passage of our narrative. We don’t
want to launch the timer immediately, so start by altering the
first passage (designated, as always, by the rocket) to set up

our prelude. Type the following into a first passage labeled

“Beginnings”:

You've come this far. The B Arc was full (too
many telephone sanitizers), first class was
always out of reach, and this hunk of junk
about to take off is the last ship off this rock
before it hits. If only you knew how to fly it.

[[Try.|Controls]]

Any need-driven quest will do for this conceit, or if you are feeling
existential, a fnal countdown along the lines of Queers in Love at the
End of the World is ftting (Anthropy). For now, stick with a single link
on this page to avoid the need for multiple timer declarations—you can
always add that complexity later by duplicating the code we’ll place in
the next passage.

◊ Create another passage titled “Controls.” In this passage, ini-
tialize the timer and include the “Countdown” passage by typ-
ing the following code:

You're looking at buttons. Like, old school Wing
Commander, you're going to need a manual for
this, unlabeled buttons. You can hear your cell
phone beeping the warning alerts as you look for
something marked throttle.
https://media.giphy.com/media/CKRx4oUu3dzLa/

source.gif

<<set $seconds to 30>>

<<include "Countdown">>
[[Press the green button|Green]]

https://media.giphy.com/media/CKRx4oUu3dzLa

TOO MUCH TWINE 235

[[Press the yellow button|Yellow]]

[[Press the red button|Red]]

[[Look for an index|Search]]

Include works much the way embed passage does in Chapbook, in-
serting the passage where we’ve indicated. It’s important to declare the
variable sometime before we embed the countdown timer for the frst
time, as otherwise, you’ll see an odd error. We don’t need much text for
any of these options—the player is going to need to make some fast,
frantic decisions. We’ll come back to feshing out the paths in a mo-
ment, but frst, let’s set up a default ending for when the timer goes of.

◊ Create a passage entitled “Lost” and type the following:

The rumbling lets you know it's too late--that,
and the sinking feeling.

The flames are the last thing you see.

We’ll also need to remove the user interface bar from the side of the
screen to avoid players backtracking from this ending. You’ll notice that
many Twine works remove these user controls, particularly when it’s
important to eliminate backtracking.

◊ Open the story JavaScript file and type the following:

UIBar.destroy();

Reload and you’ll see that the entire user interface bar has been
removed—this takes away some of the story format’s built-in function-
ality but also eliminates lots of design problems. Tis gives us a founda-
tion, but it certainly isn’t camp, and there’s a lot of room to expand even
within our short timer. We’ll use this base for the next several exercises
to start adding aesthetic enhancements and thinking about the role of
audiovisual elements in how we work with Twine.

236 TWINING

Example 4.2: Changing Styles

We’ve focused thus far on the text and functionality of Twine, not
the look. However, Twine can integrate anything from the web
experience—it’s just a matter of fguring out how to mesh your desired
elements with the story format you are using. Each story format has dif-
ferent strengths and weaknesses when it comes to bringing in visuals,
styling, audio, and even video or animated elements.

Practically speaking, the more you know about CSS, the more con-
trol you’ll have over Twine’s aesthetics. In SugarCube 2, there are a few
built-in tools to be aware of, including a foundational set of style sheet
rules that give us more detailed control.

Let’s start with something simple. We’ll set each button link to
display in the appropriate color, then change the background of the
corresponding linked page to match by setting up passage style sheets.

◊ Tag each of the three colored-button passages with a cor-
responding color: red, green, and yellow. Open the story style
sheet and type the following:

body {
background-color: #A9A9A9;
color: white;
font-size: 200%;

}
a {

color: purple;
}
body.red {

background-color: red;
color: white;
font-size: 250%;

}
body.green {

background-color: green;

TOO MUCH TWINE 237

color: white;
font-size: 250%;

}
body.yellow {

background-color: yellow;
color: black;
font-size: 250%;

}

Note a few oddities in this style sheet: the frst two selectors control
what you’ll see on any passage that doesn’t have a style tag. Most of this
is straightforward CSS, using familiar elements of HTML—the body
and a, or links. Even though we don’t write links using <a> in Sugar-
Cube, the markup we do write is translated forward to the standard
HTML element, and all the usual properties apply. Note that we can use
any color data format supported by CSS here—in this example, there
are both hexadecimal codes and color names.

Te tags we added to each passage are translated into class tags ac-
cessible as modifcations to the body—thus, body.red, body.green, and
body.yellow will each control the corresponding tag’s styling. Test out
your new design (be warned, it’s a little garish). You’ll notice that pas-
sages that are inserted into a tagged passage inherit the style of the page
they are inserted into by default. Tis means we can use the countdown
timer on any page, even as we add more complexity to the style sheets.

◊ Now let’s add a bit more drama to the final page by adding
CSS animations to fade out the text. Open the style sheet and
add the following code:

.disappear {
opacity: 0;
animation-name: fadeOutOpacity;

animation-iteration-count: 1;

animation-timing-function: ease-in;
animation-duration: 5s;

238 TWINING

}
@keyframes fadeOutOpacity {

0% {

opacity: 1;

}
100% {

opacity: 0;
}

}

Currently, we have defned a new class, but we haven’t applied it any-
where in the code, so you won’t see any changes in the text. Let’s break
down this animation frame by frame: this is a simple fade-out that di-
minishes the opacity of the element from 1 (fully visible) to 0 (transpar-
ent) over time. It will only occur once (the animation-iteration-count)
and will last for fve seconds (the animation-duration). Depending
on the impact you want, you can change the pacing by specifying an
animation-timing-function. In this case, “ease-in” means it will start
slowly and speed up as it disappears, while “ease-out” would do the
opposite—try it and compare later. Importantly, the code opacity: 0;
specifes the default state when the animation is not occurring—if we
set this to 1, the text will abruptly reappear afer the animation ends.

◊ Now we need to apply our animation to an element. Open the

“Lost” passage and alter the text to match:

@@.disappear;The rumbling lets you know it's too
late--that, and the sinking feeling.

The flames are the last thing you see.@@

Te @@ symbol is SugarCube’s way of marking the beginning of in-
line CSS. Te second iteration of the symbol indicates that this is where
the in-line CSS ends. Anything that you can apply in CSS can be added
using these properties, so it’s a simple way to create emphasis—let’s try

TOO MUCH TWINE 239

it with font color directly by going back and altering the passage where
the buttons are frst introduced.

◊ Now open the story style sheet and add a new set of classes:

.greenLink a { color: green; }

.redLink a { color: red; }

.yellowLink a { color: yellow; }

We’ll need to make corresponding changes in the “Controls”
passage:

You're looking at buttons. Like, old school Wing
Commander, you're going to need a manual for
this, unlabeled buttons. You can hear your cell
phone beeping the warning alerts as you look for
something marked throttle.
<<set $seconds to 30>>

<<include "Countdown">>
Press the @@.greenLink;[[green|Green]]@@ button

Press the @@.yellowLink;[[yellow|Yellow]]@@
button
Press the @@.redLink;[[red|Red]]@@ button

[[Look for an index|Search]]

Note that there are several other ways we could approach this that
just wouldn’t work. It’s important to reassign the link to surround just
the word we want to impact (this also improves readability) and to use
a class rather than trying to change the color directly with .color. Using
.color directly creates the equivalent of a span with that color, which is
great for changing nonlink text but is inefectual within a link.

Tis is a highly visually motivated instance of using link color classes
for impact, but changing link colors can also be a way to communicate
meaning to the user that is commonly used in Twine. For instance, Por-
pentine’s With Tose We Love Alive opens with a message to the user:

240 TWINING

Before living this life, have a pen or sharpie nearby, something that can
write on skin.

Purple links change. Pink links move forward. Te colorblind ver-
sion is here. (Porpentine)

Importantly, this gives insight into the mechanics that assist in navi-
gation. Te monochromatic version, which is optimized to not rely on
color, instead uses italics to assist in diferentiating between links.

Example 4.3: Sound It Out

We’ve created the potential for drama with these changes, and you
might imagine layering them further to enhance the impact. However,
this is only the beginning of what we can do with Twine. Some of the
most efective games incorporate audio, including With Tose We Love
Alive, which addresses the audio in the next line of the introduction:
“Tere is music, so headphones are good. But it’s okay if you can’t”
(Porpentine; text formatting preserved for clarity).

Tese disclaimers are also valuable reminders for our own design
philosophies: while using Twine’s full audiovisual potential is exciting,
we can keep the work accessible by always providing other means of
entry into any important information the user needs to progress in or
understand the experience.

Some of the earliest examples of Twine audio integration made
use of existing music—for instance, it’s hard to imagine Cry$stal War-
rior Ke$ha without the titular artist’s track blaring in the background.
Looping music of that type is typically declared outside of any particu-
lar passage, as it is intended to play uninterrupted as the experience
progresses:

Audio is difcult to some extent in Twine for the same reason audio is
difcult on the web—logistically, you’ll need to host your own audio
fles to ensure that they will remain accessible. You may have the ability
to record your own audio for an experience, but if you do not, Creative
Commons licensed sound efects and music can give you a palette of
sounds and atmosphere to play with.

TOO MUCH TWINE 241

Te Creative Commons search engine (search.creativecommons
.org) is currently optimized for images but is in the process of expand-
ing to incorporate audio; in the meantime, their legacy search portal
(available through the same page) links out to several searchable ar-
chives for media, although it is incumbent on the user to verify that
the results are truly Creative Commons licensed. Freesound.org and
Soundbible.com also have a large database of options, although again,
it’s important to verify the contents.

We’ll play with two types of audio: atmospheric, which loops in the
background throughout play, and efect audio, which is typically trig-
gered when the player reaches a particular passage or moment in the
narrative. First, we’ll do a simple audio fle embedded in a passage that
plays as the end passage is triggered. We’ll use a free sound efect called
“Fire Burning Sound” recorded by JaBa and shared under a Creative
Commons Attribution 3.0 license (which means we’ll need to list it ac-
cordingly in the credits section of our game).

◊ For this exercise, it’s important to use the offline version of
Twine 2. You can create the audio macros in the online editor,
but you won’t be able to test them using the local sound files
on your system. First, we’ll need to load them in using a “Sto-
ryInit” passage. Create a passage with this name and type the
following:

<<cacheaudio "fireburning" "Fire_Burning-JaBa.

mp3" "Fire_Burning-JaBa.wav">>

HTML5 audio is tricky—not every browser supports every audio
fle type, so when you have multiple versions available, it is best to
preload them all by using cacheaudio to start the browser loading the
audio fles before you try to play a sound. Te browser chooses which
fle type to load based on its preferences. If none of the fle types are
compatible, your sound won’t play. Te audio fles must be right next
to your .html fle in the folder for the path structure in this example to
work.

https://Soundbible.com
https://Freesound.org

242 TWINING

◊ Next, we’ll actually play the audio. Open and edit the “Lost”
passage. Add the following above the first line:

<<audio "fireburning" play>>

Te audio element takes a reference to a cached audio fle and
reaches back to fnd the source fle preloaded by the browser. Te audio
command to play will run as soon as the page loads, but it can also be
embedded in a link. Tere are lots of modifers available in SugarCube’s
robust audio macro library, which is one of the best-supported of any
of the story formats. Te closest functionality currently for Harlowe
requires an external library, the Harlowe Audio Library (Chapel, “Har-
lowe Audio Library”).

Let’s try one of the modifers to fade out our sound as we fade out
our text. Modify the audio call to instead say the following:

<<audio "fireburning" volume 0.5 fadeoverto 5 0>>

Te volume argument takes a number from 1 to 0 and plays the audio
at the specifed level relative to the source. Obviously, it can be difcult
to modulate this without knowing how loudly your reader has set their
speakers, so think about using the volume modulation for balancing
diferent efects, such as ambient noises versus dramatic interruptions.
Te fadeoverto argument takes two numbers: Te frst is the number
of seconds, which we’ve matched here to the number of seconds on
the text animation. Te second number is the level of the fnal volume.

Next, we’ll add looping background music. We’ll use a fle of “Creepy
Background” sound efects, recorded by Daniel Simon and shared
under an Attribution 3.0 license.

◊ Start by caching the background audio files in the “StoryInit”
passage:

<<cacheaudio "background" "background.mp3"
"background.wav">>

TOO MUCH TWINE 243

Next, we’ll call the audio from the controls page of our story

but loop the audio.

<<audio "background" loop play>>

To avoid collision, we’ll also want to stop the audio loop before
we start the fire effect:

<<audio "background" stop>>

Incorporating images into a text-driven platform isn’t necessary,
but it can be powerful and provocative. Let’s fnish out the audiovi-
sual exercise of this Twine by adding some image elements and using
SugarCube’s markup to make the image active. Images can have three
components—a title, which provides a text caption; a link, which points
to another passage; and a setter, which activates when clicked and alters
the state of a variable.

◊ We haven’t done anything with the “find an index” page in our

pathways, so let’s start there. Open “Search” and change the

passage text to include the following:

<<include "Countdown">>
You look for any text you can recognize,
but there's nothing helpful.

There are three well-worn buttons on the side of

the console, but instead of words, they only bear

symbols that you don't recognize. If they were

letters, they'd be been lost to oils and waste.

[img[shape.gif][one]]

[img[shape2.gif][two]]

[img[shape3.gif][three]]

You might as well press one.

244 TWINING

As with audio, all the image fles referenced need to be in the folder
with the .html fle for this structure to work. It’s also possible to use the
image tag as an alternative to traditional image markup within the CSS.
Tis can be more convenient when you’re already comfortable with
SugarCube’s markup.

◊ Let’s try changing the background color on our main passages

to a background image instead. Open the story style sheet and
add the following code:

body {
background-image: [img[stars.gif]];

color: white;
font-size: 200%;

}

Notice that this works with animated GIFs (as in this example, a
set of animated stars), and by default, it tiles the image. Tis approach
works best with retro background efects, which tended to use repeated
patterns rather than stretching a single image to ft. Animated GIFs like
this one are used in many Twine works and are usually most efective
with a strong contrast to any text colors chosen.

Example 4.4: Tracery and External Libraries

External libraries for Twine extend the capabilities of Twine and fre-
quently provide bridges for more easily pulling in traditional JavaScript
to the engine. Tere are extensive options for SugarCube 2 macros
online, including Chapel’s Custom Macro collection, which includes
particularly useful tools such as pronoun templants and mouseover
macros (Chapel, “Custom Macros”). Macros frequently emerge when
more scripting-inclined Twine creators want to solve a problem for one
of their own works and choose to repackage and share their solution
with the community. Frequently, those macros are integrated back into
the core of story format projects when they prove particularly useful.

TOO MUCH TWINE 245

In this exercise, we’ll pick one well-loved library to try. Note that
combining external libraries can be difcult, as they may include con-
fict syntax or requirements. Let’s take a look at Trice, a library that com-
bines many elements into one (incobalt). Created by Michael Tomét
and inspired by Matthew R. F. Balousek’s earlier library Twincery, Trice
is a 2.X SugarCube-specifc wrapper for Tracery that allows us to play
with generative techniques like those we explored in our previous chap-
ter. It’s easier to break down how Tracery’s logic can be integrated with
Twine by frst approaching the two separately.

Tracery works with grammars that are constructed of symbols and
rules: symbols are essentially arrays containing a set of possible val-
ues, and once inserted, they choose a particular value for that instance.
Rules are more complex patterns that combine fxed works and symbols
to generate text or images (more on that later).

◊ Let’s break this down in a simple example before we com-
bine Tracery and Twine. To work with this code on its own, try
the online visual editor at https://beaugunderson.com/tracery

-writer/ and type in the following:

{
"origin": ["#codeVerbs# the #craftNouns#,
#codeNouns# #craftVerbs#"],

"craftNouns":["album","backing","bargello","bark

cloth","basting","batik","batting","bearding","b
eading","betweens","bias","binding","stitch","ne
sting","bobbin","tension","chainstitch","emblem"
,"embroidery","frame","sash","gap","gapping","ho

op","hooping","lettering","mirror","monogram","n
eedle","nippers","pantograph","tape","puckering
","punching","density","design","thread","broadc
loth","block","border","calico","charm","die","f

lannel","feeddogs","paper","sleeve","foot","fabr

ic","loft","long arm","medallion","memory","moti

f","quilt","fiber","panel","patch","value","unit"

https://beaugunderson.com/tracery

246 TWINING

,"seam","fill","facing","hook","scale","satin","

punching"],

"craftVerbs":["appliqué","bind","sew","hem","bri

dge","fill","press","back","repeat","rotate","sta

bilize","thread","break","cut","tie","trim","ver

ify","glaze","label","layer","piece","corner"],

"codeNouns":["algorithm","application","bootstra
p","code","structure","data","framework","stack"

,"query","object","function","variable","binary"

,"bug","command","conditional","statement","patt
ern","server","parameter","grid","pixel","resolu
tion","user","flow","element"],

"codeVerbs":["decompose","debug","iterate","cont
rol","program","run","embed","influence","bounce"

,"optimize","mine","declare","edit","design"]

}

Syntax-wise, Tracery is built on JSON: curly braces indicate ob-
jects and thus surround the complete grammar, or all the rules and
symbols that make up a particular iteration of Tracery logic. Te hash
marks indicate a substitution and must surround a string of charac-
ters that matches one of the symbols. Each symbol lists the name frst
(in quotation marks, which delineates a string), followed by the list of
possibilities as an array. As with the generation we discussed in chap-
ter P-2, this allows for emergent play and can result in combinations
we don’t anticipate. Te output to this frst iteration is fairly banal but
demonstrates the simple generative potential:

optimize the lettering, pixel trim

edit the puckering, pattern bind
design the paper, function glaze

influence the barkcloth, structure repeat

When we bring Tracery into Twine, the base elements remain the
same, but the syntax changes.

TOO MUCH TWINE 247

◊ The easiest way to work with Trice is to use their bundled

starter code, which draws in all the required scripts. Download
the repository from GitHub, and open trice.html through the
“Input file” option in the Twine main menu. You’ll see the Trac-
ery code in the story JavaScript file, but that’s not everything—in

the example folder, you’ll see a project set up with the Trac-
ery libraries in a folder. Make sure you duplicate that same

file structure when working on this exercise, or your code will
break due to unmet dependencies.

Importantly, the full library won’t be loaded in time for our

first passage, so we’ll need a title screen. Create a “Begin” passage

and add text and a link:

Cut and Trace

[[Begin]]

Let’s start by generating some individual symbols: each pas-
sage we create and tag with “grammar” will be part of Tracery’s
grammar. Create a new passage titled “gCraftNouns,” tag it, and

add one word per line to the appropriate wordset:

basting
mirror
lettering
foot

fabric

calico
loft

tape
hooping
bargello
sleeve
block
border

248 TWINING

Note that you don’t need any special characters; the paragraph break
alone sets up the conversion. Tis eliminates the need for extensive syn-
tax and, in doing so, cuts back on some of the more frustrating aspects
of generative texts. Each passage can become a freewriting exercise, and
elements can be added easily as you expand your code.

◊ Let’s test that our grammar is connected by going to

the “Begin” passage and generating a word:

<<trace "gCraftNouns">>

Remember, you can’t test through the Twine browser. Each time
you test a trace, you’ll need to export your fle to .html—otherwise, the
browser won’t allow the fles to access the necessary libraries, so Tracery
won’t run.

Note that whenever you invoke the library, you’ll use trace to struc-
ture the command. Tis frst simple stage just takes one symbol as input,
using the string for the passage name, so make sure you type them
exactly the same way. If you neglected to tag the passage as grammar,
it won’t import properly. Trace is a macro, so it provides a SugarCube
syntax integration for the Tracery library. It’s very fexible: it can be used
to build entire rules and output full passages of generative text. Let’s
build a grammar with enough complexity that we can give this a try.

◊ Following the same pattern as the “gCraftNouns” passage,
create a passage for “gCraftVerbs,” “gCodeNouns,” and “gCode-
Verbs.” Don’t forget to tag each passage as a grammar. Next,
we’ll test by going to “Begin” and using a more complex trace:

<<trace "#gCodeVerbs# the #gCraftNouns#,
#gCodeNouns# #gCraftVerbs#">>

Notice a few changes from our simple call: if we are using more
than one symbol, we need to integrate the full Tracery syntax with hash
marks around each symbol’s name. Tis also means we can start to

TOO MUCH TWINE 249

integrate some of Tracery’s more complex features, such as functions
to make certain words plural or change the tense.

◊ Let’s give this a try by extending our passage poetry further.
First, we’ll need some additional grammar passages. Add a

grammar passage titled “gColor” and tagged grammar, and

input the following text:

orange
blue
violet
yellow
pink
apricot
indigo
green
gray
black
white

◊ Next, edit the “Begin” passage to include the following:

<<trace "#gCodeVerbs# the #gCraftNouns#,
#gCodeNouns# #gCraftVerbs#">>

<<trace "#gCraftNouns.capitalize# is
#gCodeNouns.a# . . .">>

<<trace "#gColor.a.capitalize# #gCodeNouns#
#gCraftVerbs.s#">>

Output on the “Begin” passage will vary every time you revisit:

program the fabric, function back

Basting is a query . . .
An indigo stack threads

250 TWINING

Note the modifers from Tracery’s library in play here: .a adds the
appropriate article based on the starting letter of the modifed word,
capitalize changes the frst letter of the modifed word to capital, and .s
pluralizes the word (usually—but not always—correctly, so watch this
one). Te trace macro isn’t the only way to integrate Tracery: some-
times we want to generate text and save it for later. For that, we can use
the trace function.

◊ Let’s pick a noun and save it to a variable, and then we can
use it repeatedly in a generated text.

<<set $myNoun to trace("gCraftNouns")>>

$myNoun is $myNoun is $myNoun.

Now we can generate extensively within Tracery in text, keeping in
mind examples such as Kate Compton’s own stylistic play—for more
ideas, take a look at her site. Generative content is also the empha-
sis of several communities of play, and GitHub is home to a growing
“NaNoGenMo” collection of generated novels, made for National Novel
Generation Month, which includes Tracery and other tools powering a
range of works for inspiration.

Example 4.5: Mood Imagery

While generative text is endlessly playful, we can also use Tracery to
assist in generative components for imagery. (Tis can also be accom-
plished without Tracery, but less efciently!) Tracery is popular with the
bot-making community for aesthetic bots, which are a Twine-adjacent
form of computational creativity that can result in endless content. A
great example is Kate Compton’s Tiny Space Adventure bot (hosted
@TinyAdv and powered by Cheap Bots Done Quick, an easy-to-use
hosting service for Tracery bots), which results in content like the
following:

TOO MUCH TWINE 251

Figure 19: Examples of Kate Compton’s Tiny Space Adventure bot

While the code for this is quite complex (and lives here: https://
pastebin.com/YYtZnzZ0), looking at a fragment of it reveals how Trac-
ery can be used to make substitutions in code:

"ship" : ["[gradID:#id#][bladeID:#id#]

[sideID:#id#]#gradient#<g
transform='translate(120, 100) rotate(#digit##

digit#)'>#shipSide#<g transform='scale(-1, 1)'>
<use xlink:href='\\##sideID#'></g></g>"],

"label" : "<text text-anchor=\"end\"
fill=\"\\#FFFFFF\" fill-opacity=\"0.4\" font-
size=\"12\" font-family=\"Verdana\" x=\"225\"
y=\"250\">#shipName#</text>",

"bg" : ["<rect fill='\\#000000' x='0' y='0'
width='300' height='300'/>#starField#"],

"star" : ["<circle fill='\\#FFFFFF' cx='#r255#'
cy='#r255#' r='#zeroone#.#digit#'/>"],

"starField" : ["#star##star##star##star##star#
#star##star##star##star##star##star##star##sta
r##star##star##star##star##star##star##star##s
tar#"],

https://pastebin.com/YYtZnzZ0

252 TWINING

"svgImg" : ["<svg viewBox=\"0 0 256 256\"
width=\"256\" height=\"256\">#bg##label##ship#</

svg>"],

"origin" : "{svg #svgImg#}"

Note particularly the SVG (Scalable Vector Graphics) element, de-
fned in “svgImg” and including elements defned in succession: the
ship is the product of much more complex code but is then added to
the mix along with a label on top of a star feld, which is generated from
randomly placed and sized circles defned in the “star” symbol. SVGs
are a web-friendly format defned mathematically and thus friendly to
resizing and responsive design. Most people work with SVGs through
graphical interfaces such as Illustrator, but it’s also possible to work
with simple or even complex SVGs directly through the markup of
their code. SVGs are the heart of Tracery graphics. We’ll continue with
our code from exercise 4.4, since we’re already set up for Tracery inte-
gration, and the language of code and crafing certainly lends itself to
visual accompaniment.

◊ First, let’s look at how SVGs work in SugarCube with some

basic code. Add the following to your “Begin” passage:

<svg><line x1="0" y1="0" x2="200" y2="200"
stroke-width="1" stroke="white"/></svg>

You should see a diagonal white line beneath your text. SugarCube
supports in-line SVG in this format natively, but only in some of its
latest iterations—earlier examples and other story formats cause more
problems with SVGs. Line designates the shape intended, and the two
pairs of x- and y-coordinates indicate the beginning and endpoints of
the line within the SVG. Stroke-width governs the width in pixels, while
stroke sets the color.

◊ Now let’s make it dynamic by first generating a color to

save in a variable and then using a variable as an attribute

TOO MUCH TWINE 253

within the SVG. To do this, we’ll use another SugarCube macro,
print, which will allow us to combine the HTML markup with a

variable:

<<set $myColor to trace("gColor")>>

<<print '<svg><line x1="0" y1="0" x2="200"
y2="200" stroke-width="1" stroke="' + $myColor +
'"/></svg>'>>

Note that the code is mostly the same, but we need to use $ to des-
ignate the variable—and watch the placement of the single quotation
marks to indicate when we’re asking SugarCube to process the input
versus just printing the HTML directly.

Let’s build something more complicated. We’re going to create
graphics that might be used in a number of ways—they might be art
that changes without warning when the player revisits a room or atmo-
sphere background imagery to set the mood for a scene. Let’s start by
restricting our color palette to create a more unifed aesthetic. For this,
it’s easiest to work with color-safe HTML codes if you also want to use
the words in text, but you can also use hexadecimal colors.

◊ Create a new passage titled “gNum,” and make sure to tag it
as grammar. Add a set of numbers—the range will impact the
size of the final line:

80

100

120

140

160

180

200

220

240

260

254 TWINING

280

300

◊ Change the SVG code in “Begin” to the following:

<<set $myColor to trace("gColor")>>

<<set $myNum to trace("gNum")>>

<<print '<svg><line x1="0" y1="0"
x2="'+$myNum+'" y2="'+$myNum+'" stroke-width="1"
stroke="' + $myColor + '"/></svg>'>>

◊ Modify the contents of “gColor” to:

purple
blue
gainsboro
silver
gray
teal
navy
cyan
indigo
orchid
lavender
plum

◊ Now we’ll need to create a more complex SVG to add dynamic

design. This is going to require several symbols to control our
shape’s attributes, so create new passages for each of the fol-
lowing. The bolded lines should be the title of the passage, and
every passage must be tagged as grammar:

gY
50

TOO MUCH TWINE 255

100

150

200

250

300

350

400

450

gX
100

200

300

400

500

600

700

800

900
1000

gOpacity
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Each of these will be used to control the corresponding elements of
a generative ellipse—assuming a canvas that is 1024 × 512 pixels, these
numbers will let us distribute shapes along the x and y space of the
SVG. Te opacity will give us more dynamic colors through overlaps:

256 TWINING

note that we’re not using an opacity of 0, as that would disappear, or
an opacity of 1, as that might lead to too abrupt of a layer. Our existing
“gNum” and “gColor” will complete the shape’s features.

◊ Now we’re ready to add a Tracery rule as a passage. This time,
let’s use the SVG code for an ellipse and create a passage titled
“gEllipse” tagged as grammar. Include the following code:

<ellipse cx=\"#gX#\" cy=\"#gY#\" rx=\"#gNum#\"
ry=\"#gNum#\" style=\"fill:#gColor#;stroke:#gColo

r#;stroke-width:2;opacity:#gOpacity#\" />

Creating a passage to hold the ellipse properties will make it easy to
use Tracery to generate as many of these shapes as we want, so we can
potentially fll the screen with a variety of overlapping ellipses. Notice
how each property is inserted using the Tracery symbol markup, and
all the quotation marks are escaped with \ to ensure the code syntax is
preserved when we run our trace.

◊ We have all the components now to create ellipses from a

passage. Instead of adding it to “Start,” let’s create a new pas-
sage to hold this SVG. Let’s start by using Tracery to create a
dynamic link to the new passage. In “Start,” add the following
code:

<<set $myLink to trace("gCodeNouns.

capitalize.a")>>

[[$myLink|Screen]]

Note that this reversal of the capitalize and a will result in capital-
ization on the word, not the a, which can be useful when you want a
diferent rhythm to your style. It’s also possible to use Trice directly
to create rotating links that use the keywords of the grammar—just
include the name of the grammar symbol in the link directly, like

TOO MUCH TWINE 257

[[gCodeNouns]]—but this structure works best when you have a reason
for using this dynamic link style, so we won’t include it here.

◊ In “Screen,” include the following code:

<<trace "<svg width='1024' height='512'>#gEllips

e##gEllipse##gEllipse##gEllipse##gEllipse##gElli
pse##gEllipse##gEllipse##gEllipse##gEllipse##gEl
lipse##gEllipse##gEllipse##gEllipse##gEllipse##g
Ellipse##gEllipse##gEllipse##gEllipse#</svg>">>

Tis can look a little overwhelming. Like Kate Compton’s star feld
in the background of her spaceship bot shown earlier, we are using
repetition of the generative element to create a layered efect. Note
that the SVG size needs to be defned to ensure all our shapes display,
so we declare the width and height frst, again escaping the quotation
marks to avoid errors. Watch the hash marks on repeating symbols, as
it is easy to end up with an error in this section of the code. Note how
we don’t need to use print in this instance, as we are running the trace
directly, eliminating the need to store every one of these properties as
a variable prior to use.

Te output should look something like this:

Figure 20: Sample output from our Tracery SVG generation

258 TWINING

Note that this is only the beginning of what we can do with
Tracery in Twine. SVGs can be scaled to fill the screen and can
incorporate generative text as an overlay. They can be placed with
CSS behind other elements to create a sense of mood-specific back-
grounds. You can even invite the player to indicate a mood or color
palette early in a play experience or shift the colors gradually to
reflect changes in tone.

Consider how the colors set the tone of the opening decisions in
Porpentine’s With Tose We Love Alive: the opening scene lives against
a backdrop of turquoise fading into dark blue, reminiscent of the sea
abstracted, with vivid pink links against it. Tis palette, not coinci-
dentally, inspired some of the choices in this example. Note how every
element is thoughtfully integrated, from the choice of link colors and
fonts to the feel of the gradient across the page. It is harmonious with
some of the later palettes in the same narrative, but those can be more
immediately unsettling: a deep magenta fading toward a violet-black
accompanies the words “Dead brown leaves cover inky black lake. /
Something is rising from the lake” (Porpentine).

Figure 21: Screenshot from With Tose We Love Alive

TOO MUCH TWINE 259

Tese visual choices can further be layered with the other elements
we’ve discussed so far in this exercise. Consider how unsettling a deep
color palette might be alongside a cheerful theme or how the alarm-
ing, unsettling aesthetics of Michael Lutz’s more minimalist My Father’s
Long, Long Legs gradually alert the player to the wrongness of the family
dynamics (Lutz). Whether constrained or over the top, atmospheric
or full-on camp, the audiovisual elements of Twine are not necessarily
secondary to the text.

Works Cited
Anthropy, Anna. “Queers in Love at the End of the World.” itch.io, 2013. https://w.itch

.io/end-of-the-world.
Chapel. “Custom Macros.” TwineLab, 2019. https://twinelab.net/custom-macros-for

-sugarcube-2/#/.
———. “Harlowe Audio Library.” TwineLab, 2019, https://twinelab.net/harlowe-audio/#/.
Cox, Dan, ed. “ifechfoundation / twine-cookbook.” 2017. GitHub, 2019. https://github

.com/ifechfoundation/twine-cookbook.
incobalt. “incobalt /T rice.” 2018. GitHub, 2019. https://github.com/incobalt/Trice.
Lutz, Michael. My Father’s Long, Long Legs. Correlated Contents, September 23, 2013.

http://correlatedcontents.com/misc/Father.html.
Porpentine. “With Tose We Love Alive.” Cambridge, MA: Electronic Literature Orga-

nization, 2014. http://collection.eliterature.org/3/work.html?work=with-those-we
-love-alive.

Squinkifer, D. Quing’s Quest VII: Te Death of Videogames. Self-published, September 1,
2014. https://games.squinky.me/quing/.

https://games.squinky.me/quing
http://collection.eliterature.org/3/work.html?work=with-those-we
http://correlatedcontents.com/misc/Father.html
https://github.com/incobalt/Trice
https://github
https://twinelab.net/harlowe-audio
https://twinelab.net/custom-macros-for
https://w.itch

CHAPTER T-5

Twine and the Critical Moment

Figure 22: Te previous century explained

What Crisis?

Centuries leave marks, such as the interesting signature of the twen-
tieth century shown here. Despite its generally upward trend, this is
not a world population graph, whose roughly 6:1 slope would be con-
siderably steeper than the present line and whose curvature would be
much more acute. A closer guess might be something like the gross
domestic product for an industrialized nation, or perhaps the Dow
Jones index—though, on closer inspection, we’d expect a sag around

262 TWINING

1930, not the rise we see here. Te steady ascent in the latter half of the
graph looks familiar, though again the fattening afer 1990 is at odds
with the economic record.

Te data mapped here are not fnancial but linguistic and, by ex-
tension, cultural. Tis chart shows the percentage share of the word crisis
in relation to all words in the Google Books database of works in
English. Te values tracked are minuscule in absolute terms—about
0.0017 percent at the start, climbing to 0.005 percent around 1990—but
the line’s contours are revealing. Te word grows about threefold in
frequency over the century. Tere is a fat stretch in the twenties,
spiking as we approach World War II, then a plateau in the postwar
decade. From about 1960 to 1995, usage surges. During this period,
there is a crisis at every turn: missile crisis, population crisis, en-
ergy crisis, hostage crisis, AIDS crisis, climate crisis, debt crisis, water
crisis, crisis on infnite Earths, everyone’s identity crisis, always in
progress.

Since the graph stops just before the new millennium, it might
seem of limited usefulness for thinking about developments that start
ten years later. However, consider the last segment of the chart, the
fnal decade of the old century. Occurrences fall of to an uncertain
plateau. Te word still has plenty of currency—how could it not in a
time of growing economic and environmental unease?—but people
have perhaps begun to have enough of it. With the keyword deployed
in so many combinations, any fresh invention would face diminish-
ing returns. On the evidence, we passed peak crisis three decades ago,
about the time R.E.M.’s “It’s the End of the World as We Know It”
turned into a jejune earworm.

Tis chapter was frst drafed before the coronavirus outbreak of
2019. Reread in the summer of 2020, those frst paragraphs seem to
tempt fate. Google’s database stops at 2012, so we can only guess how the
graph will look ten years from now. Te decade from 2000 to 2010, not
included in the graph, shows a pronounced downward hook. Perhaps
by 2030, that trend will have reversed as pandemic crisis ripples through
the record, possibly joined by other dire digrams. We are willing to bet,

TWINE AND THE CRITICAL MOMENT 263

though, that the overall trend holds.1 For a long while now, we’ve had
all the crises we can stand.

Especially when combined with the adjective existential, the word
crisis seems all too inevitably apocalyptic. As the human-driven An-
thropocene morphs into what cultural critic Donna Haraway calls the
“Cthulucene,” visions of posthuman End Times overwhelm us (Har-
away). At the beginning of the midcentury crisis boom, Stanley Ku-
brick and Terry Southern gave us Dr. Strangelove, or How I Learned to
Stop Worrying and Love the Bomb, a flm in which an insane Air Force
commander triggers the end of civilization (Kubrick). Nearly a half
century later, at the other end of the rising curve, Joss Whedon and
Drew Goddard ofered Te Cabin in the Woods, in which something
very similar happens, except the agent of doom is the “fnal girl” of a
literally diabolical slasher flm—the sanest and most moral person in
the story (Whedon and Goddard). Afer peak crisis, our sense of an
ending turns strange and more than a little toxic.

Tis chapter will eventually make its way, with some digressions, to
one Twine writer’s poignant response to this predicament—Queers in
Love at the End of the World, Anna Anthropy’s game of apocalypse. We
will return inevitably to crisis—that’s where we live these days—but
we set out toward this destination with a deliberate swerve. Let’s replace
crisis with critical. Tough technically this change just swaps adjective for
noun, there is an important shade of diference. It is easy to imagine
crisis as a fnal negative: no way out, no alternative, no future. In con-
trast, the word critical seems more negotiable, implying critical choices,
critical practice, critical (and these days, literal) distance. It ofers the
chance to change the shape of certain curves. It leaves room to swerve.
As Borges’s labyrinth-novelist says, “I leave to various futures, but not
to all, my garden of forking paths” (Borges 26). Some futures are more
fortunate than others. In Twine work as in life, the ability to choose is
crucial. Choosing critical over crisis lets us keep faith with the root word

1 In a nice bit of just-in-time journalism as this chapter was nearing completion, Wired
posted a story titled “All Tis Chaos Might Be Giving You ‘Crisis Fatigue’” (Simon).

264 TWINING

krinein, which means to decide. Tis choice emphasizes diference, op-
positional response, and the exploration of alternatives. It also connects
powerfully to elective action, a crucial part of games and play.

Critical Moments

Unlike crisis, which at least implicitly dramatizes itself as a discrete
event, critical moments can be fexibly invoked. Turn the calendar to
the frst weeks of 2019. We’ve already discussed the appearance of the
Black Mirror “Bandersnatch” episode, with its Twine connection and
an intriguing overture to branching narrative. A few weeks later, Netfix
rolled out another show, the miniseries Russian Doll, with a radically
diferent approach to story and play (Headland, Babbit, and Lyonne).
Like “Bandersnatch,” Russian Doll focuses on a game coder, the fabu-
lously dissolute Nadia Vulvokov, who, like Stefan Butler, is dropped
unwittingly into a garden of forking paths. In a way, both are under
the control of a shadowy agency called Netfix, but Nadia’s predica-
ment does not involve viewer intervention. Somewhere in the course
of every episode, Nadia sufers a bizarre or violent death—run over by a
cab, fallen down stairs, poisoned, shot, attacked in the subway by killer
bees—afer which she returns to her initial position in the episode,
staring into a bathroom mirror at a party for her thirty-sixth birth-
day. Nadia’s work as a game designer ofers a frame for understanding
this iterative experience: like a character failing to complete her quest,
Nadia is destined to keep replaying level 36.

Russian Doll deserves more detailed treatment both as a disrupted
narrative and as part of the unfolding saga of binge TV, but we will confne
ourselves to its juxtaposition with “Bandersnatch” (Slade). Te schedul-
ing was most likely coincidental, but all the same, it ofers a meaningful
contrast. For all that it restricts most player choice to a pair of alternatives,
“Bandersnatch” subverts tele-cinematic storytelling. Any choice greater
than one afects at least a small insurgency. Russian Doll reverses and
atones for this rupture, even though it was probably not intended for the
purpose. Te series turns the ergodic breakpoint into a stylistic device.
Instead of the relative openness of a game, it delivers what we might call

TWINE AND THE CRITICAL MOMENT 265

a closed, gamelike arc, an appearance of randomness and contingency that
in fact goes where television always goes, to singular narrative and moral
resolution. We could gloss Russian Doll in many ways—Groundhog Day
goes to Lower Manhattan, Memento with millennials—but it would not
be inaccurate to call it a let’s-play video with unusually high production
values. It is one version of a game.

Te pattern that emerges here is nothing new. Claude Lévi-Strauss
identifed the basic structure in the 1960s, back on the frst step of our
crisis escalator—a tension between contingency and static balance. In
his view, this dynamic was as old as play itself:

All games are defned by a set of rules which in practice allow the play-
ing of any number of matches. Ritual, which is also ‘played,’ is on the
other hand, like a favored instance of a game, remembered from among
the possible ones because it is the only one which results in a particular
type of equilibrium between the two sides. Te transposition is read-
ily seen in the case of the Gahuku-Gama of New Guinea who have
learnt to play football but who will play, several days running, as many
matches as are necessary for both sides to reach the same score. . . . Tis
is treating a game as a ritual. (Lévi-Strauss 30–31)2

We can see a similar “transposition” in the swing from “Bander-
snatch” to Russian Doll. Te closed, gamelike arc treats game as ritual,
preserving not harmony between neighboring tribes but the power
structure of an executive culture, the singularity of authorized narra-
tive that is part of what Ruberg calls “chrononormativity” (Ruberg 25).
Tis complex is the target of that memorably self-parodic paranoid
branch in “Bandersnatch,” where the player makes Stefan aware that
he is under the control of an entertainment network from the future.
Welcome to videoland. Lévi-Strauss could have heard a similar message
a year afer his thoughts about game and ritual appeared in English. We
imagine him nodding as he tunes in to an episode of Te Outer Limits

2 Tomas Malaby, theorist of play and my colleague at University of Wisconsin–
Milwaukee, discusses this insight from Lévi-Strauss in his article “Institutions in Play,”
to which I am indebted (Malaby).

266 TWINING

(1963–1965), which began each week with a ritual message from the
“Control Voice”:

Tere is nothing wrong with your television set. Do not attempt to
adjust the picture. We are controlling transmission. If we wish to make
it louder, we will bring up the volume. If we wish to make it sofer, we
will tune it to a whisper. We will control the horizontal. We will control
the vertical. We can roll the image; make it futter. We can change the
focus to a sof blur or sharpen it to crystal clarity. For the next hour, sit
quietly and we will control all that you see and hear. We repeat: there is
nothing wrong with your television set. (Wikipedia)

In many ways, the entire ergodic project, the reimagination of sto-
rytelling under procedural intervention, might be the aferlife of the
Control Voice. In one of the great ironies of human history, com-
puting devices and the internet were developed as adjuncts to the
command-and-control culture campily evoked in that old broadcast
fantasy. As the public fooded into the new cyberspaces, “everting”
them, as Steven Jones says, from fantasy worlds to everyday habita-
tions, the original control culture was replaced by something we strug-
gle to comprehend (Jones 2014). Computer games play a major role
in this understanding, so it is not surprising to fnd games intimately
concerned with both control and voices. We will have further thoughts
about voices with respect to Davey Wreden’s Beginner’s Guide in the
next part of this chapter. For the moment, there is more to say about
the object of control, which Lévi-Strauss describes as “equilibrium”
(20). Such dynamic balances are inherently fragile, especially under
the impact of radically destabilizing, disruptive technologies. Tere
may have been nothing wrong with our television sets—nothing the
old networks couldn’t fx—but normativity cannot hold when video
screen meets game processor, and the network becomes an everted
internet.

Tere would inevitably be attempts to restore the supposed bal-
ance of forces between producer and consumer. Te appearance of a
closed, gamelike arc in 2019 extends a long-running trend. Using similar

TWINE AND THE CRITICAL MOMENT 267

techniques, flms like Groundhog Day (Ramis), Lola Rennt (Tykwer),
and Memento (Nolan) fed a vogue for “mind-game” cinema in an in-
creasingly game-obsessed era (see Elsaesser). Complex narratives
were carefully channeled into the popular mainstream. Game ideas were
adapted for all sorts of screens. Te ultimate accommodation came in
2011, when the US Supreme Court ruled in Brown v. Entertainment
Merchants Association, afrming the cultural standing of video games:
“Like the protected books, plays, and movies that preceded them, video
games communicate ideas—and even social messages—through many
familiar literary devices (such as characters, dialogue, plot, and music)
and features distinctive to the medium (such as the player’s interaction
with the virtual world). Tat sufces to confer First Amendment pro-
tection” (Brown v. Entertainment Merchants Association).

It may have seemed ironic that the author of his opinion was Anto-
nin Scalia, the conservative archon. Yet the attempt to afliate computer
games with “books, plays, and movies” is defnitionally conservative.
Defying disruption, it afrms continuity between the present and the
past. It envisions a living, changing culture. (Irony foods back in if we
replace culture with Constitution.) In its way, the opinion is laudable,
though the harmonious world it imagines was pure judicial fantasy.
Even as Scalia wrote his ruling, the seeds of Gamergate were germinat-
ing. Tey would take roughly a year to fower into full evil, bringing
backlash against those who wanted to use games for concerted expres-
sion rather than unrefective, unengaged fun.

By 2013, fun had become a fghting word. As Stephanie Boluk and
Patrick Lemieux point out, this controversy had been a long time com-
ing, starting the moment games converged with video: “In the same
way that the British land enclosure of the eighteenth century trans-
formed public land into private property, so too has the videogame
industry worked to privatize the culture of games and play. Games have
been replaced by videogames and play has been replaced by fun” (Boluk
and Lemieux 8). Some might quibble about the analogy with land en-
closure, but the rest of this observation is unimpeachable. Te attempt
to restore cultural equilibrium, to subordinate gameplay under rituals
of consumption-oriented fun, would never succeed. Fun comes in far

268 TWINING

too many varieties. Ruberg remarks, “#GamerGate has gotten at least
one thing right. It is no coincidence that this backlash comes at the
same time that queerness is becoming a more central concern in games
and the dialogues that surround them. As Katherine Cross has written,
proponents of #GamerGate are driven by a fear that video games are
changing, that they will no longer belong only to white, straight, cis-
gender men and boys. And that is true” (Ruberg 13).

Tere is a reason this chapter, like the previous chapter on Twine
camp, returns inevitably to queer gaming and particularly to the work
of Bo Ruberg, who has brought us the crucial recognition that video
games “have always been queer,” driven by a “core” impulse to explore
“non-normative desires” that speaks to and proceeds from alterity (Ru-
berg 11). We embrace this idea because it does so much to explain the
ineradicable diference that marks ergodic works. From the perspec-
tive of narrative normativity, they represent an unruly, uncanny other.
Tey are fundamentally, deliberately, and joyfully abnormal. Te criti-
cal moment of Twine owes much to queer people and their ideas, as so
many have said before us. In learning to align our work as queer, some
straight folk will fnd a strong sense of solidarity. Tis sentiment is deep
but also hazardous.

Straight minds and bodies are not exposed to the traumas visited
on queer people. Queerness is an important place to start—an essential
“lens,” as Ruberg says—but Ruberg adds a signifcant caution: “In using
the word ‘queer’ itself, straight, cisgender subjects must remain aware
that their experiences are never one and the same with those of LGBTQ
people (who themselves bring their own individual perspectives to this
work) and that their use of queerness as a lens must come with an ac-
knowledgement of and respect for real, queer lives” (Ruberg 19). Both
authors of this book operate in public spaces as white, able-bodied aca-
demics in heterosexual or straight-presenting relationships and thus are
not subject to the challenges of, aggression toward, and harassment of
those who are visibly queer, trans, or othered. For her feminist work, one
of us has felt a share of that mistreatment. For his own unorthodoxies,
the other has seen nothing worse than some bad reviews. Limits and
obligations need to be made clear. Te “lens” of alterity is invaluable. It

TWINE AND THE CRITICAL MOMENT 269

requires “acknowledgement,” respect, and more importantly, a commit-
ment to shared struggle, which is the ethos to which this book aspires.

Normativities—economic, erotic, political, chrono-biological—can
be powerfully opposed by discourses of diference—feminist, queer,
nonwhite, neuro-atypical, anticapitalist. Ruberg’s main claim, that
video games have always been queer, implies a larger, ongoing struggle.
As Boluk and Lemieux demonstrate, genuine play refuses the “enclo-
sure” of pleasure in any hegemonic funhouse. In activating the reader
as a player, all ergodic art forms—interactive fctions, game books, hy-
pertexts, games—become at least fellow travelers in this insurgency. We
need to consider a broader picture, one that will allow us to place queer
games and Twine games in relation to other aspects of their critical mo-
ment. Tis will take us to a work that is outside of the Twine commu-
nity and whose queerness seems at least debatable but whose questions
about games and art are essential to our critical moment.

Turn Back fom This Cave

For some, games are all about asking questions. Montfort afliates in-
teractive fction with the ancient form of the riddle (Montfort 14). Every
game in which we explore some bafing space poses ontological ques-
tions: What is this world? Why is it the way it is? Who am I in this place?
What do my interactions reveal? All world-games are basically riddles;
some are more direct than others in framing their enigmas. In his two
major eforts so far, Davey Wreden has a way of putting the puzzles up
front. Te Stanley Parable begs the question, parable of what? (Wreden
and Pugh). Similarly, coming to Te Beginner’s Guide, we might ask,
Guide to what practice, activity, or way of being? Just what are we begin-
ning? (Wreden).

Many players of Stanley Parable come away with plausible answers:
the game is about free will and its paradoxical denial; the game ex-
plores the tension between structure and play or desire. Tese are not
necessarily the best answers, but they are at least reasonably related to
the experience of play. Beginner’s Guide, by contrast, is harder to fx in
a phrase. It’s about a broken friendship, about the ethics of creativity,

270 TWINING

about the reasons for making game-based art. Te work may tell us
something about the nature and purpose of games. Which brings us to
an important question: Is Beginner’s Guide a game?3

Te product is sold on Steam as a game, it has been reviewed as
a game, and, like Stanley Parable, its playable spaces are assembled
from components of other games (Counter-Strike, Half-Life). It seems
to belong at least superfcially to three divisions of the game market:
independent games, B-games, and walking simulators. Yet the play ex-
perience of Beginner’s Guide is about as railed-in as possible. As in Stan-
ley Parable, there is voice-over narration keyed to our progress through
each level. Te plummy BBC announcer of the earlier game is replaced
by Wreden speaking as “Davey,” a character based on himself. Davey
guides us through sixteen chapters and an epilogue, discrete levels os-
tensibly created by a shadowy fgure called “Coda” between October
2008 and June 2011.

We will consider Davey and Coda fctional constructs, thus im-
plicitly metaphorical—though what they represent is open to ques-
tion.4 Te dates of Coda’s eforts align neatly with the creative history
of Stanley Parable, so some self-reference seems inevitable. Beginner’s
Guide seems ripe for interpretation as psychomachia, the struggle be-
tween halves of a divided self. At the same time, the work’s slipperi-
ness and complexity defy simplistic understanding. Is it a collection
of “weird and experimental” game levels, or a unifed production?
(Te presence of an epilogue—literally a coda yet outside of the Coda
collection—strongly suggests the latter.) How should we characterize
this efort? Is it a game or a piece of theater, a game-favored mono-
logue? Maybe Beginner’s Guide is more video than game—a game col-
lapsed into its own playthrough.

3 As we have said previously, this question has become infected by Gamergate and needs
to be framed carefully, which I have tried to do in the article on which this section is
partly based. See Moulthrop, “Turn Back.”

4 Coda could be based on an actual person; Wreden has been coy on the subject, leav-
ing us free to speculate (see, e.g., Klepek). Te name has the appearance of a handle or
nomme de logiciel—Coda, a coder. In music and writing, a coda is a fnal supplement,
bringing a work to completion.

TWINE AND THE CRITICAL MOMENT 271

Beginner’s Guide has important resemblances to machinima, game-
derived linear video, but it also has features inconsistent with that form.
As Davey reminds us in chapter 7 (“Down”), the work was built on the
Source game engine. It is not delivered in a video format but as a play-
able download on Steam. Player action is allowed and ofen required.
In chapter 1 (“Whisper”), we are told we can exit the game by stepping
into an energy beam. As in Stanley Parable, we can refuse the narrator’s
suggestion—the beam will kill us—but unlike in Stanley, refusal has no
interesting consequences; we just linger in a level we have already ex-
plored. In chapter 4 (“Stairs”), we are asked to press “Enter” to neutral-
ize a speed limit that prevents us from quickly climbing a set of stairs.
We can withhold the action, remaining in agonizingly slow ascent, or
join in Davey’s subversion of the original rules. Tese moments are
paradigmatic: the system allows us to act, but only in ways that both
move us along the rails and ofen violate an insanely dilatory design.

If Beginner’s Guide is a game, it is arguably a queer one in the most
general meaning of the word, an exploration of strange or deviant
forms of play. Whoever or whatever he is, Coda is less game designer
than conceptual artist. His levels carry absurd subtitles like “Te Street-
wise Fool,” “Pornstars Die Too,” and “Items You Love at Members-
Only Prices.” Coda appears to be a latter-day surrealist. His games
subvert rational thought, substituting the inconsistent, associative fow
of dreams. Many of the chapters feel like transcriptions of recurring
nightmares—facing an audience across the footlights, or a lecture hall
backed by a devouring black hole (been there), or a house with an end-
less cycle of cleaning chores (there also). Images of prisons, real and
symbolic, occur with increasing frequency as the tour goes on.

Tere is also a sense in which Beginner’s Guide is literally queer, or
at least homo-antisocial. It is, afer all, about the intense and ultimately
toxic afection of one man for another. No sexual relationship is im-
plied, and there seems no need to imagine one, but in Davey’s account,
which dominates until the fnal chapter, there is certainly intimacy.
Davey cares deeply about his friend, whom he sees spiraling into a crip-
pling depression. Coda’s feelings are harder to describe, but in the early
years, at least he seems willing to share his dream-games with Davey. In

272 TWINING

chapter 7, Coda pranks Davey with a zip fle said to contain the ultimate
game but which consists entirely of unopenable boxes—woebegone fan
that he is, Davey tries each one. Even if it is actually the song of a di-
vided self, the work deploys a fction of relationship. We remember
Ruberg’s gloss of Portal as the story of a woman wandering through
another woman’s body (Ruberg 23). By analogy, Beginner’s Guide shows
us one man interfering with another man’s imagination.

Tis recognition provides another reason to set Beginner’s Guide
apart from other works, even within the decidedly ofeat family of
walking simulators. Te work is not just queer but “weird” in the strict
sense of the word: subject to irrational or inexplicable infuences. Begin-
ner’s Guide is haunted. We could speak literally of Davey as an uncanny
presence in Coda’s games or vice versa, but there is also a ghostly infu-
ence from outside of the work. In 1962, Vladimir Nabokov published
Pale Fire, a novel whose story unfolds through a series of annotations
by a Russian émigré critic, Charles Kinbote, written into the manu-
script of a poem by a recently deceased American writer, John Shade
(Nabokov).5 Kinbote is an iconic example of an unreliable narrator, a
literary stalker who twists the dead man’s poem around his personal de-
lusions. One of the frst scholars to explore the Nabokovian resonance,
Berkan Şimşek, describes the novel as “a beginner’s guide to Beginner’s
Guide” (Şimşek). Tere are very suggestive echoes—the parasitic pseu-
dofriendship between artist and critic; misappropriation of an artwork;
gradual exposure of the commentator’s tampering with the work he
describes. Tere are also important diferences between the two stories.
Kinbote is a madman who remains entirely within the grip of his delu-
sions; Davey undergoes a crisis of recognition and achieves something
like an epiphany. Tere are reasons to suspect Kinbote may have mur-
dered Shade; all we have in Beginner’s Guide is a very bitter breakup.
Above all, there are no overt connections between the two works, no

5 Te echoes of Nabokov were frst brought to this writer’s attention by Nathan Humpal,
metadata librarian at University of Wisconsin–Milwaukee and game scholar nonpareil.
Having made the connection himself, he found confrmation in Guido Pellegrini’s “‘Te
Beginner’s Guide’: Confessions of a Game Designer” (Pellegrini). I am also indebted to
my student Ryan House, whose article on Wreden introduced me to Beginner’s Guide
(House).

TWINE AND THE CRITICAL MOMENT 273

allusions or intertextual references, no clear reason to suspect Wreden
has read Pale Fire.

Whatever its resonances, the tension between Davey and Coda de-
fnes the work’s descending narrative arc. At the outset, Davey tells
us Coda has withdrawn from the game world. By publicizing Coda’s
genius, Davey hopes to encourage his friend to return to his art. As the
tour of Coda’s games proceeds, however, Davey’s intrusions become
more extensive and frequent and his commentary increasingly negative.
Chapter 7 alludes to a debate between Davey and Coda over whether
games should be playable. In chapter 9 (“Escape”), Davey warns that
“this one is tough” and notes that Coda appears to be “unraveling”
because he “lacks a voice to tell himself when enough is enough.” In
chapter 12 (“Teater”), Davey says Coda is “beginning to shut down,”
as iron bars repeatedly slam into the ground behind us. Te text option
that leads to the solution in chapter 12 (“Mobius”) reads, “I can’t keep
making these.” Afer this, Coda’s supposed breakdown—or the demise
of his friendship with Davey—proceeds to a climax. Chapter 14 (“Is-
land”) runs through a series of bewilderingly evocative dream images,
ending with a feeting glimpse of a naked, weeping fgure glimpsed
through prison bars. In chapter 15 (“Machine”), we play frst as an in-
terrogator putting hard questions to a machine that has stopped work-
ing. Eventually, we acquire a gun, which we can turn on an image of
the machine. As its surface fies away, we see bits of computer code
beneath.

Chapter 16 (“Te Tower”) is the last in the dated sequence. It
is a “cold” level, Davey says. He tells us the game seems to despise
its player. Refecting on his attempt to celebrate meaning in Coda’s
games, he confesses, “I feel like I failed,” and “I don’t know this per-
son.” Crucially, Davey also reveals that he has made unannounced
modifcations to some of the levels and that bringing Coda’s games to
public attention has brought him fame and fulfllment. Finally, afer
ascending a series of twisty passages to the top of the tower, we enter a
gallery space. In the display panels are messages from Coda to Davey
accusing him of even deeper intrusion into his designs. Davey has
added the lampposts we have seen in various levels, where they are

274 TWINING

claimed as evidence of Coda’s interest in coherent play. Coda specu-
lates that he has added solutions to some of his games under Davey’s
infuence. Above all, he indicts Davey for making his games pub-
lic without his permission—in efect, stealing his work. He asks that
Davey have nothing further to do with him: “When I am around you,
I feel physically ill.”

At this point, the game’s central fction collapses. Chapter 16 is fol-
lowed by an epilogue whose status is eminently questionable. All the
previous Coda games have dates of composition. Te epilogue has none.
It looks like another of Coda’s compositions, but the link has been sev-
ered. Who dreamed this fnal dream, Davey or Coda? We cannot know
who these fgures are to us now or if they were ever real. Davey’s narra-
tion continues haltingly as we move through the frst of several dream
transitions: railway station, tracks, great house, museum, salt mine,
station/museum again, fnally into something that may be a sculpture
garden or a set of ruins. Davey is with us at the outset, talking more to
himself than to the player (“solution, solution, solution”). Eventually, he
gives up.

Coda’s revulsion has shown Davey the awful depth of his vanity, of
his need for “more, more” doses of “external validation.” He realizes
he has misunderstood Coda: “Maybe he just likes making prisons.” He
apologizes for abandoning the player—“I know I said I would be there
to walk you through this”—but he has work to do now, presumably
the beginning of a new art no longer dependent on externalities. He
signs of abruptly, leaving us alone to make our way through a fnal set
of passages to something we have seen before: the energy beam from
chapter 1. When we stepped into the earlier instance, we found our-
selves transported (in what Davey called a “glitch”) through the ceiling
of the level, allowing us to look down on the maze we had just traversed.
Stepping into the fnal beam has the same efect, though the vast scale
of the maze we rise above suggests a city, a continent, or a planet—also,
strangely, the loops and whorls of a fngerprint. Above us is a starry
cosmos. Te screen goes black.

But the game is not quite over, at least as we understand it. As is
ofen the case in ambitious games, there is a song to accompany the

TWINE AND THE CRITICAL MOMENT 275

credit roll. Te singer is the Canadian vocalist Halina Heron. Music
and lyrics are by Ryan Roth:

Turn back
Turn back from this cave
You said “let me prove that I’m brave,
Let me keep going.”

But the cave goes for miles
And miles and miles
And you’re so tired
But I know that you’re strong

So turn back,
Turn ba-a-ack.

Strictly speaking, a song over credits is paratextual. We are not ob-
ligated to consider it part of the game’s main business. However, afer
Coulton’s incisive anthems for Portal and Portal 2, closing-credits songs
have become more salient, particularly in Valve productions. Tere is
good reason to suppose that, like “Still Alive” and “Want You Gone,”
the fnal song in Beginner’s Guide was commissioned for the project. Be-
ginner’s Guide is dedicated “to R,” who could be the writer of the song,
Wreden’s sometime collaborator and soundman Ryan Roth. Tough
the gameplay is over when we hear it, Roth’s song needs to be con-
sidered in any attempt to understand the work—which is, afer all, as
much video (in this case, music video) as game.

Ever since Plato, caves have been associated in the scholarly mind
with allegory. In Gamer Teory, McKenzie Wark restyles Plato’s theater
of sensual illusion into a game arcade. Tis imagined space summarizes
the all-enclosing episteme of digital gaming (Wark 2). Perhaps this is the
forbidden zone we are called on to reject. At the same time, sticking
more closely to the terms of the Davey-Coda story suggests another
interpretation. Te cave might stand for the artistic catastrophe these
two fgures represent, the interminable contest between fame-seeking,

276 TWINING

public-facing expression (Davey) and an absolute formalism (Coda)
that doesn’t especially care if its prison-games can be played.6 In this
sense, the turn back is not a renunciation of gaming per se—though
it comes at the end of an artwork that is not-quite-not a game—but
perhaps a turn toward a better-conceived ludic future.

Maybe. Te next ofering by Wreden and Roth, Absolutely: A True
Crime Story, does not seem especially promising in this regard (Wre-
den and Roth). Built in RPG Maker, the game is an ostensible “de-
construction” (Wreden’s word) of Japanese role-playing games from
the eighties and nineties. For some reason, it features a protagonist
named Keanu Reeves, whom the player maneuvers around pixelated
streets to prove he is not a serial stabber—unless we decide he is. De-
pending on our menu selections, he may also hand out dime bags of
“the good stuf.” Tis game seems less oriented toward a future aes-
thetic than toward the campy currency of games like Cry$tal War-
rior Ke$ha—which have their virtues, though they hardly renounce
external validation. As one reviewer noted, “For a meaningless parody
project, Absolutely: A True Crime Story does a great job of showing just
how compelling purposelessness [sic] referentiality can be” (Gach).

Perhaps Wreden’s own turn back is not complete, or the maneuver
may be more complicated than the song leads us to believe. Tere could
be yet more moves in this dance—at this writing, Wreden is advertising
for collaborators on another major project. Wark also imagines a turn
away from the cave of gamespace, but conceptual dervish that she is,
she continues the spin until she comes full circle, once more facing the
cave: “Te gamer arrives at the beginnings of a refective life, a gamer
theory, by stepping out of Te Cave—and returning to it. . . . If the
gamer is to hold gamespace to account in terms of something other
than itself, it might not be that mere shadow of a shadow of the real,
murky, formless that lurks like a residue in the corners. It might instead
be the game proper, as it is played in Te Cave. . . . Te game shadows
the real form of the algorithm” (Wark 19).

6 In a very humble way, we modeled this dilemma in our indefensibly ableist carousel
game in chapter P-2, example 2.7.

TWINE AND THE CRITICAL MOMENT 277

Stepping back into the cave is the work of “gamer theory,” which (as
we hope this book demonstrates) involves as much playful practice as
intellectual speculation. Tis theory-at-work asks for an understanding
of the formal structures that underlie games: algorithms as well as the
cultural logics, which Wark calls “allegorithms,” in which these forms
participate. In its most powerful form, we fnd gamer theory not in
scholarly books but in games intended for experimental or deviant/
devious play. Twine has been an important platform for eforts of this
kind, and so it is to Twine games we make our way at last.

Ends of the Beginning

Updating Wark with the insights of Ruberg, Boluk, and Lemieux, we
might say there are two possible avenues for allegorithmic criticism, or
the therapeutic queering of games. One approach comes through theme
or content: exploring divergent characters, settings, and situations. Te
thematic side of our critical moment is well represented in Twine games.
Works like D. Squinkifer’s Quing’s Quest VII, discussed at length earlier,
and Anthropy’s Hunt for the Gay Planet (Anthropy, “Hunt”) come at
heteronormativity in game culture from the perspective of gay, trans,
and gender-fuid characters. Porpentine’s Ultra Business Tycoon III
(Porpentine), Tom McHenry’s Tonight Dies the Moon (McHenry), and
Kris Ligman’s You Are Jef Bezos (Ligman, “You Are Jef Bezos”) satirize
the obscenities of contemporary capitalism and the neoliberal ortho-
doxies of digital play. As Twine writers turn their attention to assump-
tions and operations of gameplay—the point where allegorithm meets
algorithm—a second front of resistance opens.

Tis approach reinterprets games and play structurally, ofen at the
level of basic player actions or game mechanics. Te mechanics of inti-
macy discussed in earlier chapters present an opening to this strategy.
Some years back, a Twine creator called neongrey pushed intimate me-
chanics across the species line in Cat Petting Simulator 2014 (neongrey).
We have already noted Porpentine’s recruitment of the player’s body
as a writing surface in With Tose We Love Alive. Neongrey extends
this embodied aesthetic to the whole mammalian family. Petting a cat

278 TWINING

or some other friendly, furry creature reactivates primate grooming
instincts lost long ago by naked apes. For humans not prevented by
allergies or other conditions, petting can be a relaxing, centering, life-
afrming experience. (Cats seem to like it too, though generally on
their terms.) Until the arrival of something like William Gibson’s “sims-
tim,” technologies can only represent this experience through images or
symbols (Gibson). In conventional 3-D games, it would be a matter of a
button-press and a resulting set of animations, maybe with a bass purr
on the soundtrack. On a text-based platform like Twine, the representa-
tion can go deeper—not to mention more broadly in its implications.

In 2018 Ligman adapted neongrey’s concept and crossed it with their
own satiric agenda in Pet Cats, Save the World (Ligman, “Pet Cats”). Te title
itself could be considered as critique. Here is a game that calls out its play
mechanic in its name. Tat move might not be original—the Grand Tef
Auto series does something similar—but it prompts an interesting question:
What if more games were named for their basic activities? Te answer sug-
gests GameStop shelves flled with seventies-style generic packaging sport-
ing titles like Shoot Shoot and Get Shot XXVII, Mutilate Undead Corpses LXV,
and Jump Scare 4000. If nothing else, Ligman’s forthright title nicely frames
player expectations: making some cats happy will adjust the moral arc of the
universe. Here are three passages in sequence from the game:

You take a sip of your drink and settle into your seat, allowing the deli-
cious roasted warmth [of your favorite cofee] to spread through you.

Afer a moment, you feel something brushing against your ankle. You
look down to fnd that a long-haired smoky kitten of about 12 weeks
has wandered over and rubbed against your leg.

Pet the cat

You reach down with your free hand and gently stroke a few fngers
over the kitten’s back.

ICE has been dismantled.

TWINE AND THE CRITICAL MOMENT 279

Pet the cat again

Te kitten rolls over onto their side for you, exposing their sof belly.
You pet them while defly avoiding the absolute terror zone.

In that same moment, a beloved old friend you’ve lost touch with sud-
denly texts you.

Pet another cat (Ligman, “Pet Cats”)

And so forth, wonderfully. Tere are enough complications to keep
the game interesting. Failing to optimize your textual choices for fe-
line desire can result in a neutral ending; persist in petting against the
grain and you can fnd yourself mauled and bitten at the bad end of
the story. However, it is easy enough to reach the good end: a peaceful
nap for you and your companion, with the state of the US govern-
ment, the entertainment industry, and your character’s fnances much
improved. Neongrey’s earlier game became a refuge for people reel-
ing from Gamergate, Brexit, and the 2016 US election. Ligman’s satiric
variation improves those psychic defenses.

Tough in some ways just a modestly clever turn on a charming
concept, Pet Cats, Save the World engages critically with game culture.
Like neongrey’s simulator, it explores an important alternative territory
of desire, if not gender-queer then something like species-quaint.7 In
making this turn, the game attacks another idol of game culture, the
fxation on epic or operatic narrative. Bogost has complained that so
many games involve huge, existential threats to humanity and/or the
universe, wondering why there are not more games about quiet, ordi-
nary human experience (Bogost 18). Pet Cats answers this call with its
own mechanic of intimacy, but Ligman’s topical update of the earlier
game adds an ironic spin. We indeed save the world, not with brutal he-
roics but through simple, animal bliss. Yet for all its undeniable delight,

7 Salter points out here the importance of games like Catz and Dogz in establishing inter-
species afection as a theme of play. Te Pokémon universe deserves mention also in this
regard.

280 TWINING

there is something bittersweet about this story. We may play ourselves
into the ultimate catnap, but in real life, we will awaken to a broken
universe where the efect of petting cats is only locally magical. Sadly,
the most likely word afer wish fulfllment is usually fantasy.

To fully understand Twine in its critical moment, we need to con-
sider a game that reverses the polarity of desire in Ligman’s sad, sweet
ode to joy—a game that is in many ways a mirror image of his inven-
tion. Tis is Anna Anthropy’s Queers in Love at the End of the World
(Anthropy, “Queers”). Where Pet Cats ofers instant gratifcation, this
game inficts equally swif and assured loss. In place of wish fulfllment,
it gives us a blank but no less hyperreal apocalypse. In terms of its brief,
broken diegesis, it is not a beginner’s guide but a Dies Irae or hymn of
endings. Yet this game is also a remarkably clear response to its critical
moment. While it may not deliver the pleasures of a warm body—this
is precisely what the game denies us—Queers in Love explains what it
means to turn back, not so much from the cave of aesthetic crisis but
from the horror of an impending future. In this respect, it may have its
own strange message of diference, struggle, and hope.

Love and Permadeath

Electronic text replaces itself many times a second. Everything is wiped
away and replaced either with the same screen state or a diferent one.
Trough its pattern of action and response inherited from both inter-
active fction and hypertext, Twine invites both use and abuse of this
efect. At its root, a digital computer is a logic processor, an adding
machine—and a clock. Tose who balk at identifying text-based works
as video games because they generally lack graphics might remember
that video, like cinema, is a technology of simulated motion. Motion
implies time. As Bogost and Montfort showed in Racing the Beam,
every video game is on the clock (Montfort and Bogost). Tis includes
games of electronic text. McDaid’s delta-t’s turn the time. Ligman’s en-
chanting cats change the world, averting an apocalypse. Other works,
however, take apocalypse by the horns. In Pierre Chevalier’s Destroy /
Wait the player is given those twin options with a series of objects:

TWINE AND THE CRITICAL MOMENT 281

cities, trees, love (Chevalier). Choosing wait temporizes, extending the
narrative. Destroy iterates the nightmare of history—and this option
always comes at the end of each chain of evasion. Te dark fatalism
of that game is not the last word in this line, however. Queers in Love
spares us the waiting.

Queers in Love at the End of the World plays with time across two
registers. As its title indicates, it is set in an End Times where we are
doomed to read a fatal sentence: “Everything is wiped away” (Anthropy,
“Queers”). Te nature of the apocalypse is never spelled out—not that
we need it to be. Our time is flled with threats—as promised, we’ve
come back to crisis in the end. Some of us live in the knowledge that the
virus now rampant will likely kill us, and people we love, if we cannot
avoid infection. Other agencies of doom are easy enough to imagine:
climate convulsion, fascist holocaust, nuclear war—or perhaps, to re-
turn to fction, just writerly imperative, driven by the sense that this
world can’t last.

If one hand of Anthropy’s clock sums up millennia of human history,
the second hand is just that: a counter that works through a ten-second
interval, graphically depicted as a closing circle inside which we see how
little time we have lef. Tis is a text game that diabolically permits almost
no time for reading, an engine of frustration and distraction. Long ago,
somewhere in Anna Anthropy’s early childhood, this writer produced a
hypertext fction called Hegirascope (Moulthrop, “Hegirascope”), which
gives readers thirty seconds to select an outbound link before it chooses
for them. At its debut, Michael Joyce called this work “the hypertext that
reads itself ” (Joyce). By analogy, Queers in Love would be the hypertext
that withholds itself, even more steadfastly refusing our desire to read,
among other desires. It gives us a mechanic not of intimacy but of sty-
mied gratifcation—specifcally so because the story it lays out describes
desperate passion: “In the end, like you always said, it’s just the two of
you together. You have ten seconds, but there’s so much you want to do:
kiss her, hold her, take her hand, tell her.”

Each of the verbs is hyperlinked, forming a fourfold gate that prom-
ises further development of this poignant scene. Here is one way the
story can unfold:

282 TWINING

[2—take]
You take her hand in yours, giving it a squeeze.

Look into her eyes.
Kiss her.
Put your hand up her skirt,
Just hold her hand.

[3—Just hold her hand]
Your fngers twine between hers. Afer all the forces that tried to keep
you and her apart, maybe just holding her hand is enough.

[4a—twine]
What a powerful form of expression.

[4b—trying again, this time taking the link on “enough”]
Maybe it’s enough to know that they lost.

[5—No onward link; time runs out]
Everything is wiped away.

Tat fnal phrase is both diegetic and procedural or ludonarra-
tive: it announces the erasure of the lovers and their world and at
the same time a clearing of the textual record. Te fnal act in this
game is permadeath, a halting state that erases all traces of previous
progress (Juul 86).8 However, the fatal passage includes two links,
“Aferword” and “Restart.” Te frst leads to a fnal statement, closing
of the game. Te other ofers a fresh try from the initial passage (“In

8 Tis account is basically accurate, though it elides some details. Once “everything is
wiped away,” the player is locked into the terminal passage. Before this point, it is possi-
ble to use the browser “Back” button, making previous states of the reading technically
accessible. Tus a record of play is indeed lost at the ending, constituting permadeath.
While it remains, however, the usefulness of this record is tenuous. Using the “Back”
function on any passage except the frst or last spawns a new ten-second clock that
runs concurrently with the original. Te resulting fragmentation of the game’s time
scheme is more likely to produce bewilderment than coherent reading.

TWINE AND THE CRITICAL MOMENT 283

the end . . .”). In the record mentioned earlier, the fatal passage comes
afer we have completed the narrative line—twice actually, as we ex-
plore both branches from the third passage. As we will explain later,
this reading was not produced entirely within the game. Te wiping-
away passage will appear whenever the ten-second timer runs out. In
actual gameplay, this is likely to happen before the player reaches the
end of even a four-passage story line, and some lines are longer. Tus
until patience gives out, players are likely to take the restart option
multiple times, reentering the hypertextual maze in an attempt to
retrace previous steps.

Ruberg and Claudia Lo, who each read Queers in Love with notable
insight, de-emphasize the deathwardness of the narrative, legitimately
concentrating on the larger, processual aspects of play experience.
For Ruberg, the game exemplifes the queering of “chrononormative”
in-game death, a concept they call “permalife” (Ruberg). Lo makes a
revealing comparison between Anthropy’s game and so-called slow
cinema:

Expressing something as simple as recalling several memories at once
is a complicated afair that requires at least four separate playthroughs.
Te ten-second limit actually serves to stretch out time rather than
compress it. Like the lingering camera of slow cinema, the game spins
out time in an indulgent manner. Slow cinema focuses on the unbe-
labored body, and its gaming counterpart is the unresponsive body
incapable of acting quickly enough, or drastically enough, to satisfy
the player. To know what is happening, the player must put in the work
of reading, remembering, and racing against the timer. If slow cinema
redeploys boredom in order to draw attention to “that genre’s insistent
disarticulation of the body onscreen from the body ofscreen,” then
Queers redeploys panic in a similar way. In short, the panic and anxiety
of the player is contrasted with the calm certainty of their character.
(Lo 190)9

9 Te included quotation is from Schoonover’s article on slow cinema (Schoonover).

284 TWINING

Lo’s reading is remarkable in several ways. She understands hyper-
textual multiplicity with a clarity that has eluded older critics. Bringing
in the discourse of embodiment from slow-cinema theory once again
illuminates the mechanics of intimacy. She also suggests, importantly,
the potential of this game to deconstruct its form and medium.

We will work toward a similar end with perhaps a bit more em-
phasis on the discontinuity of the action, in contrast to its (quite real)
para-cinematics. We take Lo’s point about embodiment, though we will
contextualize it diferently. Given the likelihood of repetition, we de-
scribe the fatalities of Queers in Love as little permadeaths, afer the
French metaphor for sexual ecstasy. Tis suggestion eroticizes play
and reading, but Queers in Love is, afer all, a work of disrupted erotic
fction—many traversals are considerably more explicit than the one
given earlier. As the title announces, the desire in play here is specif-
cally queer. We can take this marking in its biopolitical sense, noting
how the game’s second-person address interpellates the player as some-
one who desires a queer partner. Anthropy’s use of she/her pronouns
for the lover is interesting, as it throws interpretive smoke at those still
indoctrinated by patriarchy, where the feminine object may look de-
ceptively like the default of straight, male poets. Tat history has no
purchase here. Straight people must imagine themselves as lesbian—or
better, recognize that gender reference and amatory choice are no lon-
ger governed by binaries.

While its grand themes may be love and loss, along the way, Queers
in Love works through frustration and satisfaction of desire. As He-
girascope tried to do in its day, Queers in Love interrogates an ever-
accelerating attention economy. Any simple transcript of the work will
fail to capture its dynamic efects—something Ruberg and Lo also make
clear. As we have noted, the representation of game narrative shown
earlier does not record a single, uninterrupted play session. Tough
it may look like what Montfort calls a “traversal,” a completed run
through an interactive fction, what you see here only simulates such a
procedure (Montfort 32).

To reach almost any conclusion, players will most likely fnesse or by-
pass the game’s primary rules of play. In the case of the pseudotraversal,

TWINE AND THE CRITICAL MOMENT 285

we reached the end of the story line by repeatedly restarting the game
and taking screenshots of successive passages. Players with quicker
hands and eyes might manage without such maneuvers, efectively
speed-running the game; though, given the strict economy of atten-
tion, this style of play must limit comprehension. Playing through four
passages in ten seconds leaves 2.5 seconds for each—plenty of time to
read a quick sentence or phrase, but probably not enough for a refec-
tive choice among the four links in the second passage or even the dual
set in the third.

With this queering of play, Anthropy brings together the discourses
of ludus and eros. Reading about acts of desire makes us desire to keep
reading, holding to that middle state of narrative arousal or hypertex-
tual possibility from which the circling clock inexorably excludes us.
We can refer to Ruberg’s chrononormativity and the ways queer games
oppose it. Ruberg acknowledges the role of player death in disrupting
traits like singularity and authority, though with appropriate skepti-
cism, since player death can also be a component of reactionary fun
(Ruberg 206). Arguably, Anthropy’s disruptive design, with its petite-
permadeath, falls squarely on the side of critique. Tis will be clear if we
align her work with the examples used earlier in discussing chrononor-
mativity: “Bandersnatch” and Russian Doll. Te former is a genuine, if
fawed, game, the latter a closed, gamelike arc converting game to ritual.
We can try to ft Queers in Love into this binary scheme, perhaps on
the game side, but despite its context (Anthropy wrote it for the Ludum
Dare game jam in 2013), Queers in Love really belongs neither to the
pole positions nor anywhere between. It is neither game nor ritual but
antigame.

It is worth considering the several ways in which this description ap-
plies. First, while the possibility of winning is not an absolute require-
ment for games (see Juul), its absence is ofen signifcant. Diegetically,
Queers in Love is unwinnable. Even if you reach the end of a narrative
line before the clock winds down, you will meet the same fate as more
dilatory players: everything will be wiped away. For all that the endings
represent glorious Liebestode, they are also, symbolically speaking, ver-
sions of the same event, the great permadeath of “everything.” We could

286 TWINING

apply the same analysis on the ludic side. Does winning mean optimal
performance, speed-running to the end of a narrative line with only
hasty glimpses of its contents? Tis would seem a strange requirement
for a text game. Or should we defne winning in completist terms as
exploration of all possible story lines, an anthology or autopsy of all the
game’s possibilities? Tis solution shows more respect for Anthropy’s
prose, but what about the gameplay?

It is tempting to label Queers in Love an antigame because it is de-
liberately unplayable, designed to exhaust conventional ludic engage-
ment. In fact, though, this work may be too playable. Wark at one point
defnes the goal of gamer theory as “to play at play itself, but from
within the game” (Wark 019). She has in mind a turn back to the cave
of gamespace duly informed by allegorithmic insight. It is possible to
understand Anthropy’s game in these terms: recognizing the game’s in-
sanely apocalyptic time scheme, we speed-run or screen-shoot to “play
at play.” However, there are other opinions on the playability of play.
David Myers, whose neoformalism contrasts sharply with Wark’s ap-
proach, says this about the hierarchy of playful forms: “If you play with
a simulation, it becomes a game; if you play with a game it becomes
just play; and if you play with play—well, you can’t play with play: play
pwnz”10 (Myers 26; emphasis in original). Play is an absolute; we can
play at playing (theory-play), but if we attempt a twist on play itself, we
fnd ourselves played.

Arguably both Queers in Love and Beginner’s Guide lie at the far
end of Myers’s second division. Beginning as simulations (of apoca-
lypse in the frst instance, of a gamer’s portfolio in the second), they
run through the territory of game, emerging into a liminal zone on
the other side. Tey are in a way two expressions of a similar artistic
crisis. Both share a sense of divided purpose, encapsulated in Wreden’s
Davey/Coda pairing. Davey is biographer and interpreter, social animal
and extrovert, seeker of human truths. Te Davey side of Queers in Love
shows in its story lines the doomed desires of the fated lovers. Coda is a

10 Tat last word is hopelessly infected by its origins in toxic gamer culture. I quote it not
for its ideology of dominance but because it marks in stark linguistic terms the limits
of theory.

TWINE AND THE CRITICAL MOMENT 287

maker of impenetrable prisons and unwinnable games, an uncompro-
mising, hermetical formalist. Te Coda aspect of Queers in Love is its
diabolical dynamic, the time-lock that repeatedly slams down a barrier,
sealing us out.

Crisis is decisive, transformative, a point of decision or choice.
Played to its logical and artistic conclusion, neither work remains sim-
ply a game, but the ways they resolve their crises are diametrically dif-
ferent. Te ultimate guidance of Beginner’s Guide is “turn back.” Te
work is only nominally a game, using afordances of digital play mainly
to advance its underlying monologue. It has more than half collapsed
from game to gamelike arc, or from game to ritual. Queers in Love, on
the other hand, manipulates game mechanics so radically that for many
players, the experience transforms into pure, subversive play. We jump
out of the game and play back against its structures.

In a way, Queers in Love also turns us back from the endless cav-
ern of game-simulation-play, but with an important diference. In its
queering of gameplay, this work turns crucially from crisis to critical
practice. Davey deserts us in the cave, headed of to forge the uncre-
ated conscience of his art. Te creator of Queers in Love makes no such
departure. She does not need to. Her work is already intensely engaged
with its moment. It is, afer all, a relentless deconstruction of apoca-
lyptic thinking. To understand Anthropy’s achievement, it is useful to
slide back down the crisis-banister of the previous century, back to the
heyday of TV’s Control Voice—though the testimony we seek will come
not from television but a visionary novel:

Taking and not giving back, demanding that “productivity” and “earn-
ings” keep on increasing with time, the System remov[es] from the rest
of the World these vast quantities of energy to keep its own tiny desper-
ate fraction showing a proft: and not only most of humanity—most
of the World, animal, vegetable, and mineral, is laid waste in the process.
Te System may or may not understand that it’s only buying time. And
that time is an artifcial resource to begin with, of no value to anyone
or anything but the System, which sooner or later must crash to its
death, when its addiction to energy has become more than the rest

288 TWINING

of the World can supply, dragging with it innocent souls all along the
chain of life. Living inside the System is like riding across the country
in a bus driven by a maniac bent on suicide. . . . He is waiting beside the
door of the bus in his pressed uniform. . . . As he nods you by, you catch
a glimpse of his face, his insane, committed eyes, and you remember
then, for a terrible few heartbeats, that of course it will end for you all in
blood, in shock, without dignity—but there is meanwhile this trip to be
on. . . . Over your seat, where there ought to be an advertising plaque, is
instead a quote from Rilke: “Once, only once . . .” One of Teir favorite
slogans. No return, no salvation, no Cycle. (Pynchon 480)

Tese words were written between 1966 and 1971, on the cusp of the
frst oil shock, though they track with depressing accuracy our even later
stage of capitalism and ecological trauma. Tey come from a work of fc-
tion, Gravity’s Rainbow, that in some ways epitomizes the late-twentieth-
century counterculture, crying out for return, salvation, and Cycle
against extraction and dissipation. Like our later game-fctions, the book
was a crisis work, a push against artistic limits. Its narrative famously
collapses into fragmentation and self-denial. It is also, in the root sense
of the word, an apocalypse or revelation, its fnal scene a vision of extinc-
tion whose last word is replaced by a traumatic dash.

Despite the structural similarity of their abrupt endings, there is a
considerable diference between the novel and the game. Pynchon’s bus
rider will die in “blood, shock, without dignity.” Anthropy elides agony
in her erasures and in many instances fnishes her story lines with an
afrmation: “When she kisses you back, she’s telling you your needs are
real.” Or “So many people and institutions tried to pull you two apart.
Tey all failed.” Tough in a millennial context, they/them becomes an
alternative pronoun choice, Anthropy’s usage in this last case reminds
us of the old 1960s Tem, oppressors of Us, and thus of the fact that
we are still, in the new century, deeply concerned with systems. Pyn-
chon’s System—capitalized in every sense of the word—appears as “a
bus driven by a maniac bent on suicide.” While we are still on that ter-
rible trip in the new century, we have access to other kinds of systems:
computing machines, platforms, networks, games.

TWINE AND THE CRITICAL MOMENT 289

Te system of 2013 difers crucially from its counterpart in 1973. We
may not own or control it in any ultimately satisfying way, but we can
at least try some strategic interventions. Anthropy’s queer-critical per-
spective endows her with the core wisdom of counterculture—namely,
that time is an artifcial resource “of no value to anyone but the System”
(Pynchon). As Lo’s cinematic reading makes clear, time is negotiable.
Time is in play. Anthropy’s small-s system—the queer loops of her
Twining—values time in its own nonnormative way. Tis new system
is iterable: we can restart the game. It is also permutable: we are invited
to jam or hack the game when it exceeds the bounds of play. With what-
ever odds against success, we can even attempt to play play itself. Tese
ludic maneuvers amount to a major critical achievement.

Queers in Love at the End of the World deconstructs apocalypse,
putting the terrible fatality of that all-too-present event literally under
erasure. Pynchon’s imperfect sentence comes on the last page of a book.
It delivers, even as it fails to deliver, a fnal word. When “everything
is wiped away” on the self-replacing screen of a video game, there is
always the possibility of Cycle—sixty or so per second in fact—of re-
boot, of return to the mischievous dominion of play. We may yet be on
that gas-guzzling bus of doom, its maniac driver at the national wheel,
but we dream of diference and we have begun to express ourselves
in the queer medium of games. At the very least, we can take down
that plaque Tey hung over our seat. In place of “Once, only once,”
we can write—on our own fesh if need be—the grafto that is Anna
Anthropy’s aferword:

WHEN WE HAVE EACH OTHER WE HAVE EVERYTHING.

Works Cited
Anthropy, Anna. “Hunt for the Gay Planet.” Cambridge, MA: Electronic Literature

Organization, 2013. https://collection.eliterature.org/3/work.html?work=hunt-for
-the-gay-planet.

———. “Queers in Love at the End of the World.” itch.io, 2013. https://w.itch.io/end-of
-the-world.

Bogost, Ian. How to Do Tings with Videogames. University of Minnesota Press, 2011.

https://w.itch.io/end-of
https://collection.eliterature.org/3/work.html?work=hunt-for

290 TWINING

Boluk, Stephanie, and Patrick Lemieux. Metagaming: Playing, Competing, Spectating,
Cheating, Trading, Making, and Breaking Videogames. University of Minnesota
Press, 2017.

Borges, Jorge Luis. Labyrinths: Selected Stories and Other Writings. Translated by Don-
ald Y. Yates. New Directions, 1962.

Brown v. Entertainment Merchants Association, 564 U.S. 786 (2011).
Chevalier, Pierre. Destroy / Wait. Lilinx, accessed June 2, 2020. http://lilinx.com/

destroywait.
Elsaesser, Tomas. Puzzle Films: Complex Storytelling in Contemporary Cinema. Black-

well, 2009.
Gach, Ethan. “Te Beginner’s Guide Creators’ New Game Is about Keanu Reeves Stab-

bing People.” Kotaku, November 28, 2017. https://kotaku.com/1820805627.
Gibson, William. Neuromancer. Bantam Spectra, 1984.
Haraway, Donna J. Staying with the Trouble: Making Kin in the Chthulucene. Duke

University Press, 2016.
Headland, Leslie, Jamie Babbit, and Natasha Lyonne, dir. Russian Doll. 2019. Netfix.
House, Ryan. “Te Author Interface: Rethinking Authorship through Ludoliterary

Analysis of Te Stanley Parable and Te Beginner’s Guide.” Paradoxa 29 (2017):
99–122.

Jones, Steven. Te Emergence of the Digital Humanities. Routledge, 2014.
Joyce, Michael. Private conversation. October 1995.
Juul, Jesper. Te Art of Failure: An Essay on the Pain of Playing Video Games. MIT

Press, 2013.
Klimas, Chris. Twine Past, Present, Future. Cambridge, MA: NarraScope, 2019.
Kubrick, Stanley, dir. Dr. Strangelove, or How I Learned to Stop Worrying and Love the

Bomb. 1964. MGM.
Levi-Strauss, Claude. Savage Mind. University of Chicago Press, 1962.
Ligman, Kris. “Pet Cats, Save the World.” itch.io, 2018. https://direkris.itch.io/pet-cats

-save-the-world.
———. “You Are Jef Bezos.” itch.io, 2018. https://direkris.itch.io/you-are-jef-bezos.
Lo, Claudia. “‘Everything Is Wiped Away’: Queer Temporality in Queers in Love at the

End of the World.” Camera Obscura 32, no. 2 (2017): 185–92.
Malaby, Tomas. “Institutions in Play: Practices of Legitimation in Games.” In Play-

ful Participatory Practices. Edited by P. Abend and V. Ossa. Springer, 2020, 15–30.
McHenry, Tom. Tonight Dies the Moon. Self-published, 2015. https://tommchenry.itch

.io/tonight-dies-the-moon.
Montfort, Nick. Twisty Little Passages: An Approach to Interactive Fiction. MIT Press,

2003.
Montfort, Nick, and Ian Bogost. Racing the Beam: Te Atari Video Computer System.

MIT Press, 2009.
Moulthrop, Stuart. “Hegirascope 2.” New River 3 (1997). http://www.cddc.vt.edu/

journals/newriver/moulthrop/HGS2/Hegirascope.html.

http://www.cddc.vt.edu
https://tommchenry.itch
https://direkris.itch.io/you-are-jeff-bezos
https://direkris.itch.io/pet-cats
https://kotaku.com/1820805627
http://lilinx.com

TWINE AND THE CRITICAL MOMENT 291

———. “‘Turn Back from Tis Cave’: Te Weirdness of Te Beginner’s Guide.” Journal
of Gaming and Virtual Worlds 12, no. 1 (2020): 91–103.

Myers, David. Play Redux: Te Form of Computer Games. University of Michigan Press,
2010.

Nabokov, Vladimir. Pale Fire. G. P. Putnam’s Sons, 1962.
neongrey. “Cat Petting Simulator 2014.” itch.io, 2014. https://neongrey.itch.io/pet-that

-cat.
Nolan, Christopher. Memento. 2000. Newmarket Films.
Pellegrini, Guido. “‘Te Beginner’s Guide’: Confessions of a Game Designer.” PopOptiq,

accessed June 2, 2020. https://www.popoptiq.com/the-beginner/.
Porpentine. Ultra Business Tycoon III. Self-published, 2013. http://slimedaughter.com/

games/twine/tycoon/.
Pynchon, Tomas. Gravity’s Rainbow. Penguin, 1995.
Ramis, Harold. Groundhog Day. 1993. Columbia Pictures.
Ruberg, Bo. “Permalife: Video Games and the Queerness of Living.” Journal of Gaming

and Virtual Worlds 9, no. 2 (2017): 159–73.
Schoonover, Karl. “Wastrels of Time: Slow Cinema’s Laboring Body, the Political Spec-

tator, and the Queer.” Framework: Te Journal of Cinema and Media 53, no. 1 (2012):
65–78.

Simon, Matt. “All Tis Chaos Might Be Giving You ‘Crisis Fatigue.’” Wired, June 4, 2020.
https://www.wired.com/story/crisis-fatigue/.

Şimşek, Berkan. Te Beginner’s Guide for Play Fire: Te Medium’s Efects on Fictional
Works. Academia, accessed June 2, 2020. https://www.academia.edu/34959760/Te
_Beginners_Guide_for_Play_Fire_Te_Mediums_Efects_on_Fictional_Works.

Slade, David. “Bandersnatch.” Black Mirror, 2018. Netfix.
Tykwer, Tom. Lola Rennt. 1998. Prokino Filmverlein.
Wark, McKenzie. Gamer Teory. Cambridge, MA: Harvard University Press, 2007.
Whedon, Joss, and Drew Goddard. Te Cabin in the Woods. 2012. Lionsgate.
Wikipedia. S.v. “Te Outer Limits (1963 TV Series).” Accessed June 2, 2020. https://en

.wikipedia.org/wiki/Te_Outer_Limits_(1963_TV_series).
Wreden, Davey. Te Beginner’s Guide. Everything Unlimited, 2015.
Wreden, Davey, and William Pugh. Te Stanley Parable. Galactic Cafe, 2011.
Wreden, Davey, and Ryan Roth. Absolutely: A True Crime Story. dualryan, 2017.

https://en
https://www.academia.edu/34959760/The
https://www.wired.com/story/crisis-fatigue
http://slimedaughter.com
https://www.popoptiq.com/the-beginner
https://neongrey.itch.io/pet-that

CHAPTER P-5

Conceptual Twining

In our ffh practical chapter, we turn from the technical to the con-
ceptual. In previous practicals, we built up a repertoire of capabilities.
You learned to do increasingly sophisticated things with Twine: linked
storytelling, textual variation, formulaic text generation, and inclu-
sion of other media. We experimented with Harlowe, SugarCube, and
JavaScript. Tis chapter, which will rely exclusively on Chapbook, will
mainly use coding techniques we have already presented, so it serves at
least partly as a capstone, reviewing and consolidating the work so far.
Our emphasis here is on using Twine in the service of various schemes
and ideas—what we call conceptual Twining.

Te word concept can be hard to defne with precision and easy to
toss around loosely. “Reality—what a concept!” as Robin Williams’s
Mork used to say. For the purposes of this chapter, concept refers to an
expression or design that operates simultaneously on two levels. One of
these is direct or literal. In our fve examples, we will build more or less
familiar Twine texts: fragmentary stories, little games, riddles. Aside
from whatever dubious charm these texts may have in themselves, they
invite further refection on Twine and its uses and perhaps on stories,
games, and language generally.

294 TWINING

◊ We continue the typographic conventions of earlier practi-
cal chapters, where invitation/instructions to type in code frag-
ments are boxed and marked with the symbol you see here.
You can, of course, skip either the typing or the intervening

explanations, though, in a chapter dedicated to concept, those
explanatory bits are especially important.

Supporting materials for this chapter can be found online at https://
github.com/AMSUCF/Twining. See our discussion at the beginning of
chapter P-1 about using the .html and .txt fles to follow along or adapt
our code to your own purposes.

Example 5.1: Labyrinth

Tis project has a history. In 1991, Stuart wrote Victory Garden, a
long-form hypertext fction developed with an authoring tool called
Storyspace, which was then under development by Jay David Bolter
and Michael Joyce. In those days, many fewer people knew about the
internet (then called “Internet” with a big I), and the World Wide Web
was, no kidding, an application program, what we would today call a
web browser—only nobody in those days ever said, “the Web,” with
or without capital letters. Like text adventures a decade or so earlier,
hypertext was a fresh concept. No one knew exactly what could be
done with it, though a few people had ideas.

Te conception for Victory Garden was a big, tangled mass of stories
intersecting at various points. Tis was by no means an original inven-
tion, as anyone up on their George Eliot, John Dos Passos, or Richard
Linklater will tell you, but its application to digital media up to then
had belonged mainly to parser-based games. With all respect to that
form, some of us, including Michael Joyce and Judy Malloy, wanted to
try something diferent—a story that would change each time you read
it, as Michael said—shifing the stress from game to story.

Given that emphasis, readers needed to enter the narrative thicket
as unpredictably as possible, but the early version of Storyspace made
this difcult—it had no capacity to choose a passage at random. With

https://github.com/AMSUCF/Twining

CONCEPTUAL TWINING 295

randomness unavailable, the author reckoned the next best thing might
be confusion, so he designed an elaborate set of passages with bifold
links—a verbal labyrinth—in which it was hoped readers might pro-
ductively wander toward the main events, discovering various pre-
defned ways to get there.

To make this process of discovery more meaningful, the labyrinth
asked participants to build a sentence one word or phrase at a time.
At each place in the story, readers chose between two candidates for
the next word in the sentence. Te succeeding place repeated the sen-
tence as it currently stood and either ofered another pair of choices
or came to a conclusion. Tat conclusion was a complete sentence
that somehow stamped the reader’s ticket for the ride that followed.

Tree decades is a long time, in which interactive storytelling has
made considerable progress, but we think the old labyrinth concept
remains useful. Our frst project in this chapter implements the laby-
rinth in Twine.

◊ Start a Twine story, change the story format to Chapbook if
necessary, and give it any title you like, though Labyrinth seems
an obvious suggestion. Change the name of the default first
passage to “Origin” and enter the following text:

In the

>[[green bag]]

>[[vicinity of metaphor]]

Close this passage and have a look at your structure view. You’ll see
two linked passages, both so far unwritten. We’ll get to one of them
shortly, but for the moment, a note about those right angle brackets
(greater-than signs) at the lef of each link. In Chapbook, these symbols
identify a fork, a choice of two or more options that are set of typo-
graphically when the passage is displayed.

To keep this chapter from growing tedious, we’ll only explore one
branch from the initial prompt—only one course of the labyrinth, in

296 TWINING

technical terms. You are free to develop the rest of the maze in your own
way. Te online materials include a completed version of this project
with all possibilities written out, and we’ll discuss a few before we’re
done. For the moment, let’s pursue the green bag.

◊ In the passage labeled “green bag,” type the following:

In the green bag

>[[we found]]

>[[it was possible]]

As you can see, each phrase plausibly extends this rather strange
sentence, and at the start of each passage, we display the sentence as
currently composed. Te fork construction gives us another two links
and another pair of auto-generated passages. Like spectators at a magic
show, we applaud the Amazing Klimas every time this trick comes of.
We’ll go with the frst one, “we found.”

◊ In the passage labeled “we found,” type the following:

In the green bag we found

>[[the recipe for Detroit]]

>[[a rich deposit of language]]

Once again, we have a fork and a pair of resulting passages—though
don’t worry, we’re nearly at the end of this line. Tis time, we’ll choose
the top bunk.

◊ In the passage labeled “the recipe for Detroit,” type the

following:

In the green bag we found the recipe for Detroit

CONCEPTUAL TWINING 297

What follows from this declaration is negotiable. We have a sugges-
tion, but you can do diferently if you like. You’ll note we haven’t added
terminal punctuation to our nearly fnished sentence. You could put in
a period and then write more sentences to follow, making this the frst
full passage of a branching story in prose. Something like this: “In the
green bag we found the recipe for Detroit. ‘Put that back this instant!’
the Chief Investigator thundered. Which we did, but not before com-
mitting the contents to memory.”

Links out of such a passage, or a diferent passage of your own in-
vention, would then be up to you. Before we wrap this project up, we’ll
mention a variant outcome that turns the labyrinth concept to another
purpose. What if the completed sentence functions not as the frst line
of a story but as the title of a poem? All the other possible outcomes
from the labyrinth might work likewise so that the word-maze would
function as a hypertextual framework for a collection of poems. Tere’s
a lovely coincidence here: in the print tradition, such a collection is
ofen called a chapbook. Here’s our version of the recipe for Detroit:

cars the size of cars
implying
a continent of erasure
in the scattering of a people
plus two ideas,
unpromising,
and the given name of an advertised lawyer
featuring seven types of ambiguity,
overlooking a sunrise, and
one sad invention
with statistics,
disaggregated,
with a warm place to put the results.

Poem notwithstanding, here is the structure map of our verbal
maze:

298 TWINING

Figure 23: Structure map of the Labyrinth project

As you can see, our labyrinth ofers seven other sentence
trajectories:

In the green bag we found a rich deposit of language
In the green bag it was possible to understand
In the green bag it was possible at last to dance
In the vicinity of metaphor turn steadily inward till the answers

come
In the vicinity of metaphor turn steadily inward and drive with

your clothes of
In the vicinity of metaphor proceed with all possible noise
In the vicinity of metaphor proceed with encompassing joy

In the completed version, there’s a bit of free verse or prose poetry
at the end of each one. We have used this labyrinthine model in vari-
ous classes over the years, and our students have come up with many
interesting applications of the stepwise-approach concept: as introduc-
tions for other sorts of creative work, such as video or music; as a test
of attitudes or preferences; and of course, the inevitable guessing game
with one or more ostensibly right answers. Every game a riddle, as we’ll
see in our fnal example. Meanwhile, let’s continue with overtures and
opening acts.

CONCEPTUAL TWINING 299

 --

Example 5.2: Spooky

Tis example bears a certain resemblance to the frst in that it, too,
is designed as a preamble or entry point for further fction. Tis one
works more in generalities or atmosphere instead of the specifcity of a
title or frst line. Te concept here is mood-setting, foreshadowing, or
coalescence—a distillation or inspiration of horror. In addition to re-
viewing our familiar method of randomized text selection, this example
also demonstrates an approach to page layout that works around some
basic limitations of Chapbook. No art without constraints.

Te frst step of this exercise can take place either in or out of Twine, as
you like. You need a list of words and phrases that might either come from
or be associated with a tale of horror. If you’ve read Mary Shelley or Poe or
Lovecraf or played Call of Cthulhu, this will be a cinch. You could write
your list on paper, in a convenient word processing document, or in a Twine
passage. If you’re going to do the last, perform this frst step before writing.

◊ Open a new story and name it Spooky. If you’re using the de-
fault passage to write your list, you may want to name it “List.”
Otherwise, name your first passage “wordcloud.”

Write the list as previously described. The length is up to you. A
set of ten items is probably minimal; twenty-five feels like more

than enough.

As you have probably guessed, we’ll use that word list as a database
for random selection with the substitution grammar technique we dem-
onstrated in chapters P-2 and P-3. It should be very familiar by now.

◊ If you didn’t designate or set up a passage called “wordcloud”
in the previous step, do that now. Open that passage and type
the following:

words: []

300 TWINING

We’ve started a variables section for the “wordcloud” passage, and
in that section, we have declared an array variable called “words.” Fill in
(the technical term is populate) that array with the words and phrases
in your list, being careful to enclose each one in single quotation marks,
separated by commas. Tere’s no comma following the last item. For
reference, here’s a selection from our version of the array:

'groan','splatter','apparition','testament','Ab

igail','unliving','rupture','invasion','ovuloid

','pulsing mass','pullulating','unquiet','blood-
chilling','viscera','abomination','immense','b

eyond the veil','partly decomposed','unnatural
fusion','funebrous','rotting fruit','spoiled mea

t','shambling','shade','axehead','severing','unr

easoning','revenant','shrieks'

◊ Now we’ll add one more line to our variables section, imme-
diately below the definition of the array:

theLink: words[Math.floor(random.fraction*words.

length)]

Be careful to leave in place the two dashes that close the vari-
ables section.

You’ve seen this code before, but it’s sufciently complicated to make
a review worthwhile. We’re declaring a variable, theWord, to hold a
selection from the words array. Selections from an array are made by
putting a number into [square brackets]. Te complicated expression
inside the brackets will be processed into a convenient number—you’ll
remember the process. Te random.fraction expression is from Chap-
book. It returns a decimal number between zero and one. Multiplying
that number by the length of the array gives us another decimal greater
than zero. We use the foor method of the JavaScript Math object to
round this fraction down to the nearest integer, which will be between

CONCEPTUAL TWINING 301

zero and the length of the array minus one. All arrays are numbered
beginning with zero, so the last item has a number one less than the
overall length. Tat’s what we mean by convenient number.

◊ Now that we have theLink, let’s serve it up. After the two

dashes closing the variables section, type the following:

{theLink}

This insert calls on Twine to display whatever value is stored

in “theLink.”

Make sure “wordcloud” is identifed as the start point of your story,
then run or test your project several times. You should see one word or
phrase from your shop of horrors every time you restart. Since nothing
prevents repetition, you may see the same selection on successive tests,
so be patient. Te more words and phrases in your array, the lower the
chance any item will repeat—though larger sets increase your exposure
to mistyping.

In case of repetition, we generally try up to fve times before assum-
ing an error. If you see nothing on-screen, check to be sure you entered
the line in the previous step properly, using curly braces, not square
brackets. Assuming no mistake there, check the defnition of your array.
It’s very easy to forget a quotation mark or comma.

Tis might be a good time to reread our section on debugging in
chapter P-2. If you’re struggling to fnd the problem, copy the contents
of your array to a temporary passage and replace them with one or two
test words. Once you’ve found the bug, or if your code was fne in the
frst place, you are ready to proceed.

Tis project is designed to do a bit more than display one word or
phrase at a time. If you look at the completed version in the online
materials, you’ll see it presents a scattering of words across the screen,
each a live link. Clicking on any of the horror words refreshes the
screen with a new set of links, likely at diferent positions, the better
to emphasize the randomness of the efect.

302 TWINING

Making all this happen requires more than what we currently have
in the “wordcloud” passage. Let’s start by getting just one of these hor-
rifying links to appear.

◊ In the text body of “wordcloud”—the part below the double
dashes—take out the line we added in the previous step and
replace it with this:

[[{theLink}->wordcloud]]

Tis line has a lot going on, typographically. It starts with double
square brackets, the fundamental Twine convention for creating a hy-
pertext link. Inside the brackets, there’s a set of curly braces around the
name of our random-phrase variable, “theLink,” and then the familiar
basic syntax of a stylized arrow -> pointing to the destination passage
“wordcloud.” Yes, that means this link reloads the passage that contains
it, a trick we’ve seen previously.

Now it’s time to test or run. You should see a single word or phrase
from your array as before, but this time hyperlinked. Clicking on the
link should change what is displayed, though remember our earlier
advice about possible repetition. If you fnd errors, use the procedure
we recommended to root them out. If all is well, proceed.

So far, we haven’t done anything to introduce the scattered or foaty
design aesthetic that appears in the fnished version. We’ll add those
pieces now.

◊ Edit the text body of “wordcloud,” adding lines above and

below the single line that is there presently, ending up with

this:

<div style="text-align: 5em">

[[{theLink}->wordcloud]]

</div>

CONCEPTUAL TWINING 303

If what you just typed looks like part of a web page, congratula-
tions, you know something about HTML, the basic construction kit of
the World Wide Web. More people should be like you. We’ve pointed
out that Twine is made of JavaScript, which is also part of web infra-
structure. It’s the scripting language that extends the functionality of
web pages, and Twine stories are delivered in that form. Just as we can
slip JavaScript expressions into Chapbook en passant, we can also turn
to HTML when needed. Te frst HTML efect we use here is the line
break tag
. Two of these tags in sequence, as we have here, create
a skipped line or vertical space on the screen.

Next, we introduce a division, or DIV, using the paired tags or con-
tainer <div></div>. A DIV is a block-level element of a web page—or
in this case, Twine passage—one that is set of from previous elements
as paragraphs are. (We could also have used the P or paragraph con-
tainer here.) Notice the tag that introduces our DIV. It contains some
added information:

<div style='text-indent: 5em'>

Tis tag calls on the third major element of web technology, CSS.
Tat invocation happens in the expression style=. A style sheet, tech-
nically an inline style sheet, in this case, modifes the appearance of
the DIV to which it is attached. Here we call for that element to be
indented fve ems from the lef margin. If you’re a graphic designer
or typographer, you know an em is the width of an em dash, like this
one—which varies with the font family and size being used. Web de-
signers prefer these relative measurements nowadays. For our pur-
poses, let’s just say it’s a unit of horizontal space. (It’s a game of ems,
not inches.)

If you run and test now, you should see your randomly selected
link ofset from both the top and lef of the window. Tis is part of the
efect we’re aiming at, but the full concept involves multiple, randomly
chosen links, placed diferently on the screen at each reload. We can
get this to happen with the tools at our disposal—HTML, CSS, and

304 TWINING

Chapbook—but we’ll need to blend them into a slightly more compli-
cated cocktail. Let’s handle the vertical spacing frst, as that’s the more
familiar part of the recipe.

◊ Once again edit the text body of “wordcloud.” Replace the

pair of
 tags with what you see here. Leave everything

else alone.

{vSpace}
<div style="text-align: 5em">

[[{theLink}->wordcloud]]

</div>

You’ve just replaced those
 tags with a variable that
doesn’t yet exist, so let’s take care of that. In your variables

section, below the line that defines theLink, add the following:

breakers: ['
','

','

']

vSpace: breakers[Math.floor(random.

fraction*breakers.length)]

Te breakers array contains three collections of
 tags, which
when applied will set our DIV at variable distances from any element
above it or from the top of the screen. Te vSpace variable contains one
of these collections (or strings). If you test your project at this point,
you should see the randomized link appearing at a variety of vertical
positions.

We could use the same array-selector strategy for the initial DIV
tag, using diferent values for the em spacing, but this would in-
volve a whole lot of repetitive typing. Te only thing we really need
to change is the number that precedes “em.” We achieve this efect
by using a variable for vertical spacing and using the Chapbook
random function when we generate that variable. Here’s the way it
works:

CONCEPTUAL TWINING 305

◊ In the variables section of “wordcloud,” below the material
you added in the previous step, type in the following:

hSpace: "<div style='text-indent:" + random.d10
+ "em'>"

Pay superclose attention to the placement of single and double quo-
tation marks in this line—we need to use both. We take the familiar
inline style sheet and cut it apart where the number occurs. Instead
of that number, we insert the expression random.d10, which generates
an integer between 1 and 10, inclusive. Notice we need the string ‘em’
and the closing angle bracket at the end. All this is enclosed in a set
of double quotation marks because it is a string, a sequence of words
and numbers treated as text. When we invoke this string variable, it
is added to the code of our passage and treated by the browser as an
HTML expression, which is how browsers treat any text containing
angle brackets.

If you test your project now, your randomized link should appear at
unpredictable locations both horizontally and vertically. At this point,
we’ve built the core pieces of the project, but there are still important
elements missing. So far, we only have one link in play, but we want
several. We’ll handle that feature next.

It might occur to you that all we need to do in order to include more
links is duplicate the code that brings in the frst link. Tat’s partly right,
but we need to adjust things a bit because of a certain feature of Chap-
book. Tat story format allows us to defne variables only once, when
the passage loads into memory. So if we use our hSpace and vSpace vari-
ables for additional links, they’ll have the same vertical and horizontal
ofsets as the frst one. Tat’s not what we want. Here’s the work-around,
beginning with the vertical spacing:

◊ In the variables section of “wordcloud,” find the section that
handles vertical spacing. You can leave the line that defines the
breakers array as it is, but replace the line that follows, the one
that defines vSpace, with the following:

306 TWINING

vSpace1: breakers[Math.floor(random.

fraction*breakers.length)]

vSpace2: breakers[Math.floor(random.

fraction*breakers.length)]

vSpace3: breakers[Math.floor(random.

fraction*breakers.length)]

You can copy the original definition of vSpace and paste it in
three times to define its new companions. Be sure to add the
numerals that make these three variables individual.

Tis new code creates a trio of variables, each with a selection from
the breakers array. Two or more of them may have the same selection,
but that’s not a problem for this project. We only have room for a lim-
ited amount of vertical spacing, anyway. Next, we’ll handle horizontal
spacing:

◊ Replace the line that currently defines hSpace with this set:

hSpace1: "<div style='text-indent:" + random.d10
+ "em'>"

hSpace2: "<div style='text-indent:" + random.d10
+ "em'>"

hSpace3: "<div style='text-indent:" + random.d10
+ "em'>"

Copying and pasting will work here as well, since the only diference
in these lines, as in the vertical spacing, is the numeral that makes each
horizontal spacer unique.

In order to support our scheme, we’ll also need three servings of our
link text. By now, the procedure should be familiar:

◊ Replace the line that currently defines theLink with this

threesome:

CONCEPTUAL TWINING 307

theLink1: words[Math.floor(random.fraction*words.

length)]

theLink2: words[Math.floor(random.fraction*words.

length)]

theLink3: words[Math.floor(random.fraction*words.

length)]

Copying and pasting is fine, but once again, be sure you’ve
added the numbers to the variable names. No other changes
are necessary—we’re making three unique selections from our
words array, using the same procedure each time, but with po-
tentially a different random selector.

Now we need to adjust the contents of the text body in “wordcloud”
to support three foating-horror links.

◊ Again, remember that we’re in the text body this time and not
the variables section. The code that currently conjures up our
solo link looks like this:

{vSpace}
{hSpace}
[[{theLink}->wordcloud]]

</div>

Veteran web coders may find this a bit disturbing because hav-
ing a closing tag like </div> without an initial <div> tag is ordinar-
ily an error. However, that initial tag is loaded into the hSpace
variable, so we’re fine.

If we want three links, all we need to do is copy and paste our
link construction two times, making necessary adjustments:

{vSpace1}

308 TWINING

{hSpace1}

[[{theLink1}->wordcloud]]

</div>

{vSpace2}

{hSpace2}

[[{theLink2}->wordcloud]]

</div>

{vSpace3}

{hSpace3}

[[{theLink3}->wordcloud]]

</div>

Do not forget to change all three variable invocations—for ver-
tical spacing, horizontal spacing, and link text—in each of the
three segments. The numbers in the variable names are crucial.

You can test at this point. You should see three live links, randomly
planted on your screen, in an arrangement that changes each time
you reload. Clicking any of the links will cause a reload. If that’s what
you’re seeing, you are ready to proceed to the fnal stage of construc-
tion: ofering the reader a chance to leave the horrifying word cloud
and enter the story proper. We’ll specify that we may not make this
ofer every time the passage loads, and if we do ofer the exit, we’ll
do it only once per iteration. We’ll build these features in four steps.
Te two in the middle are a bit detailed, but the last is very simple,
as is the frst:

◊ Let’s add one final asset to our variables section. This variable

could be introduced anywhere in the section, but we’ll put it
below everything we currently have. Add this line:

exitPos: random.d4

https://random.d4

CONCEPTUAL TWINING 309

As you’ll remember, random.d4 returns a value of 1, 2, 3, or 4.
We actually only need a range of 1 to 3, but that would require a

bit more tedious typing. Using the virtual d4 slightly reduces the

chances of our exit link appearing, but this won’t be a problem.
If you want to improve the odds for the exit link, you could

use this instruction instead:

exitPos: Math.ceil(random.fraction*3)

Te exitPos variable determines which of our three horror links will
be replaced by a link to the main story. Remember, though, that we
want the possibility of the escape link not appearing in any given itera-
tion. Doing that will involve one last piece of detailed coding, described
in our second step:

◊ In the main text body of the “wordcloud” passage, find

the first of the three link units. Delete it and replace it with the
following:

{vSpace1}

{hSpace1}

[if exitPos===1 && random.coinFlip]

[[Begin]]

[else]

[[{theLink1}->wordcloud]]

</div>
[continued]

Te frst two lines in this section are the same as in the previous
version—we’re still invoking the strings that create randomized hori-
zontal and vertical spacing. Afer that, there are some changes. We in-
troduce an if condition that makes the display of our link to the “Begin”
passage depend on two factors: exitPos being 1, and the value of random.
coinFlip being true. Tere is a one in four chance of the former condition

https://random.d4

310 TWINING

(if we use d4) and a one in two chance of the latter. Tat means a one in
eight chance our frst link will be replaced with the story exit.

Afer the standard link to the “Begin” passage, there’s an else statement,
afer which the rest of this code chunk is as it was in the beginning, except
for the [continued] statement at the very end. Tis statement terminates
the if/else logic and lets us treat the next link segment independently.

You might want to test at this point. Keep trying until you see your
frst link replaced by the link to “Begin.” If that doesn’t happen afer
about ten attempts, you probably have an error. Hopefully, this proce-
dure will go fne, and you can proceed to the third and penultimate step:

◊ Modify the remaining two link segments to have a similar

structure to the first, though remember to change the crucial
numbers—the value of exitPos and the numbers of the spacer
variables—as indicated. Here’s what you should have:

{vSpace2}

{hSpace2}

[if exitPos===2 && random.coinFlip]

[[Begin]]

[else]

[[{theLink2}->wordcloud]]

</div>
[continued]

{vSpace3}

{hSpace3}

[if exitPos===3 && random.coinFlip]

[[Begin]]

[else]

[[{theLink3}->wordcloud]]

</div>

You don’t need to include [continued] after the third option,
as nothing follows it.

CONCEPTUAL TWINING 311

Now there’s just one easy thing to do, which we won’t bother writ-
ing out as a formal instruction. Go back to your structure map and
fnd the new passage called “Begin.” Write something unspeakably
spooky there. For testing purposes, you might also want a link back to
“wordcloud.”

And so our malefcent mechanism is complete. On a technical level,
this project shows how to weave semi-intricate cobwebs of code, graf-
ing disembodied bits of HTML into Chapbook with diabolical aban-
don. One code-packed passage (“wordcloud”) can support endless
cycles and iterations or as many as your reader can stand. Conceptually,
this example builds on the tension between anticipation and action—a
main component of horror—or between a ftful, recursive fow of pos-
sibilities and the forward progress of conventional storytelling.

Like the labyrinth of our frst example, the evocative links of ex-
ample 5.2 could be applied to other genres and purposes besides the
one suggested here. Te links in our example are based on a somewhat
arbitrary collection of words, but as we hinted, they might be drawn
directly from the text they precede. Readers in the waiting room would
thus encounter hints and teasers for what awaits beyond the entry. Tak-
ing this concept further could bring us back to the original motivation
for the labyrinth in Victory Garden—randomized beginnings. Suppose
each of those brief quotations from the work contained a live link to
the passage where its word or phrase occurs. In a sizeable work, there
could be a large constellation of starting points. If that kind of sprawl
is not desirable, various prefatory links might cluster around a more
limited number of options. Te alternation between link-scattering and
reading ahead might also be used between sections of a multipart work.
Possibilities abound. Te horror . . .

Example 5.3: Active Measures

Let’s start this one with a disclaimer: we have nothing against text ad-
ventures. Both authors of this book have been signifcantly infuenced
by games of this kind, one of us before the advent of computer graph-
ics, the other aferward. We belong to communities like ELO and IFTF,

312 TWINING

--

where turn-based, procedural stories are treated with love and respect.
Te Inform programming language, to which we have frequently re-
ferred in this book, means much to us. One of us, no kidding, has been
known to dream in it.

However, as we pointed out all the way back in chapter P-1, there
are two ways to think about procedural storytelling. One approach fa-
vors procedure, the other story. You will recall we discussed contrasting
ways to treat links in Twine, either by separating them formally from
the narrative, in the manner of interactive fctions and game books, or
by planting the links in a single narrative stream, as in hypertext fction.
Te distinction is largely arbitrary, and many writers do both, but this
next exercise pits one mode against the other. It’s a concept.

◊ Start a Twine story, remembering to use the Chapbook story
format, and call it Active Measures, or what you will. Change the
name of the default first passage to “Action!” Yes, Twine allows
exclamation points in passage names, and you can name the
passage something else if you like, provided you make relevant
changes as we go. Enter the following text:

verbs: ['Take','Drop','Examine','Eat']

theVerb: verbs[Math.floor(random.fraction*verbs.

length)]

Here it is again, our inevitable grammar of substitution. Do we
know how to do anything else with code? Maybe—see the bonus prac-
tical chapter in the appendices. Do we want to do anything else? Not
all that much, apparently.

Note that we’re working on the variables section of our passage,
that’s what those two dashes on the fnal line indicate. Te topmost line
of this code chunk declares an array, which in this case is a comma-
separated list of words (strings) in a specifc sequence. Te second line
defnes a variable called theVerb and assigns it a randomly chosen item
from the verbs array. But you knew that!

CONCEPTUAL TWINING 313

Tere’s quite a bit more to do with “Action!,” but we should frst
say a few things about the design of this project. Te “Action!” pas-
sage will hold data and logic we’ll use to generate randomized phrases
on demand—again, something we’ve done in many previous exercises.
Tere will be two other passages in this project, one calling back to
“Action!” in a self-perpetuating loop, and the other representing the
way out of that loop: the same pattern we used in the previous example.
We’ll come to these passages eventually. Meanwhile, let’s build more of
the “Action!” passage. It’s pretty extensive.

◊ Enter three blank lines ahead of the double dashes. Move

your cursor up one line and type in the following. There’s a lot
of typing here. If you want to shorten any of the arrays, feel free.
You could also expand them without causing any problems.

nouns: ['eyedropper','skillet','cleaning
robot','fishbowl','phrasebook']

theNoun: nouns[Math.floor(random.fraction*nouns.

length)]

IVerbs: ['Jump','Cry','Scream','Wait','Pass','Br

eathe','Exist','Persist','Think']

theIVerb: IVerbs[Math.floor(random.

fraction*IVerbs.length)]

directions: ['north','east','south','west','back

','forward','up','down','nowhere','anywhere','si

deways','to pieces']

theDir: directions[Math.floor(random.

fraction*directions.length)]

askTell: ['Ask','Tell','Notify','Enlighten','In

form']

theAskTell: askTell[Math.floor(random.

fraction*askTell.length)]

314 TWINING

persons: ['Mr. Jones','Starbird','Flux Man','Jim

my','Otto','Maisie','Hermione']

thePerson: persons[Math.floor(random.

fraction*persons.length)]

topics: ['astrometry','fine wines','outwitting
the Troll','contents of the box','the
key','stuff']

theTopic: topics[Math.floor(random.

fraction*topics.length)]

As always, you do not need to put in these lines exactly as they ap-
pear. You can (should!) substitute your own words in any of these lists,
provided yours are of the kind that is called for—singular nouns in the
nouns array, proper names in the persons array, and so forth. As indi-
cated, you can delete or add items. Because we use the length parameter
of the array, you can change the size of the array without breaking the
code. Do be careful to use single quotes around every word and make
sure the commas go outside of the quotation marks. In the selection
lines, the ones that invoke the Math object, pay close attention to the
succession of parentheses and square brackets.

You are building the raw materials for several generated sentences
or phrases. Te next chunk of code contains the templates for those
phrases.

◊ Still within the “Action!” passage, below the last line you typed
before, enter the following:

phrase1: theVerb + ' the ' + theNoun

phrase2: theIVerb

phrase3: "Go " + theDir

phrase4: theAskTell + " " + thePerson + " about
" + theTopic

phrase5: "Give the " + theNoun + " to " +
thePerson

CONCEPTUAL TWINING 315

phrase6: "Take the " + theNoun + " from " +
thePerson

Tere are six variables, each containing a phrase generated from the
arrays and variables you previously defned. As you can see, fve of these
phrases are multiword combinations. Be careful to type spaces where they
are called for, around words like to and from. Notice that phrase2 simply
invokes the premade selection from IVerbs. Tat’s because this phrase con-
sists of a single word, an intransitive verb like Jump or Wait.

Tat was quite a lot of detail, though we’re only about halfway done
with “Action!” Don’t worry, the rest of the project is less verbose. Afer
resting eyes, wrists, and fngers, once more unto the breach.

◊ Still within the “Action!” passage, after the line that defines

phrase6, make a new line and type the following:

theRoll: Math.ceil(random.fraction*6)

Tis line generates a random number between 1 and 6. Chapbook
ofers a perfectly good way to do this—random.d6—but we’ll eventually
want to roll a seven-sided die, which Chapbook does not provide for di-
rectly. Tat’s why we’re using random.fraction rounded up with the Java-
Script Math object. Now one more push to fnish the “Action!” passage.

◊ Find the double dashes that mark the end of your variables
section. If you inadvertently took them out at some point, put
them back. Below those dashes, type the following:

[if theRoll===1]

[[{phrase1}->Scene]]

[if theRoll===2]

[[{phrase2}->Scene]]

[if theRoll===3]

[[{phrase3}->Scene]]

[if theRoll===4]

316 TWINING

[[{phrase4}->Scene]]

[if theRoll===5]

[[{phrase5}->Scene]]

[if theRoll===6]

[[{phrase6}->Scene]]

If you can already tell what these lines do, congratulations—you’re
a Twine master! If they’re a mystery, read on. What we have here is a
sixfold chain of if conditions, tracking the possible values of our vir-
tual dice roll. You may recall that in Chapbook, the if condition may
be used only outside of the variables section and only to control the
display of text. We’re meeting both requirements here, though the text
we’re displaying—contents of one of our phrase variables—will show
up within a passage other than the one we’re working on here. Don’t
freak, we’ll explain that in a bit.

Meanwhile, a bit more detail of the step you just completed. Te line
following each of our if conditions contains a hyperlink whose verbal
content is one of our variables. You saw this design pattern in the previ-
ous example. Each of these links goes to the “Scene” passage. It’s time
to write that passage.

◊ The passage called “Scene” will be added to your structure as
soon as you close the “Action!” passage. Open “Scene” and type
what you see here:

{embed passage: 'Action!'}

{embed passage: 'Action!'}

{embed passage: 'Action!'}

{embed passage: 'Action!'}

Yes, it’s the same instruction four times, embedding four instances
of the “Action!” scene. Embedding opens or activates the passage, so

CONCEPTUAL TWINING 317

we get diferent content each time. It’s as if we had a room containing
doors that let us enter varying versions of another room. If this idea isn’t
working for you, you’re not watching enough Doctor Who.

Science fction aside, we can also explain this in terms of program-
ming. As we’ve seen, embedding is a superpowerful technique that lets
us keep all our gnarly code stuf in one place, the better to refne it.
If you’ve worked with object-oriented programming, you’ll know the
importance of functions or methods, which are bits of code that can be
reused (or invoked) fexibly as a program operates. An embedded, code-
intensive passage does much the same thing as a custom method in
JavaScript or Objective C. Chapbook is great for beginners but equally
useful for more ambitious coders—which you now are.

We’re almost ready to test our project, though we need one slight
change. By default, the passage marked as the start of our story is “Ac-
tion!” because it was created frst. While having an embedded passage
so marked will not cause your project to break, it also won’t put any-
thing on the screen. Select the “Scene” passage, hover your mouse over
it, and click on the three dots at the right of the pop-up, which causes a
menu to appear. Select “Start Story Here.” Now play or test your story.

You should see four links, each displaying a phrase composed by the
generator code in “Action!” Click on any link and the current view will
refresh with four new links. So far, all we have is another version of our
text-generation demos from chapter P-3 or example 5.2—though with
perhaps a twist on the content. However, we have one more trick to add.

◊ Close the passage called “Scene” and reopen “Action!” Find

the line in the variables section that defines theRoll. Change the
6 to a 7. You should have this:

theRoll: Math.ceil(random.fraction*7)

Tis is a small change, but important. We’re now rolling a (virtual)
seven-sided die. Note our use of the ceil function to round fraction to
integer—this function rounds up to the maximum value, eschewing
zero. We’ll use this diference for an important feature of the work.

318 TWINING

◊ Right after the line you just worked on (the one defining theR-
oll), add the following:

escapes: ['Refuse all further action','Prefer
not to','Declare an adventure strike','Stop
suspending disbelief','Stop putting up with this
noise','Have about enough of this']

theEscape: escapes[Math.floor(random.

fraction*escapes.length)]

This is one final array-and-selector combination, allowing us to
generate a phrase that will be uniquely useful. Meanwhile, at
the very bottom of “Action!,” below the sixth if condition, add a
seventh condition as follows:

[if theRoll===7]

[[{theEscape}->Escape]]

We now have the possibility of throwing a lucky seven. When
that happens, the link that will come up in the “Scene” passage
will contain one of our “escape” phrases, and it will be linked to
a new passage called “Escape.”

Close “Action!” and open that new passage. Type anything
you like there. We have:

And so our story begins for real.

You can test the project at this point. When “Scene” comes up, you
should see four links. Tere is a one in seven chance one of these links
will contain an “escape” phrase. Clicking on a nonescape link refreshes
“Scene” with four more links.

Technically speaking, you have just built a recursive hypertext
with the possibility of aleatory termination—look at you! More to
the point, you’ve participated, we’re ashamed to admit, in a send-up
of the adventure-game idiom. All the nonescape options are based

CONCEPTUAL TWINING 319

somewhat loosely on the actions that may be taken in a text adven-
ture. “Take,” “Go,” “Ask/about”—even “Jump” and “Wait”—are either
valid or plausible verbs in systems like TADS or Inform. If one were
inclined to make fun of text adventures, insinuating that true story is
more like old-fashioned fction, this might be one way to do it. Tere’s
your concept. Whether this is something that needs to be done, we
leave to the reader’s judgment. If done at all, it must be with afection-
ate understanding—sibling rivalry or something equally childish. Te
next time someone shows us a text adventure that makes fun of hyper-
text fction, we promise to smile. Yes, Sis, those links are as ridiculous
as fared pants.

Of course, it is entirely possible to fip this binary script and write a ver-
sion of this concept where the real fun lies with the action links—maybe
they could do something other than just refresh the screen. Te conven-
tional narrative in this version might serve as the obstacle or distraction
from the proper story of player action.

Tough this chapter is devoted more to concept than technique, we
can’t resist some technical refection on the exercise we’ve just com-
pleted. Te “Action!” passage uses code far less efciently than would a
comparable structure in Harlowe or JavaScript. As we’ve seen in chapter
P-3, JavaScript permits the use of a structure called switch to select one
of several phrase templates on each run. Here we have to generate all
seven possibilities each time “Action!” is embedded, or twenty-eight
times every time “Scene” is accessed.

Why don’t we care? Because we’re spoiled, twenty-frst-century code
monkeys who casually toy with machines their grandparents could
barely imagine. For us, knocking numbers around is cheap and easy.
It’s worth remembering that computation implies heat—every math-
ematical operation uses energy—so if playing with Twine makes you
interested in learning more ambitious programming, be advised that
the world beyond the playground makes harsher demands.

320 TWINING

Example 5.4: The Tumblers,
or a Tune Out of Season

Tis project has two inspirations. One is Tomas Pynchon’s attribution
of “high magic to low puns” (Pynchon 95) Te other is Walt Kelly’s
comic strip Pogo, in which we gamboled through postwar America
with the laid-back critters of Okefenokee Swamp. Kelly also knew the
power of puns: he lampooned the corrosive Spiro T. Agnew as a snort-
ing, fuming “A. Gnu.” As we will see, he also had a certain way with
holiday songs:

Deck us all with Boston Charlie,
Walla Walla, Wash., an’ Kalamazoo!
Nora’s freezin’ on the trolley,
Swaller dollar caulifower alley-garoo! (Kelly 9)

Seasonal mondegreenery1 will fgure a bit later in our project. First
let’s consider the concept, which we admit has more to do with hackery
than even midrange magic. As in previous examples, we’ll be introduc-
ing no new Twine features, relying mainly on the cycling link modifer
we used in chapter P-3. Keeping that feature in mind, we start with
three recognitions:

1. A cycling link is much the same thing as a tumbler, the num-
bered cylinder of a combination lock.

2. In the right context, numbers and words are conveniently
interchangeable.

3. A certain low pun comes to mind.

1 A mondegreen is a misheard lyric, such as “and Lady Mondegreen” for “and laid him
on the green” in “Barbara Allen,” or “’scuse me while I kiss this guy” in Jimi Hendrix’s
“Purple Haze.” Te actual reading there is “kiss the sky,” but what’s life without variety?
We’re also hugely fond of another of Walt Kelly’s festive mondegreens, “Good King
Sauerkraut look out, on your feets uneven . . .”

CONCEPTUAL TWINING 321

Te mise-en-scène, or situational framing, is especially important
in this example. Let’s get to it.

◊ Start a new Twine story called anything you like—for instance,
Tumblers. Name the default first passage “A Tune Out of Sea-
son.” In this passage, type the following, or any variation you
prefer:

Lunch with insufferable Uncle Buster in the
Tumbolia Room. You would do anything to
escape. "Why was Ten glancing so warily up the
numberline?" the old man asks, you suppose you
should say rhetorically, though that's far too
nice a word. "Because . . . ?"

Do your best to stife that groan if you know the punchline. Yes, it’s
an insuferable-uncle thing. It is also the absurd structure on which we
will build our not-so-high concept.

◊ Add a new paragraph to “A Tune Out of Season”:

Meanwhile, some conventioneers at the bar are
attempting a seasonal song, though it is the
middle of {cycling link for: 'month', choices:
['June', 'July', 'August']}. They have some odd
ideas about the lyrics:

We’ll get to those lyrics in a bit. First, a review of the cycling link mod-
ifer. You’ll remember it designates a variable—in this case, month—for
which we supply choices as a comma-separated list enclosed in square
brackets. Yes, that’s the same form used to defne an array because the
option list of a cycling link is indeed an array. However, instead of se-
lecting from this array at random, which is our usual method, we’ll let
Twine do what it does with cycling links, presenting them in sequence.
Each time the player clicks the linked month, it will move ahead to the

322 TWINING

next of the three options, looping back to June from August. Te solu-
tion to this puzzle—don’t make us say it—consists of three integers.
We could ofer all twelve months, but the story says the song is out of
season, so we’re using only the summer months.

◊ Now let’s fill in what the chorus is singing in the next room.
This time we’ll use the full range of options:

"{cycling link for: 'song', choices: ['12

mummers slumming', '11 typers griping', '10

Fords a-beeping', '9 maybes branching', '8

trades a-bilking', '7 swamps a-brimming',

'6 tweets a-braying', 'FIVE OLD SPRINGS!',

'4 appalling nerds', '3 clenched pens', '2

hurtful shoves', 'AND A CARTRIDGE WITH A GAME

FREE!']}."

Feel free to write your own variations. For the fnal line, we consid-
ered “A SMART FRIDGE WITH SOME SPARE PEAS” and in true Pogo
idiom, “SOME CARTILAGE FOR YOUR TEARED KNEE.” Te words
matter less than their ordinal position, which is why our convention-
goers are singing a sequential carol at the wrong end of the calendar.
By now, you may know the fnal number in our virtual combination,
though we have one more alphanumeric trick to play:

◊ Add the following new paragraph:

To further unsettle your sanity, the folks at
the next table have started flinging breadsticks
at one another. They are about to proceed to the
cutlery. "Let me put this in a language you will
understand," one of them is saying: "{cycling
link for: 'word', choices: ['MEIYOU','NE','NAY',

'NAE','IIYE','NON','NIX','NEM','NEIN']}!"

CONCEPTUAL TWINING 323

You can have more or fewer options for word, but we’re looking for
a particular number, nein? With the fnal tumbler in place, we need to
make the combination testable.

◊ Add this link at the bottom of “A Tune Out of Season”:

[[Solution?]]

Close the passage and return to the structure map, where you’ll fnd
the new passage “Solution?” Tat’s where we’ll check out the settings
of the three cycling links. (Tree cycling links, two drop-downs, and a . . .
sorry, that’s another song.)

◊ In the passage titled “Solution?,” enter the following:

[if month === 'July' && song === '8 trades
a-bilking' && word === 'NEIN']

"Is that the time?" you notice. "Gosh, late for
that root canal!" And out the door.

If our player has set the three cyclers to the correct set of
values—really, don’t make us say it—our hero gets to fee Uncle Buster
and his abominable puns. However, there are 323 possibilities for a
wrong answer—(3 × 12 × 9) − 1—so we need to allow for incorrect
solutions.

◊ In the passage titled “Solution?” add the following:

[else]

You're stuck here until you solve the stupid
riddle. [[Keep trying->A Tune Out of Season]]

Hint: three numbers in sequence, horrible
pun . . .

324 TWINING

If you want to be especially kind to your player, you could build an
escalating series of hints, like so:

[else]

You're stuck here until you solve the stupid
riddle. [[Keep trying->A Tune Out of Season]]

[if passage.visits === 1]

Hint: three numbers in sequence, horrible
pun . . .
[if passage.visits === 2]

Hint: three numbers in sequence, horrible pun,
numerical cannibalism . . .
[if passage.visits === 3]

OK, enough hints: BECAUSE SEVEN ATE NINE!

And there it is. Tis is, of course, an entirely nonserious application
of the combination-lock concept, but there’s no reason it couldn’t be
used less foolishly. Te options in the cycling links don’t have to con-
tain or imply numbers, for instance. Te point of the game might be to
choose the right sequential settings, presumably in response to some
reasonably useful hint, with the cycling options sending the narration
or dialogue in meaningful directions. Say we’re in a story called Room
112, set in a motel, and the combination for each successive passage is
the next address along the hallway (114, 116, 118, and so forth), with the
correct settings of the cyclers advancing the story, revealing complica-
tions among the characters and other things. Or the combinations for
successive passages might be permutations of the original, or products
of some mathematical operation implied in the text. Or there could
be only one cycler in each of many passages, with a fnal challenge to
match some extended series of digits across all of them. Also, of course,
it’s possible to generate a fresh solution each time the story runs—we
leave further word-number permutations to your imagination.

CONCEPTUAL TWINING 325

Example 5.5: Twine Box

Like the frst project in this chapter, this last one has a history, though its
origin is more recent than that of the old labyrinth. Twine Box was writ-
ten in the pandemic spring of 2020, just as much of the world was enter-
ing lockdown.2 No surprise that the project is about an enclosed space
and the contents of a box. It is also yet another riddle-text. Te concept
for this project is not simply thematic, though—it is also geometrical.
Any box or cube can be fattened into the pattern of a T:

Figure 24: Conceptual diagram of the Twine Box project

Te six cells represent the sides of the box. You could print this dia-
gram, cut out the image, and fold it into a cube. Tis image of a decon-
structed box led to the architectural scheme for our story: six rooms,

2 Te completed version of this project included in the online materials, Twine Box,
was the basis for a somewhat diferent story called Dread Box, built on the same
six-room architecture. It appears in the frst issue of Digital Review. See http://
thedigitalreview.com/issue00/dread-box/begin.html.

https://thedigitalreview.com/issue00/dread-box/begin.html

326 TWINING

each with four transitional links leading to adjacent faces of the cube.
You can add the links to the diagram. Starting at the lef edge of cell 1
and working clockwise, you might label these links A through D. Each
link has a counterpart on the cell to which it is joined in the cube. Link
A connects to the right-hand edge of cell 6, the top of the box. Link B
connects to a matching link on the lef edge of cell 2. Link C goes on the
shared edge with cell 5, and link D, at the bottom of cell 1, matches its
partner on the lef edge of cell 4. Te same logic will defne the link pairs
in the remaining cells. If you’re extending the alphabetic series, as we
suggest, your last link pair will be labeled L. Tere are twelve pairs in all.

Moving from geometry to story, let’s identify the six rooms as
follows:

1 Lecture Hall
2 Committee Room
3 Writers Room
4 Lunch Room
5 Scary Basement
6 Top of the World

Tese are, of course, fanciful assignments. When it comes to Twine,
some of us have a hard time sticking with realism. Trough a certain
dream-logic, each of these rooms is intended to be a place where our
player character can encounter suggestive traces of language—which is
to say, clues to the riddle. Let’s get started on the build.

◊ Start a new Twine story, making sure your format is set to

Chapbook, and name it Twine Box, or what you will. Name the
default passage “1 The Lecture Hall.” Create five more passages
and name each according to the aforementioned scheme. In

passage “1 The Lecture Hall,” enter the following text:

Oak paneling, mangled chair-desks, lingering
aura of angst and ennui. At the battered podium,
a vile cigar smokes itself out. The ancient

CONCEPTUAL TWINING 327

chalkboard could use scrubbing. You can make out
some words there:

Repeat for each of the fve other passages. Here are recommended
texts for each:

The Committee Room
The door opens just enough to admit the owlish
mug of the deputy assistant secretary. "Private
meeting," she informs you. Inside, you hear
privileged voices saying:

The Writers Room
When you attempt to peek in, an associate
producer rumbles, "GO PLAY IN THE STREET" and
tosses a wad of ill-considered passages toward
your person. "CAN'T YOU SEE WE'VE GOT AN I.F.
TO FINISH HERE?" As the door slams, you hear
unstable voices shouting:

The Lunch Room
For some reason, nobody in here has any clothes
on. Guess we forgot to tell you it's a Naked
Lunchroom! All eyes stare at your overdressed
self. As you back out the door, you hear people
muttering, "In your dreams." Also:

omygosh It's the SCARY BASEMENT!

An ancient bulb flickers feebly and surrenders

to the darkness. The room is filled with uncanny

shapes . . . canopic jars . . . eldritch

apparatuses . . . a cleaner of vacuum. A voice

like an old cigar wails, "BEGONE!" You are about
to do just that when a hovering presence appears,

scrawling words across the skin of reality:

328 TWINING

Top of the World

It's a cross between one of those revolving
restaurants and the bridge of some uncanonical
starship. The reception droid takes your
soulprint and shows you to a mediatronic
terminal. You idly thumb some flashing red
indicators and jettison the city's antimatter
core. Diners at nearby tables murmur:

Eventually, there will be text following the colons in each of the six
passages, but before we come to that, let’s take care of the navigational
links.

◊ Open the passage “1 The Lecture Hall.” Below the existing text,
skip a line and add the following:

<div style="text-align: center">
[[3 Writers Room]] [[6 Top of the World]] [[4
Lunch Room]] [[5 Scary Basement]]

</div>

Tere are more elegant ways to arrange these links, but we’ll let func-
tion win over form for once. Our only concession to formatting is an
HTML DIV with centered alignment. We require the player to visit all
six rooms, which means you need to be careful about the placement of
links, making a full traversal possible. Here are the link sets for the fve
other passages:

2 Committee Room
[[3 Writers Room]] [[5 Scary Basement]] [[4
Lunch Room]] [[6 Top of the World]]

3 Writers Room
[[6 Top of the World]] [[1 The Lecture Hall]]
[[5 Scary Basement]] [[2 Committee Room]]

CONCEPTUAL TWINING 329

4 Lunch Room
[[5 Scary Basement]] [[1 The Lecture Hall]] [[6
Top of the World]] [[2 Committee Room]]

5 Scary Basement
[[3 Writers Room]] [[1 The Lecture Hall]] [[4
Lunch Room]] [[2 Committee Room]]

6 Top of the World
[[3 Writers Room]] [[2 Committee Room]] [[4
Lunch Room]] [[1 The Lecture Hall]]

Make the necessary additions to each passage and test your project.
You should be able to move from room to room, and if you’re keeping
track, you should visit all of them eventually. Before we’re fnished,
each room will ofer a set of clues about the answer to the riddle, the
contents of the conceptual box. In order to ensure exposure to these
clues, we want the player to visit every room at least once. When
all rooms have been entered, we’ll display a new link in each of the
rooms to a seventh passage called “INSIDE,” representing the inte-
rior of the box. Because there’s a tedious amount of text involved in
the if condition for our inside link, we’ll set it up as an embedded
passage.

◊ Create a new passage and name it “tracker.” Enter the

following:

[if r1 && r2 && r3 && r4 && r5 && r6]

GO [[INSIDE]]

We haven’t yet created any of those variables starting with r—we’ll
do that in the next step. An explanation about the syntax frst. Our
r-series variables will be Booleans, with possible values of true or false.
Saying “if r1” asks if r1 has the value true. We could write out “if r1 ===
true,” but that’s more typing. Remember, the double ampersands stand

330 TWINING

--

for the logical and operator, which means all six subconditions much
be true for the main condition to be met.

When you close the “tracker” passage, you will see a new passage
called “INSIDE,” which we’ll leave blank for the moment. First, we
need to make sure our r-series variables (r stands for room) are prop-
erly taken care of. We’re designing our system so that all six variables
need to be checked whenever we enter a room. For that to happen,
Twine needs to know about those variables. So far, it doesn’t. Tere’s
only one proper solution to this problem: create a new starter passage.

◊ Make a new passage and name it “And . . . box.” (Yes, there’s a

mixed metaphor here.) Enter the following into this passage:

r1: false

r2: false

r3: false

r4: false

r5: false

r6: false

TWINE BOX

[[begin->1 The Lecture Hall]]

This is a title passage, with our six tracking variables initially

declared and set to false in the variables section. Doing this will
get us off on the right foot with “tracker.”

Next, we have to allow each of our room-tracking variables to be-
come true.

◊ Open the passage “1 The Lecture Hall.” Insert two blank lines
in front of its current contents. Add the following variables

section:

CONCEPTUAL TWINING 331

--
r1: true

Make similar changes to the other five room passages, chang-
ing the number part of the variable each time (r2 for the second

room, r3 for the third, and so on).

Next, we need to embed the “tracker” passage in the link options
for each room.

◊ Open the passage “1 The Lecture Hall.” In the text body, below

the existing series of four links, add the following:

{embed passage: 'tracker'}

Place this line within the HTML DIV container—before the </div>
tag. Repeat this procedure for each of the other five room pas-
sages. You’ll be inserting the same line in the same position

for each.

Now the rules of our game are largely implemented. Each time we
visit a room, the “tracker” logic will check to see if we have visited all six
rooms, in which case it will display the link to “INSIDE.” Each passage
records its visited state in its r variable. You should test your project
at this point, visiting each room. When you come to the last unvisited
room, you should see the “INSIDE” link.

We’ll continue to defer work on that climactic passage because we
need to provide the clues we want the player to encounter in each room.
In order to make this game minimally playable, we’ll pick our clues
randomly from large sets, using our substitution grammar. However,
we’ll want clues of two kinds—right and wrong—so we’ll need two sets.
Again, we’ll handle this feature with embedded passages.

◊ Create a new passage and name it “right.” Enter the following:

332 TWINING

--

--

rt: ["thing with feathers","fairey
obama","ancient funnyman bob","and
change","fingers crossed"]

theText: rt[Math.floor(random.fraction*rt.

length)]

{theText}

Te basic scheme here should be entirely familiar: defne an array,
then a variable that holds one randomly selected item from that array.
Both of those things happen in the variables section. In the main text
body of this passage, we display the contents of our selector variable.
We’ve included only a small selection from the array used in the fn-
ished version of this project. You will want many more than fve options
for both the “right” and “wrong” clue sets. You can have as many as you
want. As for the word those clues indicate, you can probably fgure that
out, especially if you remember a certain story from Greek mythology.
Now let’s take care of our not-so-helpful clues.

◊ Create a new passage and name it “wrong.” Enter the

following:

wt: ["seventh of six","if you can read
this","this is not a clue","time fades away","is
time emits I","I is another","you are not
reading this"]

theText: wt[Math.floor(random.fraction*wt.

length)]

{theText}

Te form of this passage is identical to the “right” passage. You’ll
want to expand the set of options considerably. Te wrong-headed

CONCEPTUAL TWINING 333

clues can be any misleading or nonsensical expression. Technically,
they should not lead to the right solution, though as you’ll see, it’s not
a huge problem if they inadvertently do. Now that we’ve set up our two
clue sets, we need to make use of them. We’ll do that in the next steps.

◊ Open passage “1 The Lecture Hall.” In the main text body, fol-
lowing the sentence that ends in a colon, skip a line and add
the following:

{embed passage: 'cluetrain'}

Add the same line in the same position in the other five rooms.

Our “cluetrain” passage will take selections from the “right” and
“wrong” clue sets, put them in a certain order, and make them ready to
appear in each of our rooms. Here’s how all that is done:

◊ Create a new passage called “cluetrain”—embedding a pas-
sage does not create that passage—and enter the following:

<div style="text-indent: 2em">

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

{embed passage: 'right'}

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

[if random.coinFlip]

{embed passage: 'wrong'}

[continued]

</div>

334 TWINING

Inside our familiar HTML DIV container you’ll see a series of
embed passage inserts. Yes, you can embed passages in an embedded
passage—just don’t embed a passage in itself, as we’ve already cau-
tioned. Te player never suspects how much bed-hopping is going on
behind the scenes. In the “cluetrain” passage, the frst, third, and fourth
embed the “wrong” clue generator. Te second embeds the “right” gen-
erator. However, we add a coinfip if condition to all our wrong-way
clues, so they each have a ffy/ffy chance of appearing. Notice we add
a [continued] modifer to terminate the if condition each time. Don’t
omit that detail.

According to this scheme, our right-leading clue will always appear,
though it will sometimes be the frst and perhaps only clue. When the
coin lands the right way for the initial “wrong” embed, it will be the sec-
ond clue. Tis arrangement gives what we consider a minimally interest-
ing amount of variation, though that’s a subjective judgment.

It’s time to test the project again. You should see between one and
four clues following the introductory sentence each time you visit a
room. If all is well, you are ready to begin the fnal stages.

◊ Because it is referenced in a conventional link, the passage
called “INSIDE” should already exist. (If it doesn’t, go back and
check the step in which you set up the link to that passage in
the embedded “tracker” passage.) Open “INSIDE” and enter the
following:

~~inside the box~~

So here we are--turning outside in--reaching the
heart of the matter--coming down to core.

Moment of truth . . . or not: _**what's in the
box?**_

Tose double asterisks and tildes, as well as the underscores around
the fnal phrase, are formatting characters. Lots of dramatic efect here. Te
payof is in the selection, for which we’ll use a familiar device:

CONCEPTUAL TWINING 335

◊ Below what you typed in the previous step, enter the following:

{cycling link for: 'answer', choices: ['puzzle',

'nothingness','illusion','ignorance','secrecy','

concealment','hope']}

**[[REVEAL]]**

Because of the basic scheme of the cycling link, the options will
always be presented in the order you code them. Te complete version
of this project uses random.d6 to branch among six variations of the
cycling link, each with the right answer in a diferent position. In this
version, there are also diferent wrong options in each version of the
cycler. For our purposes, though, let’s stay with the simple solution.
Now it only remains to test the outcome.

◊ The passage “REVEAL” should have been added to your struc-
ture. Open it and enter the following:

[if answer==='hope']

Always.
[else]

The box retains its mystery. {restart link,
label: 'Play on'}

Besides revealing the answer to the riddle of the “Twine Box” (but
you knew), this fnal piece of code uses a Chapbook feature we frst saw
in chapter P-2: the restart link insert. As the name suggests, a restart link
erases all system and custom variables in play, including our r series
of trackers, and takes us back to our launch passage, which we called
“And . . . box.” Our six tracking variables are redeclared there, reset to
false, and we are ready to begin anew.

We’ve made the design choice to have a fresh start afer a wrong
guess, requiring the player to receive clues in all six rooms before the
“INSIDE” link appears again. If we wanted to be more generous, we

https://random.d6

336 TWINING

could have avoided the restart link and used an ordinary link back to
the lecture hall or any of the other rooms.

And so the secrets of the mystery box have all been revealed,
and with that, our tour of conceptual Twine comes to an end. We’ve
dwelt heavily on riddles and puzzles in these fve exercises, but as
we’ve seen in preceding chapters, Twine can be used for many more
purposes—creative, expressive, analytical, persuasive, and even thera-
peutic. What you fnd inside the Twine box, or what you decide to put
there, is entirely up to you.

At this point, we’re also very near the formal end of Twining
itself—the conclusion awaits—though as you might expect from such a
rambling and rambunctious enterprise, even that fnal chapter will not
really be the end. We invite you to carry on with the appendices, includ-
ing the interview with Chris Klimas with which this project started and
the talk with Dan Cox that guided its growth. For those who still haven’t
had enough code tinkering, there is even a bonus practical chapter that
fnds its way “Beyond Twine.”

Tough if you’re like us, you can always fnd a bit of Twine some-
where around the place.

Works Cited
Kelly, Walt. Deck Us All with Boston Charlie. New York: Simon & Schuster, 1963.
Pynchon, Tomas. Te Crying of Lot 49. Philadelphia: Lippincott, 1966.

Conclusion

Forever Twine

Twine has been around for more than a decade now. Tere have been
two formal releases of the core sofware, coordinated with four major
story formats. Based on download statistics, Twine has thousands of
users around the world, clustered largely in game development, aca-
demia, and entertainment (Klimas). Major media outlets have noticed
the role of Depression Quest in Gamergate (see Hudson) and Charlie
Brooker’s use of Twine for the “Bandersnatch” treatment. Something
looking suspiciously like a Twine game appeared in an episode of Car-
toon Network’s Adventure Time in 2016 (Han and Ito). However, as
we have previously noted, the best measure of Twine’s cultural impact
may be Videogames for Humans, the massive compendium of Twine
writers playing and commenting on one another’s games that we have
already mentioned (merritt k). We could also point to the increasing
prevalence of Twine pieces in portfolios of aspiring game designers and
the platform’s formal relationship with the IFTF, founded to assure con-
tinuity in the tools and institutions of the text-based game community
(Interactive Fiction Technology Foundation).

Tese developments give reason to look forward another ten years
or more. Te idea of doing creative things with hypertext links and re-
lated scripting seems an indelible part of digital culture. Twine supplies

338 TWINING

an important tool for this work, so we imagine a future Twine, even a
forever Twine. Tis book has concentrated notably on works appearing
between (roughly) 2012 and 2018, which we might consider a heyday
or frst harvest. We carefully avoid the term golden age, which has a
way of making those tagged with it feel antique before their time. For
true believers, at least, Twine is timeless. We feel the work will go on,
in and out of game, art, and literary worlds. Twine or Twine-like eforts
a decade hence may be notably diferent from the games and fctions
we have profled. In ten years, works in the Twine line could be mainly
auditory (see the next section), or graphical, or generally used for psy-
chotherapy, or written exclusively by machines.

Before dreaming any further, however, we need to check our per-
spective. Each author of this book has several decades of intellectual,
artistic, and personal investments in digital storytelling across mul-
tiple platforms. Where Twine is concerned, we teach with it and we make
things with it. Lately, we may have begun to think with it. We also have
our own oblique connections to the circumstances of Twine’s creation:
Anastasia explored theirs in chapter T-2; I will say more about mine at
the end of this chapter. As writers of a book meant to promote Twine’s
use and appreciation, we have an obvious bias.

If You Can Read This . . .

Consider a more objective view. In 2017, the artist and critic John
Cayley, a feld leader in digital literary arts, called for a change of
direction. In an article called “Aurature at the End(s) of Electronic
Literature,” he proposes a fundamental move from visible text to
sound—the aural delivery of words spoken or synthesized using
currently emerging home entertainment platforms, so-called smart
speakers like Amazon’s Echo (Cayley, “Aurature”). Paradigm shifs
are inherently rivalrous. When you are trying to open a new path, it’s
necessary to point out the errors of other ways. Accordingly, Cayley
deprecates several electronic writing practices, including some with
roots in his own academic program. When he comes to Twine, he is
more dubious than dismissive, though he raises serious questions: “In

CONCLUSION 339

the case of expressive hypertext—with choose-your-own-adventure
gaming capabilities—we can now point to Twine as a platform still
gaining signifcant popularity. But will it ever end up supporting
Twine-writers and designers commercially, or as prominent literary
practitioners?” (Cayley, “Aurature”).

Cayley acknowledges Twine’s popularity, and he notes Twine’s
attachment to game culture. Beyond this, he seems unimpressed,
though that sentiment is understandable if one knows the history.
Te reference to “expressive hypertext” points back to earlier days
of Cayley’s academic program, before his arrival at Brown Univer-
sity, when fgures like Robert Coover, George P. Landow, and the
computer scientist Andries Van Dam made that university’s writing
program a center of literary and scholarly hypertext. Tis project
fourished from the early 1980s to the mid-1990s, but its success was
limited at best. Alice Bell’s generally sympathetic account of hypertext
fction concedes that such works were rarely read outside of college
courses (Bell 166). Seeing in Twine a hypertext revival, Cayley rea-
sonably wonders if this platform will sufer the same fate that befell
earlier systems, such as Brown’s Intermedia and Eastgate’s Storyspace.
However, his uncertainty about commercial viability or popularity
is tied to a deeper objection on aesthetic grounds, a problem Cayley
sees in other forms of electronic writing as well. He calls this “the
challenge to reading”:

Formal bewilderment discourages reading and readers. Reading is a
learned practice; it is not innate to the human animal. Asking read-
ers to learn new forms is asking them to extend their learning rather
than immediately ofering them aesthetic experience. Of course, some
formally innovative artifacts will be of a quality or importance that ne-
cessitates and rewards extra learning and efort. Literary culture moves
on. But how will readers pick and choose amongst forms when every
artifact is formally distinct if not entirely outside of any pre-existing
formal categories? And how are they to discover any quality or impor-
tance for the language of the work if formal bewilderment makes it
difcult or impossible for them to read? (Cayley, “Aurature”)

340 TWINING

Twine works are not the only subject of this critique. Plenty of baf-
fing, ofen bafingly beautiful work exists in other systems and con-
texts. Cayley names no names, but we could cite a few examples: Mez
Breeze’s linguistically mutant m[ez]ang.elle (see Raley), Nick Mont-
fort and Stephanie Strickland’s oceanically vast Sea and Spar Between
(Montfort and Strickland), Jason Nelson’s trippily fractal Sydney’s Sibe-
ria (Nelson, Sydney’s Siberia). Cayley does mention Pry, the ground-
breaking text/video app for Apple iOS, one of whose developers came
from Brown (Cannizarro and Gorman). Tough he concedes the bril-
liance of this work, he worries that it, too, is a one-of. Like the surrealist
game levels of Wreden’s Coda, these projects push against any number
of common expectations about language and text. Most are either sin-
gular experiments or self-contained series. Tey invent new categories
rather than fall in with old ones, partly in response to an explosion of
technical possibility, possibly also because tradition, canon, and even
genre are to some extent tainted by toxic ideas of hegemony.

Twine works bring new transgressions and their own challenges
to reading. We have just been looking at Anthropy’s Queers in Love
at the End of the World, which deliberately makes conventional read-
ing extremely difcult. Te work sabotages its own hypertextuality,
tantalizing players with clusters of links they can barely register, let
alone explore, before fnal erasure. Tis is undeniably a challenge to
reading—though as we and others have argued, its intentional disrup-
tions deliver an experience that works toward cultural critique. Tough
Queers in Love is an extreme instance, it nonetheless shows how Twine
works may answer Cayley’s challenges.

Conceived as textual games, Twine works are far less formally be-
wildering than other forms of digital writing, such as “expressive hyper-
texts.” One last comparison between Queers in Love and its paleozoic
ancestor Hegirascope may be helpful here. In an evocation of early web
browsing, the older work jumps across many narrative lines, constantly
decentering the reader’s attention. Perhaps because she has grown up
in a web-saturated culture, Anthropy feels no need to mimic this dif-
fusion. She keeps her player focused on variations of a single scenario
even as she diabolically contracts the time frame. Te result is still

CONCLUSION 341

narratively disruptive, but it confronts the player with fragments of a
single encounter, not pieces of a world.1 Crucially, this diference can be
linked to the infuence of game culture. Queers in Love was built dur-
ing a game jam whose theme is circulation or sharing—ludum dare, to
give (the world) a game. For all its tricky difculty, Anthropy’s work is
still intended for a certain kind of play—subversive and self-canceling,
perhaps, but play nonetheless.

In embracing games as an aesthetic framework, Twine makers take
up a coherent cultural identity, even as they resist and transform it.
Twine games may split of from other forms of game culture, but they
belong to increasingly well-defned alternative communities centered
on independent games, narrative games, and interactive fctions. Tese
domains include “pre-existing formal categories” that support critical
judgment. In chapter T-3, we cited Short’s revealing frst response to
With Tose We Love Alive. Tat review was written as part of the annual
Interactive Fiction Competition, a tradition of critical reception and
recognition with more than thirty years of history. Interactive fction,
which either contains or overlaps with Twine work, is in fact the most
critically informed type of electronic writing.

However, would recognition by Short, Montfort, Andrew Plotkin,
Aaron Reed, or some other authority from the interactive fction world
make someone, in Cayley’s terms, a “prominent literary practitioner?”
Much depends on the way we defne each item of this phrase.

Concerning prominence or recognition, Bell argues that hypertext
fction and other digital literary practices must break out of “niche”
status (Bell 92). It might be objected that most kinds of literature—and
these days, even most forms of popular entertainment—fall into niches
of various sizes (Moulthrop). But some niches are more accessible to
nonmembers than others. Fiction writers outside of the genres (crime,
thriller, science fction, fantasy, romance, Westerns) tend to do readings
at bookstores in cities and suburbs. At the peak of celebrity, we see them
on TV talk shows with large viewerships. Genre writers are more likely

1 Among Twine works that negotiate this problem somewhat diferently, we should
mention Dan Weber’s A Kiss, which has one of the more compelling formal maps
included in Twine stories: http://logolalia.com/hypertexts/hypertextscreencap.gif.

http://logolalia.com/hypertexts/hypertextscreencap.gif

342 TWINING

to appear at community-focused conventions (cons) that do not attract
what is quaintly called a general audience.2

Likewise, makers of Twine games show up largely at game jams and
conferences, either industry-oriented or academic. A writer can cer-
tainly be “prominent” in these circles—known and respected by a few
hundred people, many of them other Twine writers. Tere are stirrings
of wider recognition. Te website for the 2015 launch of Te Late Show
with Stephen Colbert featured a Twine game, and there are the Adven-
ture Time and Black Mirror connections. Porpentine has had a game
commissioned by the Museum of Contemporary Art in Chicago, and
her games have been shown in other museums. Anthropy has been
interviewed about her work on National Public Radio. If prominence
requires being known to millions, through Twitter, television, or some
other megamedium, the prize remains elusive—but is this a problem?

As we have already hinted, the answer to that question is implicated
in how we understand the term literary. In general, thanks to the eforts
of people like N. K. Hayles, Dene Grigar, Scott Rettberg, and Cayley
himself, academia seems more ready to accept electronic writing now
than it was in the 1990s. Tere were cracks in the wall of resistance even
then. Two early hypertext fctions, Joyce’s afernoon and J. Y. Doug-
las’s I Have Said Nothing, were included in W. W. Norton’s Postmodern
American Fiction anthology (Geyh, Leebron, and Levy). ELO has been
a presence at the annual MLA conferences for years and in 2018 was
formally recognized as an afliated organization. Marjorie Perlof, a
defning fgure in modern poetics, has written about the signifcance
of digital work in contemporary poetry (Perlof). Hayles, among the
frst academic critics to recognize electronic literature as a continuing
project, sees it as part of a reformist expansion of literary tradition
(Hayles 4–5). Rettberg, one of ELO’s frst founders, suggests a more
progressive view: “Tose waiting for the frst ‘#1 bestseller’ of electronic
literature are largely missing the point: electronic literature is not about

2 Gen Con, the venerable tabletop gaming convention, had attendance of more than
seventy thousand in 2019; San Diego Comic-Con regularly draws twice that number.
Teir audiences are both large and diverse by several measures. Te “general audience”
seems increasingly mythical.

CONCLUSION 343

replacing print literary culture, it is instead about extending storytelling
and poetics to the contemporary digital environment and creating liter-
ary experiences specifc to this cultural moment. Electronic literature
is experimental literature that generates productive tests of particular
admixtures of literature and technology, but it is also fundamentally
about a sense of play and a sense of wonder” (Rettberg 203).

Despite these rapprochements, academic creative writing pro-
grams still generally identify with poetry, literary nonfction, and the
unmarked genre of nongenre fction. Twine work, and game culture
generally, may be recognized as a parallel or related activity, but it is
not usually part of the curriculum.3 We have already expressed our
ambivalence about Twine and literary tradition in chapters T-3 and T-4.
Twine work can connect to established forms and practices, but it may
just as genuinely go its own way. Perhaps, as Rettberg says, we should
simply celebrate experiment and play.

In chapter T-4, we explored the infuence in Twine work of alter-
native, anti-elite aesthetics: retro-stylish kitsch and fan-based camp.
Twine carries forward an unruly, experimental impulse last seen in the
frst decade of the World Wide Web. Tis agenda has no strong regard
for long-standing tradition and may in fact subvert it—recall Xalavier
Nelson’s frst take on legacy, noted in chapter T-3. To some extent, the
queer-gaming insurgency explored in chapters T-4 and T-5 refects a
similar attitude. Given the tensions between Twine’s outsider ethos and
traditional culture, literary may not be the identity most Twine writers
aim for. A certain social distance may be good for both sides. In the fa-
mous words of Marx, “I DON’T WANT TO BELONG TO ANY CLUB
THAT WILL ACCEPT ME AS A MEMBER” (Marx 321).

Cayley’s third term is practitioners. Writers are by defnition practitio-
ners, but Twine writers (or creators, designers, developers) use practices
that difer markedly from the ones Cayley advocates. In at least its frst

3 Tere are always exceptions. In 2018, Christopher Macalester Williams received his
doctorate in English with a concentration in creative writing from the University of
Wisconsin–Milwaukee. His dissertation included an epic poem called Te Wrong Sky,
with both a conventional print and a Twine component. Dr. Williams is now an assis-
tant professor teaching literature and creative writing.

344 TWINING

stages, his “aurature” involves the development of “skills” for Amazon’s
digital assistant, Alexa. An Alexa skill is a sofware application the
system can run in the background or in response to a user’s spoken
request (“Alexa, ask the listeners about . . .”). Cayley’s demonstration
project for aurature, called Te Listeners, uses an impressive range of
design and production techniques, including interactive sequencing
and processing of sound (Cayley, “Te Listeners”). Twine entails a
much smaller and less sophisticated range of activities: simple hyper-
text linking, textual substitution, maybe some work with substitution
grammars, all usually intended for screen display—though as we saw
in chapter P-4, other media types can be used as well. Building a Twine
game generally presents a lower technical barrier to entry than devel-
oping an Alexa skill.

Most important, Twine is an open-source application supported
by a noncommercial community. While the programming tools used
to develop an Alexa skill are not proprietary, the considerable infra-
structure on which it depends—the system of digital monitoring and
response behind the Echo device—is intellectual property held by one
of the wealthiest corporations on the planet. Tis brings us to the most
difcult of Cayley’s hard questions: Can Twine sustain its creative com-
munity commercially or economically?

Twine and Hard Times

Before taking up this question, some important concessions are in
order. Te invidious distinction between proprietary and open-source
sofware needs at least partial correction. Nobody loves a Puritan, and
we do not claim or wish to be sofware saints. In art and everyday life, we
use proprietary systems. Te world is big enough for both commercial
and noncommercial approaches to art. Tere are good reasons to criti-
cize Amazon’s desire to place live microphones in our living rooms, but
the disapproval of academics will not make them go away. If we believe
in technological realpolitik, Cayley’s call for change is important. Taken
more sympathetically, aurature could allow artists to infltrate Amazon’s
collective unconscious. (Alexa, delete the last record.)

CONCLUSION 345

Further, we admit that Cayley’s economic skepticism about Twine is
hard to rebut. Like hypertext fctions before them, most Twine works
circulate in the public domain and carry the curse of a gif economy.
Once the public comes to expect free access to art or entertainment, it
is exceptionally hard to return to a cash basis. Paywalls infamously fail.
Many of us do not believe in them in the frst place, though it is easier
for tenured academics to aspire to such virtue and feel an obligation
to share freely. Tose closer to the rope-end of precarity may do what
Anthropy and an increasing number of Twine writers do: include a link
inviting fnancial support on the title pages of their projects. Tose who
fnd that work important, especially in teaching, need to give as gener-
ously as possible. Patreon and related subscription schemes are another
expedient, though Klimas recently disclosed that his income from this
channel amounts to less than the minimum wage in his home state
(Klimas).

Could these dismal conditions change? If the “Bandersnatch” possi-
bility ever yields something more than a mirage, crossovers with emerg-
ing markets could be facilitated by IFTF, which gives common identity
and purpose to those interested in parser games (especially on the In-
form platform), Twine work, and other branching narrative systems.
IFTF is not primarily academic and welcomes interest from the enter-
tainment industries. While waiting for other opportunities, collabora-
tions among the current interactive fction emphases might be equally
important. Twine/Inform hybrids could be intriguing, along with vari-
ous ventures to connect Twine and other platforms to the Unity game
system, particularly with an eye to mobile applications. In her sofware
development role at Spirit AI, Short continues to explore the integra-
tion of artifcial intelligence with interactive narrative. Poet and system
designer Daniel C. Howe recently joined Tender Claws, the independent
sofware studio that created Pry. Howe’s new system, Tendar, like Spirit’s
Ally, focuses on algorithmically generated interaction, with important
implications across the feld of interactive fction. IFTF could provide a
crucial framework for the integration of developments like these.

Visions of possibility aside, however, economic prospects for
Twine, in both infrastructure and artistic practice, remain deeply

346 TWINING

uncertain—yet of what can this not be said? Independent game devel-
opment is as tenuous as any garage-based art form. Developers may
fnd refuge in academia, more likely in game or media studies programs
than in older departments, but the state of higher education throughout
the developed world is parlous, with humanities programs especially at
risk. At this writing, the stresses imposed by the coronavirus pandemic,
both on enrollments and state budgets, raise this risk to new levels.

Culture-war politics are implicated in this instability, especially
when it comes to public institutions, and attacks on academics involved
in game studies have been a part of Gamergate and the larger alt-right
movement of the US in particular (see Chess and Shaw). But the root
of the trouble is the continuing fragility of postindustrial economies.
Tis insecurity may at frst seem paradoxical. Twine’s frst decade co-
incided with the longest economic expansion in the history of the US.
Tat party may now be over, and the benefts of the expansion were
notoriously concentrated in any case. If the current disaster exposes
fundamental weakness like the banking crisis of 2008—say, in student
loans, the retirement system, or international trade—we may face a
long and devastating economic depression.

Long ago, at the beginning of the last boom before this one, Neal
Stephenson published a novel of speculative fction featuring a global
virtual-reality system with a social center called “the Street.” (Te
GeoCities of old may have been among his inspirations.) Being essen-
tially a realist, Stephenson salts his Tomorrowland with some sobering
observations: “In the real world-planet Earth, Reality, there are some-
where between six and ten billion people. At any given time, most of
them are making mud bricks or feld-stripping their AK-47s. Perhaps
a billion of them have enough money to own a computer; these people
have more money than all of the others put together. Of these billion
potential computer owners, maybe a quarter of them actually bother to
own computers, and a quarter of these have machines that are powerful
enough to handle the Street protocol” (Stephenson 24–25).

It is interesting to reread this passage in the 2020s. Stephenson’s
informed guess about world population holds up, though the explo-
sion of smartphones has blown out his forecast of a billion computer

CONCLUSION 347

owners by a factor of three. More salient is the allusion to the have-
nots, those folks with the bricks and assault weapons. In its day, the
remark registered, no doubt cynically, the economic inequalities that
accompanied early phases of the information revolution. Tere were
strong concerns about a so-called digital divide. Today, we are more
concerned with wealth gaps. “Tese people have more money than all
of the others put together” remains a true statement, but the size of
the apex class has greatly contracted. Also, the folks with the AK-47s
and AR-15s are no longer in mud-brick hinterlands but in our state
capitols and our nondigital streets. At this writing, some of those
streets are patrolled by National Guard units in armored vehicles.

Instead of Stephenson’s Metaverse and Street, we have Facebook,
Twitter, Instagram, and other stretches of the social media hellscape.
Te world those forces engender may be very like the neoliberal inferno
described in Snow Crash, though it is hard now to imagine anything like
the entrepreneurial happy ending Stephenson gives that book. Tat was
another century. In this one, we face not only economic instability but
the subversion of democracies, driven in the frst instance by racists and
gangsters and exacerbated in some measure by refugee fows and, most
recently, by a worldwide biothreat. How long, it must be asked, before
we’re no longer the people with computers but the ones with the rifes
and wall-building bricks?

It’s not just institutions of popular art and education that are
imperiled—the entire civilization seems palpably at risk. (Tese words,
frst written before the pandemic, seem even more appropriate in 2021.)
In such a dire context, why does the future of Twine matter? True, the
social martyrdom of a Twine writer, Zoë Quinn, was the precipitating
event for a battle in the culture wars that laid down the pattern for many
to come (Warzel; see also LaFrance). Twine is implicated in a critical
moment that goes far beyond game culture, but since that moment
counts as a genuine crisis, with outcomes that may include the end
of the world as we know it, we need to justify our perverse interest in
computerized games and clever ways to tell stories.

Can Twine save our world? No way! However, here is a quick list of
other things that ofer no immediate and total remedy:

348 TWINING

mumblecore
crowdsourcing
ukuleles
food porn
live streaming
Lin-Manuel Miranda
polar bears
psilocybin
quantum gravity
Donna Haraway
the fightless cormorant
life on Mars (whatever that means to you)
the Five Virtues
slavery reparations
universal basic income
petting cats

Tis list, which takes of from the “litanies” of Bruno Latour and
Ian Bogost, is unordered and eminently debatable (Bogost 38). Some
of its items might seem potentially redemptive, depending on one’s un-
derstanding of the world’s problems. Many will not. Te point of this
list, like all lists, is to assert totality over singularity. Te list contains
no answer; the list is the answer. Which is to say, as Anthropy teaches,
the best way to stave of the moment when everything is wiped away
is to make the case for everything, almost. No saviors, no panaceas,
but many things may be helpful in some fashion. Let us consider some
ways in which a world with Twine in it is preferable to one without. In
an epitome of this book itself, we ofer three arguments: conceptual,
practical, and fnally personal.

Maps and Algorithms

Plato and McKenzie Wark had their caves. Te cultural critic Fredric
Jameson found allegory in a diferent sort of cavern, the lobby of the
Westin Bonaventure Hotel in Los Angeles, circa 1984. Many who visited

CONCLUSION 349

grand hotels in the 1980s had similar experiences of disorientation and
procedural uncertainty—where do you suppose they’ve put the front
desk in this one? Jameson laid out the full implications of this experi-
ence, which was always more than a complication of check-in protocol.
As Plato’s cave allegorizes the world of phenomena, the Westin lobby
brings home the contours of late capitalism:

Tis latest mutation in space—postmodern hyperspace—has fnally
succeeded in transcending the capacities of the individual human
body to locate itself, to organize its immediate surroundings perceptu-
ally, and cognitively to map its position in a mappable external world.
It may now be suggested that this alarming disjunction point between
the body and its built environment—which is to the initial bewilder-
ment of the older modernism as the velocities of spacecraf to those of
the automobile—can itself stand as the symbol and analogon of that
even sharper dilemma which is the incapacity of our minds, at least at
present, to map the great global multinational and decentered com-
municational network in which we fnd ourselves caught as individual
subjects. (Jameson 39)

Not knowing where to check in is a signature of postmodern experience,
an efect produced by spaces, real or hyperreal, that defy understanding.
Never mind hotels: think of the “decentered communicational network”—
these days, we call this thing the web, or the Twitterverse, or as advertising
types say with ominous familiarity, social. In response to mutating hy-
perspace, Jameson calls for “an aesthetic of cognitive mapping” (Jameson
44). Tat project has many moving parts, but game culture is clearly one
of them. Wark’s gamer theory, exposing the allegories of power behind
algorithm, makes an obvious contribution. Te same might be said for
Galloway’s insight that playing Civilization III teaches us how that game’s
algorithms intersect historical understanding (Galloway 92). We have al-
ready noticed Burden and Gouglas’s observation that Portal exemplifes
the making of art from “algorithmic experience” (Burden and Gouglas).

As spatialized occasions for narrative, games literally involve cogni-
tive mapping. “Tinking with portals,” as Burden and Gouglas explain,

350 TWINING

deconstructs Euclidean geometry as well as the conventional, recti-
linear design of game levels. Tat operational geometry is also a key
subject in Beginner’s Guide, where Davey and Coda struggle, in their
curiously passive-aggressive way, over the need for mazes to have solu-
tions. As Wreden’s work demonstrates, there is much more at stake in
this contest than the pragmatics of level design. Coda’s prisons are as
much existential as architectural. Tey are “analogons,” to borrow Jame-
son’s word, of Coda’s dubious desire for privacy and interiority. Tis is
where the cognitive part of the mapping project comes in.

Tough many decades have elapsed since its discovery, we still oc-
cupy something like the “hyperspace” Jameson named. Gameplay illu-
minates the complexity and irrationality of that space. Games can also
bring to consciousness several features of cybernetic infrastructure, the
reliance of our virtual environments on algorithms and logical transac-
tions. Trough the mechanisms of player death and regeneration, games
bring home the power of iteration or cyclic repetition, showing us in ex-
periential terms the form of sofware loops. By incorporating random-
ized behavior, games make us aware of stochastic outcomes, predictable
but uncertain. By presenting complicated simulations involving multiple
agents, games demonstrate the dependency of elements in a system and
the way such dependencies can lead to emergent or unforeseen conse-
quences. Above all, computer games model contingency, the ability of
situations to evolve diferently over multiple encounters. Tey reveal a
world of complex, systematic, but unpredictable possibility.

Jameson believed an aesthetic of cognitive mapping would be essen-
tial to politics in the twenty-frst century. In order to address injustice,
oppression, and ignorance, we need to understand, in the deep way
art makes possible, the bafing structures of a world that is too large,
too fast, and too intricately detailed for ordinary human witness. To
put this much faith in imagination involves a huge dose of utopian
chutzpah, but we might venture some hypotheses anyway. Perhaps a
generation of gamers will be less inclined to call for regime change in
regions traumatized by imperialism; or route tank trains full of volatile
hydrocarbons through major population centers; or mine the tar sands
that fll the bomb cars in the frst place; or otherwise deny the fragility

CONCLUSION 351

of our critically damaged ecosystem; or fail to grasp that, ironically, it-
eration only applies in sofware, so we can’t reboot the West and replay
from 1955 or 1820.

Coming to Code

Maybe, just maybe, playing and making computer games can help us
map the catastrophe, jam the machines, hijack the bus of doom before
everything is wiped away. Te help in question may be small—more
in the way of ukuleles than reparations—but it is something we can
articulate. Te essayist Joan Didion was once asked to write on the ab-
stract subject of morality but swerved away, declaring, “My mind veers
infexibly toward the particular” (Didion 160). We follow her mental
taillights. Our conceptual/political argument was framed broadly to
take in a large swathe of game culture. Twine and its productions be-
long to that domain but in a very peculiar way. Multimedia extensions
aside, Twine is fundamentally a text technology. Like Inform, TADS,
and other parser-driven platforms, Twine draws on the considerable
power of the written word to evoke and manage playable spaces. We
can make a second, more pragmatic case for the importance of Twine,
along with other forms of interactive fction, based on its engagement
with writing.

Interactive fction is connective tissue, a ligament anchoring the
skeleton of language and literature to the musculature of computing.
(Flip those anatomical metaphors if you wish.) We invoke the living
body, since that is what culture feels like to us, but we could also
have gone to geology, thinking of stratifed bands in sediments and
the interlayers between them. Tat metaphor brings the advantage
of history, which is important here. As another major critic, Alan
Liu, has argued, a major task of humanist work in this century is
reassertion of cultural memory in the face of amnesiac market forces
(Liu 72). Twine and its interactive fction companions are helpful
in this regard, connecting practices from the precomputer world to
those that have evolved more recently. It is probably no coincidence
that Jay David Bolter, an important early advocate of hypertext, and

352 TWINING

Short, perhaps our greatest writer of interactive fction, both started
as classicists.

Afer its very early days, game development has followed the orga-
nizational scheme of cinema: production involves fairly large groups
overseen by a lead designer. Tis is necessary when the work involves
many specialized skills, such as AI programming, 3-D modeling, mo-
tion capture, interface design, sound and voice production, and so on.
Because they do not take the exit ramp to graphics but stay on the
old textual blacktop, interactive fctions and Twine games especially
require no such division of labor. Most of the Twine games we have
discussed in this book are the work of one or two people. As Anthropy
says in her manifesto for the independent game movement, Rise of
the Video Game Zinesters, text-based and simpler graphical platforms
allow artists to express radically personal visions (Anthropy, Rise
18–19). Independent game creation hearkens back, as we have said,
to an earlier moment of digital technology, when imaginations were
less constrained by mainstream expectations and corporate econo-
mies. Solo and small-group work is not inherently virtuous, of course.
For every Anthropy or D. Squinkifer, there may be many versions of
Wreden’s Coda, pursuing visions that will never connect with a wider
audience. By the same token, large-scale corporate teams can make
thoughtful and genre-redefning games, from Katamari Damacy and
Portal to Legend of Zelda: Breath of the Wild, Animal Crossing, and Death
Stranding. Meanwhile, there is a sweet spot between solo and large-
team eforts, where games like Gone Home, Firewatch, and 80 Days
fourish. However, single authorship and very small collaborations
have one important advantage: they open development to people at the
margins of game culture.

Tis opening involves another kind of identity as well—it bridges
the cultural divide between programmers and nonprogrammers, be-
tween those conversant with computer code and those whose main
expressive mode is natural language. Te leading contribution to this
unifcation is Graham Nelson’s revolutionary rewriting of the Inform
language, Inform 7, which uses something like English syntax (Nelson,
“Inform 7”). We have already said some things about Inform 7 back in

CONCLUSION 353

chapter T-1, noticing the way its code tends to converge with ordinary
language.

In Inform 7, statements are passed to a compiler program, which in
turn generates much less readable code that establishes and populates a
game space. At the same time, these statements are also understandable
as sentences in the traditional sense. Playing on this ingenious overlay
of linguistic registers, writers from the interactive fction world have
composed verses consisting entirely of well-formed Inform 7 expres-
sions. Here is one by a writer who goes by the tag “Adjusting” (Adjust-
ing). It rifs on Noam Chomsky’s famous example of formal nonsense,
colorless green ideas sleep furiously:

Chomsky is a room.
A thought is a kind of thing.
Color is a kind of value.
Te colors are red, green and blue.
A thought has a color. It is usually Green.
A thought can be colorful or colorless. It is usually colorless.
An idea is a thought in Chomsky with description “Colorless
green ideas
sleep furiously.”
A manner is a kind of thing.
Furiously is a manner.
Sleeping relates one thought to one manner.
Te verb to sleep (he sleeps, they sleep, he slept, it is slept, he is
sleeping) implies the sleeping relation.
Colorless green ideas sleep furiously.

“It compiles,” one slightly skeptical commenter observes. “It just
doesn’t do much”—except compile, of course, which the fnal line
will not do in the absence of the lines that precede it. Te observation
is correct as far as the compiled game goes—there’s not much to do
in the room called “Chomsky”—but placing the exercise in a larger
context, we very much beg to difer. Wrapping Chomsky’s famous ex-
ample around the twin poles of poetry and programming language is,

354 TWINING

culturally speaking, a whole lot indeed. It demonstrates how the struc-
ture of language, which Chomsky’s sleep of reason is meant to reveal,
can be not emptied out but doubly loaded—deeply Inform-ed, as it
were.

Twine is less formally ambitious than Inform 7. Because Twine
games branch of not from rule-based text adventures but from link-
based game books and hypertexts, they generally have simpler infra-
structures than parser games—though a glance back at our discussion
of With Tose We Love Alive in chapter T-2 complicates this claim. In its
own way, Twine also allows for relatively seamless connections between
natural and cybernetic language. Te foundational double-bracket con-
vention for linking, with its automatic expansion of the structure map,
ofers a prime example of this efect. Te Chapbook story format, in-
tended to simplify Twine writing for beginners, extends the principle
throughout the authoring process.

If we think about Inform 7 and Twine not just as clever, marginal
improvements to game development but as interventions in literacy
itself, their importance is evident. Socially speaking, both platforms
allow people without programming backgrounds—ofen people alien-
ated by the cognitive and ideological signatures of conventional game
design—to build things with code. Even writers who never go beyond
simple linking schemes are introduced to the structure editor. Work-
ing with this directed graph both underscores the dual nature of digital
production, scriptonic content set within a textonic framework, and
emphasizes the possibilities for complex expression, a challenge to both
writers and programmers. In our classroom experience, a signifcant
number of beginners move beyond basic hypertext, at the very least to
conditional linking and textual variation, both techniques that impli-
cate aspects of code such as variables and Boolean logic.

Outside of the classroom, where Twine writers are driven mainly
by aesthetic exploration, there is a clear path from the basic Chap-
book repertoire of links, forks, modifers, and inserts to more com-
plex approaches like embedded JavaScript. More venturesome creators
may also fnd their way to Harlowe, Snowman, and SugarCube, with
their broader arrays of programming tools. At each of these points of

CONCLUSION 355

advance, Twine users will fnd online references, examples, and ex-
planations in places like Cox’s Twine Cookbook (Cox), Melissa Ford’s
Writing Interactive Fiction with Twine (Ford), Anna Anthropy’s Make
Your Own Twine Games! (Anthropy), and Emily Short’s blog (Short).
Like other forms of interactive fction, Twine can be an efective gate-
way experience for those who may not have otherwise thought of them-
selves as coders. Of course, not everyone is obligated or destined to
make such a cultural crossing. For those who carry on happily with
older forms, Twine and interactive fction extend the ambit of literacy
to include cybertexts. Tey expand the feld of expression and indeed
of reading. In this way, Twine and its cousins serve that highest func-
tion of writing, literary and otherwise: they advance the language itself.

What’s in Your Heart

Language is always two things at once: a vast, intergenerational cul-
tural project—what Ferdinand de Saussure called langue—and indi-
vidual human utterance, or parole (de Saussure 91). While it may be
important to speak of cognitive mapping or new horizons for literacy,
the most powerful argument for the importance of Twine is simply
personal. In the introduction, Anastasia told a version of her Twine
story. In telling my own, I will add a character, a scene, and a crucial
piece of dialogue.

In 2008, Klimas, Salter, and I were all associated with the School of
Information Arts and Technologies at UB. If, as one woebegone troll
suggests, this was anything more than coincidence, credit the invisible
hand of history, that ultimate conspirator. Chris and Anastasia were
graduate students; I was on the faculty. Eight years earlier, I had co-
founded the school (which most places would call a department) with
my partner, Nancy Kaplan, who directed its graduate programs. As
Anastasia has written, Chris had begun building Twine on the founda-
tions of TiddlyWiki. He had also taken some classes toward our MS
in interaction design and information architecture. He had spoken to
Nancy, and briefy to me, about using the development of Twine as his
thesis project. We encouraged him, but there was a hitch.

356 TWINING

Constraints of time and budget restricted Chris to one class per se-
mester. At that pace, it would take several years to complete the degree
and probably even longer to release Twine. So one evening, with next-
semester registration looming, Chris came to Nancy’s ofce to ask a
difcult question: Should he carry on with the MS program or stop
and concentrate on bringing Twine into the world? What Professor
Kaplan said to him deserves to be remembered in the annals of Twine
and possibly also in any history of electronic literature because it was
exactly what she said to me in the summer of 1991 when I was agoniz-
ing about taking time from an academic project to write a long-form
hypertext called Victory Garden. Her words: “You have to do what’s in
your heart.”

Chris and I both decided to step of, or around, the academic adven-
ture line. I’ve had no regrets and I hope the same for him. Over the next
decade, I have encountered other people who have drifed crosswise
through the cultures of sofware and higher learning, people with their
hearts set on new forms of writing—Anastasia and Chris—and lately a
constellation I have yet to know well or in most cases even meet—Anna
Anthropy, Dan Cox, Cara Ellison, Porpentine, Kitty Horrorshow, mer-
ritt k, Christine Love, Kris Ligman, Michael Lutz, Xalavier Nelson Jr.,
D. Squinkifer, and too many more to list.

Twine was in my heart long before there was Twine, when, circa
1986, someone told me this thing I thought I was inventing had a name
already—it was called hypertext, and there were people who knew
about it: Mark Bernstein, Jay Bolter, John Cayley, Robert Coover, Yel-
lowlees Douglas, Carolyn Guyer, Terry Harpold, Michael Joyce, George
Landow, Judy Malloy, Cathy Marshall, John McDaid, and frst of all, Ted
Nelson. Hypertext was a thing for a few years, but creative attention
eventually drifed from nodes and links toward graphics and animation
and platforms like Flash (see Salter and Murray). Electronic literature
became its own thing, and then Rettberg and Robert Coover went and
Organized it, but by that time, I was trying to learn enough about video
game design not to feel completely embarrassed teaching it. Somewhere
my links back to hypertext broke down, or so it seemed, and by 2010,
hypertext fction felt enough like ancient history that Grigar and I had

CONCLUSION 357

to start digging it up and putting it in archives (Moulthrop and Grigar).
Game culture, meanwhile, was on its way to crisis.

At the same time, Twine was happening, in ways that only in ret-
rospect seem completely reasonable. Even Chris professes himself
surprised with what Anthropy and merritt k and D. Squinkifer and
Porpentine were doing on the platform—making games, making noise,
making a diference. Reconnecting with Twine made me feel a lot like
McDaid’s Glass Man, a vagrant scufing across time tracks. Didn’t we
disappear somewhere in the nineties? Bones of old men, indeed. Back
in the heyday of hypertext, my generation consisted mainly of academ-
ics with an attitude, skulking in basement Macintosh labs—the labs
were always in the basement—fondly dreaming about the end of print.
Tat end came, sort of, and in an important way did not. Meanwhile,
there were other changes. Te culture war about which I fabulated in
Victory Garden erupted in harsh reality. Te skin my cohort had in the
game was nothing compared to what Quinn and others, including my
coauthor, have had to risk in the endless afermath of Gamergate. Te
older generation was out to change college composition, creative writ-
ing, and perhaps publishing, not the multibillion-dollar video game
industry. What did we know? All commitment to the struggle, all re-
spect to the youth.

So now here we are, friends and strangers, writers and aca-fans,
all wound up in this project that threads through our lives in so many
weird, queer, and astounding ways. As the oldest Twine writer in the
world—because I was writing Twine before there was Twine, also be-
cause I am old—I will say this entanglement feels, in a way it has never
felt before, really good. As Rettberg says, the play continues. For all the
anger and sufering and thickening darkness, something important is
happening. We are all part of a signifcant unfolding of language, ideas,
and human possibility—may it last. May the future of Twine be glori-
ous and full of righteous trouble, and may we all live to see it.

Never give up what’s in your heart.

358 TWINING

Works Cited
Adjusting. I7 Chomsky. June 17, 2007. https://groups.google.com/forum/#!topic/

rec.arts.int-fction/2pHd-vPfAVY.
Anthropy, Anna. Make Your Own Twine Games! Penguin-Random House, 2019.
———. Rise of the Video Game Zinesters. Seven Stories Press, 2012.
Bell, Alice. Te Possible Worlds of Hypertext Fiction. Palgrave Macmillan, 2010.
Bogost, Ian. Alien Phenomenology, or What It’s Like to Be a Ting. University of Min-

nesota Press, 2012.
Burden, Michael, and Sean Gouglas. “Te Algorithmic Experience: ‘Portal’ as Art.”

Game Studies 12, no. 2 (2012). http://gamestudies.org/1202/articles/the_algorithmic
_experience.

Cannizarro, Danny, and Samantha Gorman. Pry. Tender Claws, 2014.
Cayley, John. “Aurature at the End(s) of Electronic Literature.” Electronic Book Re-

view, February 2017. https://electronicbookreview.com/essay/aurature-at-the-ends
-of-electronic-literature/.

———. “Te Listeners: An Instance of Aurature.” cream city review 40, no. 2 (2016).
http://io.creamcityreview.org/40-2/cayley/.

Chess, Shira, and Adrienne Shaw. “We Are All Fishes Now.” DIGRA: Transactions of the
Digital Games Research Association 2, no. 2 (2016). http://todigra.org/index.php/
todigra/article/view/39/91.

Cox, Dan, ed. “Welcome to the Twine Cookbook.” Twinery.org, 2019, https://twinery
.org/cookbook/.

de Saussure, Ferdinand. Course in General Linguistics. Philosophical Library, 1959.
Didion, Joan. Slouching toward Bethlehem. Farrar, Straus and Giroux, 1968.
Ford, Melissa. Writing Interactive Fiction with Twine. Que, 2018.
Galloway, Alexander R. Gaming: Essays on Algorithmic Culture. University of Min-

nesota Press, 2006.
Geyh, Paula, Fred G. Leebron, and Andrew Levy. Postmodern American Fiction. W. W.

Norton, 1994.
Han, Bong Hee, and Elizabeth Ito, dir. “Five Short Tables.” Adventure Time. 2016.

WarnerMedia.
Hayles, N. Katherine. Electronic Literature: New Horizons for the Literary. University

of Notre Dame Press, 2008.
Hudson, Laura. “Twine, the Video-Game Technology for All.” New York Times, No-

vember 19, 2014. https://www.nytimes.com/2014/11/23/magazine/twine-the-video
-game-technology-for-all.html.

Interactive Fiction Technology Foundation. “Our Mission and Goals.” 2020. https://
ifechfoundation.org/mission/.

Jameson, Fredric. Postmodernism, or, the Cultural Logic of Late Capitalism. Duke Uni-
versity Press, 1991.

Klimas, Chris. Twine Past, Present, Future. Cambridge, MA: NarraScope, 2019.

https://iftechfoundation.org/mission
https://www.nytimes.com/2014/11/23/magazine/twine-the-video
https://twinery
https://Twinery.org
http://todigra.org/index.php
http://io.creamcityreview.org/40-2/cayley
https://electronicbookreview.com/essay/aurature-at-the-ends
http://gamestudies.org/1202/articles/the_algorithmic
https://groups.google.com/forum/#!topic

CONCLUSION 359

LaFrance, Adrienne. “How QAnon Is Warping Reality and Discrediting Science.” At-
lantic, June 2020, 27–38.

Liu, Alan Y. Laws of Cool: Knowledge Work and the Culture of Information. University
of Chicago Press, 2004.

Marx, Julius. Groucho and Me. Da Capo Press, 1959.
merritt k, ed. Videogames for Humans: Twine Authors in Conversation. Instar Books,

2015.
Montfort, Nick, and Stephanie Strickland. Sea and Spar Between. Dear Navigator, 2010.

https://nickm.com/montfort_strickland/sea_and_spar_between/.
Moulthrop, Stuart. “For Tee: A Response to Alice Bell.” Electronic Book Review, Jan-

uary 2011. https://electronicbookreview.com/essay/for-thee-a-response-to-alice
-bell/.

Moulthrop, Stuart, and Dene Grigar. Traversals: Te Use of Preservation for Early Elec-
tronic Writing. MIT Press, 2017.

Nelson, Graham. “Inform 7.” 2006. www.inform7.com.
Nelson, Jason. Sydney’s Siberia. Accessed August 20, 2019. http://www.secrettechnology

.com/sydney/.
Perlof, Marjorie. Unoriginal Genius: Poetry by Other Means in the New Century. Uni-

versity of Chicago Press, 2012.
Raley, Rita. “Interferences: [Net.Writing] and the Practice of Codework.” Elec-

tronic Book Review, September 2002. http://electronicbookreview.com/essay/
interferences-net-writing-and-the-practice-of-codework/.

Rettberg, Scott. Electronic Literature. Polity Press, 2019.
Short, Emily. Emily Short’s Interactive Storytelling (blog). Accessed March 4, 2020. www

.emshort.blog.
Stephenson, Neal. Snow Crash. Bantam Spectra, 1992.
Warzel, Charlie. “How an Online Mob Created a Playbook for a Culture War.” New York

Times, August 15, 2019. https://www.nytimes.com/interactive/2019/08/15/opinion/
what-is-gamergate.html.

https://www.nytimes.com/interactive/2019/08/15/opinion
http://electronicbookreview.com/essay
http://www.secrettechnology
www.inform7.com
https://electronicbookreview.com/essay/for-thee-a-response-to-alice
https://nickm.com/montfort_strickland/sea_and_spar_between

Appendix I

Interview with Chris Klimas

Tis interview took place between the authors of this book (AS and
SM) and Chris Klimas (CK) via Skype on April 6, 2017. Our work
was in the early stages, and the exchange helped us understand much
about the origins and circumstances of Twine. It also confrmed our
commitment to multiple agendas—historical, personal, critical, and
creative—because as Chris makes clear, the Twine phenomenon has
all those dimensions. Te conversation was notably free ranging. We
have used a light editorial hand in order to preserve the fow of ideas.

AS: Circa 2009, people may have tended to think of hypertext as more
of an appliance than an area for active sofware development. What
made you interested in the concept?

CK: Of hypertext . . . ? [bemused] wow.

AS: . . . of building something in hypertext . . .

SM: If that’s in fact what you were thinking—I don’t know—did you
think of [Twine] as something else?

362 APPENDIX I

CK: I don’t know, actually. I think so. I think that [hypertext] was a fair
characterization. . . . I think at that point, I had done a lot of experi-
mentation with parser IF, and I had done a couple of games myself, but
I felt sort of frustrated with the medium . . . how object-y it is . . . very
world-model-based . . . and that felt like an obstacle, I guess. Tat was
when I started messing around with stuf that was, more . . . hypertext-y.
You just have tons of exposure to the idea of hypertext. For me, it was
more the web. I hadn’t played or experienced the stuf from the early
nineties or whenever you want to date that particular period.

I ran across this technology called TiddlyWiki, and it was this really
clever thing [that created] a self-modifying web page. You download it
to your computer, you can edit it, it’s like a wiki, but there’s no server
component to it at all, and so it’s like a very simple . . . DIY hypertext.
And so I started editing and playing out stuf in there and experiment-
ing with that medium.

It just got very disorienting, actually, to try to edit [a TiddlyWiki
story] from inside . . . where I’d click links, and follow them, and it’s
like—where am I? I’d get lost in my own stuf, and that was the genesis:
I want to build a tool that will help me do this better.

SM: What was your process [of development and invention] like?
When did you frst think you were building Twine?

CK: Tere were a couple of abortive attempts. Before [there was Twine]
it started as Twee . . . and they all started with “TW” because they
came from TiddlyWiki . . . and this was just a plain old text format
and compiler, the sort of programming environment you expect out of
traditional programming.

Tat worked OK, and I wrote some stuf with that . . . and then I
thought . . . I should make something web-based because I wanted
more people to get into it . . . because there were so few things at that
point on the web that were . . . literary hypertext, I guess.

I was always trying to convert people to the cause [of branching
stories]. I thought, I should try to win over [some of my] friends who
are writers . . . to have them try this out. And of course, if you give

363 INTERVIEW WITH CHRIS KLIMAS

them a compiler, they’re like, What is this?—so I tried building a web-
based thing, but it was just a web front end to the compiler . . . which I
called . . . TweeBox . . .

I had all these attempts to try to build something [along these lines],
and I always had this idea, actually while I was in the UB IDIA program
[University of Baltimore, Interactive Design and Information Archi-
tecture], where I was on track to do a master’s, and I was thinking this
would be an interesting thesis project . . . and then I got really impatient
because I was doing it part-time, taking one class at a time, so I was
at least two years away from even starting on [the thesis]. I remember
just deciding, I’m going to do this and try it out, and that’s where the
genesis of [Twine] began.

I had always hesitated to build an actual GUI behind it . . . and then
I was like, there’s never actually going to come a moment where some-
body tells me, You should go ahead and do that—so I just did it. And
that’s how it started.

SM: [Ironically] Why wait for permission?

AS: Since you did mention Twee . . . It’s always been interesting to me
that you’ve included Twee in the releases, that it’s stayed a part of Twine.
Do you see people still using it? Is there a following for Twee or a mo-
tivation for you in keeping Twee part of the platform?

CK: I wouldn’t say that I actively develop [Twee]. . . . For a long time, I
did, and then I lapsed working on it. I came back to Twine. . . . Twine 2.0
was very much for me like, let’s think about what succeeded here, what
didn’t, and rethink assumptions. . . . Tat was when I actually stopped
working on Twee. It seemed like kind of a done deal. [Twee] does what
it needs to do.

[Tere’s] sort of this pendulum swing between programming and
writing. . . . I am building larger projects now and I need to merge
stuf together, so I wrote a bunch of JavaScript, it’s an NPM module
called twine-utils that includes a tiny little compiler. . . . Tere have been
quite a few Twine competitors that have sprung up in its wake. . . . I

364 APPENDIX I

don’t remember all of the names. . . . Te guy who does TextAdventures
.co.uk has one—Squify, I think it was called?—it seemed like for a
while, every day there was someone who said, I have a better way to do
Twine . . . and they all had [a] programming language, like, Here’s a text
fle . . . [something like] Raconteur, which is based on Undum.

To me, the hard problem has always been the interface. It has never
been, like, I need something really sophisticated in terms of function-
ality. It’s actually the ease of use, from my point of view, so it’s a useful
substrate.

Beyond that . . . the people who are into programming, who come
at it from a programming angle, it’s more comfortable to them, like I
defnitely hear about people in the community who are like, Oh man,
I just want to be able to use my text editor, and that’s great, go for it, you
know? . . . [Twee] was a useful stepping-stone. . . . To be honest, I still
use it from time to time, for programming utility kinds of things, but I
don’t see it as a big deal.

SM: Tis is a shif-focus question . . . Have you always thought of Twine
as a free platform, or have you thought at any point of monetizing,
commercializing?

CK: One of the core tenets of my thoughts on [Twine] is that it should
be free, and I think, to be honest, that is a large reason why it succeeded
in the frst place . . . because obviously Storyspace existed, and as I
learned later on, there’s this product called AXMA Story Maker . . . but
it’s not the price tag so much as the open-source thing.

I do cling to hippyish beliefs about open-source, and I read Slashdot
back in the day, which is I think where I got indoctrinated. . . . I still
sort of pine for that period . . . the early 2000s, where the web was . . .
much less a social-media, TV-like experience . . . and I think that is
important, one of the foundational things. . . . Obviously it would be
nice to be paid for my work, but it has never made economic sense to
me. Te people who are using [Twine] are, by and large, not the kind of
people who are going to pay ffy dollars or more for what we [for some
reason still] call a boxed product.

365 INTERVIEW WITH CHRIS KLIMAS

AS: Given the commitment to open-source, have you had any notable
successes, challenges with that, taking that model, maintaining the
Twine code base, especially as you handed it of?

CK: I did a talk at a conference called NoShowConf, which talks about
me burning out on the project and some of the history too. . . . When I
gave the talk, which was maybe 2014 . . . it was defnitely a moment to
refect. . . . So yeah, I totally burned out on [Twine], to be honest. . . . It
was ironically just as [Twine] was taking of that I burned out . . . and
it’s hard because you get a lot of support requests and bug reports.

Te Twine user base ofen is not particularly technically savvy,
which is cool most of the time, but it also means that people will write
in bug reports like It just doesn’t start. Which is very frustrating be-
cause, you know, you feel bad because there’s no information to actually
fx [whatever the problem is] . . . and people ofen have an expectation
that . . . it’s a program like Ofce and Word, so if it doesn’t work right,
it’s a travesty . . . and some people get angry about it. I guess that’s just
human nature, but to be on the other side of it gets frustrating, and I’ve
had to learn and am still learning how to manage my time with the
project . . . and also my emotional well-being.

I used to have . . . a [Twitter] TweetDeck column . . . for people talk-
ing about Twine games . . . or I’d have this very convoluted search term
to see what people are saying on Twitter about Twine . . . and it was . . .
kind of a terrible idea, actually. . . . Tis was just when Gamergate hap-
pened, so I had to close it down because the fow was just too much.

I still have a Twitter account, which I mainly oversee, though I just
brought on someone else to help with it . . . and people will just tweet
at me, “Your sofware sucks” [laughs] and it’s like, thanks! And that’s
tough, and I guess that’s also . . . living a little bit in the public eye, in
the internet sense of the word. People are going to have opinions about
what you do, no matter what. Tat is the major challenge, trying to keep
Twine afoat while maintaining a full-time job elsewhere.

Te truth is, the number of people who work on [Twine] in general is
very small. Tere are people who do . . . drive-by pull requests, which
is good. . . . Like yesterday, somebody came in with a request. . . . He

366 APPENDIX I

wanted to add a thing for adding force touch, like when you push very
hard on a trackpad, to do stuf with that. . . . But the problem with any
open-source project is there’s a judgment call. . . . You are adding a
functionality to this thing that I have no way of testing myself . . . so if
it breaks, I am going to be the guy who fxes it, probably . . . and is that
a decision I’m willing to make? . . . I’ll bet that’s pretty typical for an
open-source project.

SM: Are there particular contributors to the code base who are memo-
rable or rank as among the most important?

CK: Yeah, defnitely. Leon Arnott is a guy who lives in Australia. . . .
I don’t know much about him otherwise, which is also really
interesting. . . . Leon developed a lot of macros, things you can add
to your story to make it do stuf, back in the Twine 1.X days. He had
done a lot with it, and when I was looking at version 2, I thought, this
is going to be too much for me, to do both the editor and the runtime
at once, and [Arnott] seemed to have thought hard about what people
were doing or wanted to do with Twine stories, so I asked him to
work on Harlowe, which is the default [story] format [in Twine 2]. . . .
Leon’s interesting to chat with. He works at a diferent speed and thinks
about things very diferently than I do, which makes for interesting
conversations.

Te other guy is Tomas Michael Edwards. . . . He is the maintainer
for SugarCube, which is the legacy [format], so if you’re used to using
Twine 1 . . . SugarCube takes what I did in 2010 or so and builds on it
quite a lot. It’s a very mature kind of format.

Tose are the two [people] I could go to just of the top of my head
in terms of programming, though obviously the community goes much
wider than that.

AS: Shifing into the community itself, what are some of the things
you see in terms of Twine extensions like community-generated code
that’s not necessarily part of the format choices that you’ve found most
interesting? Anything that’s surprised you?

367 INTERVIEW WITH CHRIS KLIMAS

CK: A lot of it is . . . one-of things. People do really surprising things
with Twine, in the sense of . . . content, obviously, but there’ve been
instances where I’ve seen like, wait, oh, kind of taking it and twisting
it. . . . It reminds me a little of [the way] Andrew Plotkin did an imple-
mentation of Tetris in the Z-machine. . . . Tat level of stuf that serves
no practical purpose, and it’s not necessarily even like a big artistic
statement in terms I understand, but it’s more like technically playing
with what you can do.

Tere’s this guy . . . the only thing I know him by is his Twitter
handle . . . such is internet life. . . . His Twitter handle [is] lectronice. . . .
He did this really amazing thing where it looked very much like a
Japanese RPG, with little dialogue boxes and such. . . . People are al-
ways trying to build RPG games out of [Twine] . . . which is always to
me . . . a giant quagmire because there are a million ways you could
potentially do that . . . lots of little modules or extensions or plug-ins
or whatever.

People came up with this idea for cycling text, which may well have
antecedents way before Twine that I’m not aware of . . . but the idea that
I’m clicking and the text changes . . . you’re not moving, the text just
changes to a diferent adjective, or something like that. Tat was always
interesting to me, and something I hadn’t seen before.

AS: I think that’s the extension I use most.

CK: Yeah, it’s fun to do. At least for me, there’s the fear that . . . you
know, with [disjunctive] hypertext, you’re like, if I click here, will I be
able to get back to where I was? Am I about to jump of a clif? Whereas
if I click on a link and [the current text] just changes, and that’s it, that’s
kind of pleasant, in fact.

SM: My students have impressed me a lot with timed efects [using the
(live:) macro in Harlowe] . . . that thing where you say, If I wait another
fve seconds, maybe it’ll do something . . . or maybe he set it up to wait FIVE
HOURS!—and then you have to crawl the code [to fgure it out]. What
do you think about timed efects?

368 APPENDIX I

CK: One of my favorite Twine things is Queers in Love at the End of
the World [by Anna Anthropy], which has the ten-second thing, but
it’s tricky because in the IF community, people were very against the
idea of having text appear slowly, even, or making [the reader] wait at
all. . . . I remember this big debate back in the nineties on USENET. . . .
David Cornelson was writing this suspense story, and he wanted it to
play out [so that] the text would appear like you’re reading it on a really
old modem, and everybody in the community was like, Tat’s a stupid
idea! I’m going to hate it!—or whatever. And we’ve come so far, I feel
that people have let go of that and . . . let text appear one character at
a time but also play with time in an interesting sort of way. It’s cool. I
don’t know. A game that requires you to wait fve hours would be . . .
challenging . . . but interesting at the same time.

SM: I have a question I’ve been dying to ask since you sort of answered
it earlier. I’ll ask it again, nonetheless. You know Darius Kazemi, right?

CK: I’ve met him a couple of times.

SM: I was talking Twine with him about a year ago, and I wondered,
Should I say, “Twine games,” or should I say, “Twine fctions?” And
[Kazemi] said, “Well, these days the kids just say ‘Twines.’” [General
amusement.] So let me ask you, where would you go with that?

CK: Well, it’s interesting. To sort of sidebar a little . . . I’m a member of
the board of the Interactive Fiction Technology Foundation, [a] non-
proft that’s about community infrastructure . . . and one of the things
we’re exploring is possibly trademarking Twine . . . so then it gets real
muddled if we start saying, like, Oh yeah, it’s a Twine.

To be honest, it’s a struggle every time [I ask myself], Is this a Twine
game? Is this a Twine story? And both times, people might not like your
description, so my internal stylebook is, I just write Twine works. . . .
“Tis is a work of Twine.” . . . Tat was the one middle ground I could
fnd. I don’t really so much care. At the same time, I like the idea of peo-
ple saying, Oh, I made a Twine—even inasmuch as that is a problem,

369 INTERVIEW WITH CHRIS KLIMAS

legally speaking, potentially. [It’s nice that Twine] is a term, and people
know what you’re talking about.

AS: You talked a bit about trying to convert your literary friends and
people writing in a more linear way when you were talking about the
audience for this platform, and Stuart has just touched on the age-old
“games versus stories” debate. So given all of that happening in the vari-
ous spaces of serious writing, which sometimes tends not to engage . . .
when serious writing goes digital, it means they made a PDF . . . over to
games. Where do you see Twine ftting in this larger culture?

CK: I see it as this thing that confounds people. I really like that aspect
of it. I initially thought of [Twine] as this thing that was for . . . serious
writing, I guess, though serious writing is obviously a loaded term. It
wasn’t that I thought [Twine work] was somehow better than a game;
it was more that I couldn’t see how you build a game out of it, originally.
And then everybody came along and proved me wrong, basically. And
that was the other piece of it. I had zero awareness of the indie game
scene at the time.

[Te importance of indie gaming] was the thing that Anna An-
thropy really recognized, I think. I honestly credit her . . . ffy-ffy for
Twine’s success. Because she saw something and was in a digital com-
munity I had no relationship to.

Personally, I think you can build stories with Twine; you can build
games with Twine. I think that’s fne. I think there are things that I
wouldn’t call games that I’ve experienced with Twine. . . . Te problem
is that a lot of people see [the claim that] this is not a game as an insult
[laughs]. And I see how people do that. . . . At the same time, I wish we
could return to a world where it’s not a value judgment—where people
just say, Eh, this is a game, according to my own personal rubric, and
that’s not, and that’s the end of it. Unfortunately, now it’s just so fraught.
I like the fact that there are things people build in Twine that are . . .
aspects of both, and people can argue about it.

I suppose that’s my own hell-raiser tendencies: let us disrupt these
somewhat stufy debates.

370 APPENDIX I

SM: I agree with that. I wanted to ask further about the Interactive Fic-
tion Technology Foundation.

CK: It turns out the acronym [IFTF] is the same as the one for the In-
stitute for the Future . . . which I’m pretty sure is unintentional. [Much
amusement.]

SM: Show up at their conference!

CK: Te president and the ringleader is Jason McIntosh, who is part
of the parser IF community, mostly. He’s run the IFComp for the last
couple of years now. He reached out to me when he was getting it set up.
It’s been in existence since July of last year [2016]. Its real purpose is . . .
there are all these projects run by people in the community, there’s the
IFDB, there’s the IF Archive, there’s the IFComp. . . . All these things are
done because people are interested in them, and it’s great to have that
level of enthusiasm, but the danger is if people burn out, like I did, or
just want to move on, then all this stuf could just completely fall apart.

Right now, [IFTF] is trying to help out with projects that need peo-
ple to look at them. [For instance] right now, the parser IF interpreter
situation on Mac OS is terrible. All the ones that used to work don’t
work anymore on [Mac OS 10.12] Sierra. And it’s a real problem. . . . I
don’t know that I can play . . . the only thing that works right now is
a thing called Lectrote. . . . One of the things we’re working on right
now is to have people fx up this interpreter called Gargoyle, which had
been working really well for a long time. So [IFTF] is about adoption of
projects, and eventually, hopefully, to fund-raise to help grow stuf . . .

SM: So this gets to the metaquestion I want to ask: What kind of com-
munity has Twine become, what kind of community does it belong to,
and it sounds like you’re saying it’s part of the general interactive fction
community?

CK: I believe so. You may get diferent answers from diferent people, but
as someone who is more steeped in that community, I think of it that way.

371 INTERVIEW WITH CHRIS KLIMAS

SM: Could you tell me how you think of the IF community? How does
it ft into the culture generally?

CK: It’s an interesting question because [the IF community] has
changed so much over time. When I frst got internet access . . . when
I frst went to college, which would be have been in 1998 or so . . . I
trawled around in USENET and found the news groups . . . and so,
through the nineties . . . I don’t exactly know when they died out. . . .
It was this very, very tiny community, relatively speaking, of people
who were really, really dedicated to it. . . . Looking back on it now, there
was always that thread in Infocom’s advertising of Text-based games
are inherently superior to graphical games because your mind is the best
graphics engine ever . . . or whatever. Which I kind of believe, though
not necessarily to the exclusion of graphical games.

Tere’s this online term, Amiga persecution complex . . . you feel you
have this superior thing but the world doesn’t recognize [it]. [Te IF com-
munity] had that vibe to it, for a time, but at the same time, people were
doing really interesting stuf. . . . Te other thing I hear people say is that
everything interesting going on in the gaming world at large happened
in the IF community ten years before. Which is a bit of an overstatement,
but I believe a lot of that is actually true.

I never really intended it to be this way, but Twine became this exis-
tential threat [to parser-based games], at least among the old guard. . . .
People [said], We have this very strict defnition, and we clung to it be-
cause it was part of our community identity: you have to type in words
and you get back text in return, and you can’t even show graphics—[or],
God forbid—sound! I clued into this way late, but there were people in
the wider world [saying], Twine games aren’t games, and people in the
IF community saying, Twine games aren’t IF.

Carl Muckenhoupt, who was the guy behind Baf ’s Guide to the IF
Archive, one major review site, wrote this article that explained it really
well, though I thought his view was incorrect. . . . [Muckenhoupt said],
it’s like, you’re really into jazz, and you keep going to this one jazz club
that is preserving your particular defnition of jazz, and all these young
upstart kids show up and start ruining it with their new jazz.

372 APPENDIX I

I’ll bet this is a pattern that repeats in every subculture . . . where
people come around and challenge things, and the old guard hate it . . .
and it’s funny to me because I came from that [traditional] part of the
community, and I never intended [Twine] to be this massive, subver-
sive, destructive tool, but I also like to think that at this point, people
have chilled out a bit and realized we can coexist in peace.

Tere’s the IFComp and then there’s the Xyzzy Awards, and peo-
ple look at how many parser games versus how many choice-based
games are in both, and because the community’s a little bit nerdy, there’s
graphs, and stuf like that, and trend lines, and people freak out and
post detailed analyses. . . . It’s a little overblown, obviously, but people
have started to relax. . . . An equilibrium is starting to be achieved. . . . I
forget what the numbers were last year, but it was about equal [between
parser and Twine entries].

Tis is a little bit grandiose to say, [but] I think that without Twine,
the [IF] community would have continued to be a small thing. Tere
are defnitely people who pick up parser games now, even so. I was at
PAX East in 2011 and they had an IF meet-up, and there was a girl who
must have been about seventeen who showed up at the meet-up, and I
was walking back with her to the main area, and I asked how she found
out about IF. I said, “You are the youngest person I’ve ever met who’s
into it.” And she said, “Oh yeah, I found [interactive fction] on the
[Apple] iOS Store and just started playing the games.” So there’s some
longevity to [IF].

And it’s not just Twine, actually. Choice of Games had a similar
issue, and their communities were much bigger, and there was an erup-
tion of controversy over . . . I forget which Xyzzy Award. . . . One of their
games was nominated for it, and a bunch of their fanbase came over to
the forums and voted for it, and everybody panicked because normally
a thing you’d see 200 votes for was getting 1,500, and so everybody was
[thinking], You must be cheating. But then people mellowed out about
it and realized it was not this big existential threat.

AS: Since you’ve talked about Twine as an existential threat in the con-
text of IF . . . you and I talked about this during Gamergate—what

373 INTERVIEW WITH CHRIS KLIMAS

do you think about the ways Twine has disrupted mainstream gaming
culture?—the way the legacy of Depression Quest hangs over us . . .

CK: Tat is sort of the go-to example. [Tat game approaches its sub-
ject] both in terms of form and content. Overall, I think there’s bias
toward procedural-ness—this has to be hard to program in order for
it to be good, artistically. Tere’s obviously parallels in other mediums,
even from super-photo-realism to stuf that’s more impressionistic,
where people say [on one end], Oh, I can do this—people say that about
everything.

I think it was either TotalBiscuit or someone even worse who
said . . . Twine games are great because you can make them without
knowing how to make games . . . [to which I say] YES, I AM ON
BOARD WITH THAT! I think he was actually meaner. I think he
said you can [make Twine games] without any skills—which I am in
favor of—or talent, which I disagree with [laughs] and so there is that
aspect, where it has to have 3-D graphics to be a game, or something
like that.

Tere are a lot of historical reasons for that, and a lot of them hap-
pened by accident, where you look at how journalists cover games, to
see how that came out. . . . Te way I talk about it, when I give talks, is
that the content of Depression Quest is really interesting, too, because
there are very few games that talk about mental illness in a very non-
gimmicky kind of way . . . but that obviously got lost completely in the
whole controversy.

I think long term what Twine might really be remembered for is
for broadening the scope of what a game can be about . . . and allow-
ing more personal narratives. . . . It’s hard to build graphical games
unless you’re a very skilled artist. . . . It’s hard to build a one-of; there’s
more efort involved in something that will take twenty minutes to
play or read through. Tat’s why the confessional Twine genre is such
a thing: there’s a more immediate payof to it. Say I want to build a
Unity game based on the way I feel today. . . . You’re going to be done
next month, where you’re going to be done with it in Twine, hope-
fully, that same day.

374 APPENDIX I

SM: I still feel that way about [HTML] and JavaScript things, where I’ll
say, I really want to do this thing . . . and it’s going to take three weeks,
but I won’t feel this way in three weeks.

CK: Yeah.

SM: You’ve just touched on where you think Twine will be in the near
future, or the even further future. Could you expand on that? If you
could think twenty years out, what do you think happens to Twine?

CK: I’m a pessimist by nature. . . . I think Twine will no longer . . . I think
it will always have a place, but at the same time, I think it won’t have
as prominent a place as it has right now. I see some game companies
are taking Twine writing samples, which is pretty cool, and that argues
for more longevity among the world at large. But at the same time, I’m
mindful that . . . Twine becoming popular was . . . sort of an accident.

Nothing I tried [made the diference] . . . other than building it in
the frst place, which was [laughs] NO BIG DEAL REALLY! As far as
making it popular, I feel like I was very not-responsible for that. . . . It
was really Anna [Anthropy], among others, who managed to make that
happen, and it seems equally likely that if [Twine] remains popular . . .
it will be for reasons I have no idea about.

I’m trying to keep myself a little rooted on the ground and to realize
nothing is forever, especially in the sofware world. It would be nice [for
Twine] to persist as a standard-ish format. . . . I still want to be work-
ing on it. . . . I think it was Judy Malloy who was writing about . . . her
own hypertext engine that she’d been working on since the eighties . . .
and that’s amazing because that amount of time . . . it would be really
interesting to see what that looks like. . . . Tere are very few sofware
projects out there on which people spend more than a decade, really.

I don’t see myself ever losing interest in [Twine], exactly. . . . It will
always be a thing for me, but I’m not sure it will always be as big of a
deal as it is right now, and that’s OK . . . and that’s the thing that I’m
trying to prepare myself for, I guess. I keep wondering, What is the next
Twine going to be? and if I knew, I guess I would build it.

375 INTERVIEW WITH CHRIS KLIMAS

Te one thing I think it’s not so great at, and people have tried to
improve on is . . . I was talking to people at the Mozilla Foundation be-
cause I was looking for a home for Twine, and [the man from Mozilla
asked], Well, what’s the mobile story for Twine? And I [thought] I don’t
really have one because I hate typing on a phone, and I feel like that’s
the one aspect that someone could really improve on. Te other thing
would be making it better at collaboration. . . . I know Stuart and I have
talked about that in the past. . . . Tat’s something I want to try to do.

SM: Tis is going to stop being [an] interview and start being an ordi-
nary conversation, but have you ever thought about people being able
to just talk to the phone and compose orally?

CK: Mmm . . .

SM: As you were talking, I was thinking about [the IF programming
language] Inform 7 and [its] natural-language interface. I kind of hated
the idea until I started working with it, and now I want everything
to be in English, or whatever [Inform 7’s idiom] is. . . . If you think
about being able to create powerful structure with almost gestural
simplicity . . . that might be really cool.

CK: Yeah, I agree. I think that . . . it needs to embrace text, but also
embrace the fact that it’s on a phone and on a relatively small screen . . .
and swiping or any kind of gesture is much more natural on a phone
or any kind of touch screen than it is on a track pad or moving stuf
around with the mouse—that kind of thing.

AS: What do you think about the future of interactive fction? We pick
up the odd seventeen-year-old who fnds it on the iOS store, and that’s
good, but what do you think more broadly about the future of the in-
teractive fction community?

CK: [Te Inkle game] 80 Days is my really short answer. It’ll be things
that people don’t even think of as IF, or like [the mobile game] Lifeline

376 APPENDIX I

[from Big Fish Games]. Stuf like that. I have a lot of respect for Andrew
Plotkin, who’s also on the board of the IFTF, and he’s trying really hard
to make the parser thing work on a phone and elsewhere, but I ulti-
mately think it’s going to be something else that keeps the principles of
the medium and not necessarily the trappings.

If you ask people what kind of game 80 Days is, I don’t think any-
body will say it’s interactive fction. Part of it is that interactive fction
feels sort of esoteric. . . . Te community held on to the defnition of IF
with a really tight grip . . . and this orthodoxy emerged . . . and to me,
it’s better to, like, let it go a little bit.

I was talking to Brian Moriarty [of Infocom], and he seemed a little
bit perplexed by the worship of parser [games] by people he ran into
still . . . because he [was thinking], How do we adapt this? He told me
about . . . a voice-driven [storytelling technology] . . . which is interest-
ing because I certainly listen to a lot of podcasts now, when I drive, and
so I could see, like, talking back to it, potentially . . . [and] in general,
speech seems to be the next big thing as far as technology goes.

You can draw on a ton of IF things. . . . Emily Short and Aaron
Reed are now working at a company called Spirit AI. . . . I don’t know
their elevator pitch, exactly, but it seems like they are taking a lot of the
principles behind IF and applying them to . . . designing a traditional
AAA kind of game, where it’s like, Our company will help make your
AI better . . . or make your conversation trees better, and stuf like that.
To me, it’s like this hidden substrate to [IF], where you’re using it, or
playing it, but not necessarily thinking of it as such.

AS: I think Aaron Reed is also working on that.

CK: Yeah. Tere’s also an NYU professor . . . Mitu Khandaker-Kokoris. . . .
I don’t know much about their technology, but . . . Emily is a really smart
person, so I fgure there must be something there. And Aaron is too, but
I’m less acquainted with him. . . . I really like the Inform 7 book he wrote.

SM: Yeah, I love it. [I’ve taught with it so much that] my copy is now
completely shot. [General laughter.]

377 INTERVIEW WITH CHRIS KLIMAS

CK: I like Sand Dancer, the game he has in the book. . . . So anyway,
there’s a lot of talent there [at Spirit AI], so I’m interested to see what
happens, and obviously Inkle, they’re kind of a big deal, too, but their
new game that they just announced, [Heaven’s Vault], is moving more
toward a graphic novel feel than a text-based one. . . . I’m interested to
see what they do with it.

AS: Tat defnitely will be interesting. And you have companies like
Netfix supposedly doing a choose-your-own-adventure concept.

CK: We’ll see. Sam Barlow is the guy I try to pay attention to on that stuf
because I really liked Her Story, which was really innovative . . . and I for-
get the company that he’s with, but I feel that he will come up with some-
thing really interesting. . . . I’m not so much convinced about Netfix.

AS: If they have any sense, they’ll hire [Barlow].

CK: Hopefully! Brian Moriarty has this amazing talk about the history
of interactive cinema, and having learned from that, [I realize that]
this is a really old concept and nobody has really changed much about
it since the very beginning, and it’s always been kind of a novelty; it’s
never gotten any traction, it feels like. And so it seems, the Netfix thing
sounds exactly like this . . . but we’ll see.

AS: A lot of folks from interactive fction are going of and working for
companies and founding start-ups right now. Are you thinking of doing
anything with this background of everything you’ve done?

CK: I would love to. I’ve talked with folks, but I’ve never found the right
ft. I’ve been really hesitant to get into the game industry per se. Back
when Zynga—East, I think it was?—had a Baltimore-based branch, I
talked to folks from there, [but I thought], Tis is Zynga, and I’m not
sure my values are compatible with yours.

SM: And they lasted about eighteen months too.

378 APPENDIX I

CK: I guess I dodged a bullet there. I would have switched careers and
immediately gotten laid of. Which I guess would have been an instruc-
tive experience in the game industry, right there. It’s very tough right
now because all the companies are like fve people.

And I have my own two-person company. It’s called Unmapped
Path, and the frst client work that we’ve done is for Andrew Schnei-
der, who’s written this incredibly long (by my standards, at least) about
150,000 words . . . this interactive story about Robin Hood. We’re build-
ing that for him. It’s supposed to be coming out June-ish . . . and we’re
working on our own projects as well.

Te idea is to leverage Twine to build games for mobile. And that
goes back to the problem of Twine not having a good story on mobile.
If I play Twine games on my iPad, it’s a little bit janky, to be honest. . . .
I keep meaning to come around and improve on it. If I tap on a link, it’s
like for some reason the whole thing highlights. . . . So we are leveraging
the content creation aspect of Twine to build games that feel like text
adventures but hopefully have a little bit more mass appeal.

Tis is the boring part where I say that we don’t have anything to an-
nounce yet, but there’s something we’re working on that we hope to have
an announcement about soon as far as games go. Because I see the role
of Twine as like a Photoshop or a Unity. Te interesting part to me is not
so much the tools but the content. I would like tools as much as possible
to be open-source, but I don’t feel the same way about games or content
per se. I’m more comfortable buying a book than a sofware program, but
I guess that’s just my deal.

[Around this point, Chris asks about the book we are writing, which is
our chance to say we don’t have anything to announce yet . . . and brings
up the subject of books about Twine.]

CK: I was at Games for Change a few years ago, and Merritt Kopas [now
known as merritt k] was speaking with Austin Walker and Naomi Clark
from NYU, and I came up to them afer the talk, and Merritt actually
gave me a copy of her book, Videogames for Humans, and it was like,
wow, when you have a book written about something you made, and

 379 INTERVIEW WITH CHRIS KLIMAS

it’s just sort of astonishing. So when there’s a book out of all this, it will
occupy a place of honor on my bookshelf.

SM: Well, we hope so. [General amusement.]

CK: See, I’m not even saying if, I’m saying when.

AS and SM: Tanks.

Appendix II

Interview with Dan Cox

November 3, 2017, at HASTAC in Orlando, Florida

SM: Can you talk about what drew you to Twine, or your lead-up to
Twine? How did you get started?

DC: I frst ran into Twine in November 2012, which is when Porpen-
tine’s Cyberqueen was submitted at Ludum Dare. Which I was a part
of, and when you take part in them, you participate as a judge, so I saw
it right then. I think I started posting stuf late December 2012 for the
frst time.

SM: So via Porpentine?

DC: Yes.

SM: What is Ludum Dare?

DC: Ludum Dare is a twice-a-year game jam that has a random
theme, picked sometimes hours before. It’s usually forty-eight hours,
although sometimes they change the rules—that’s been going for
years now.

382 APPENDIX II

SM: So via the personal game community to Twine? What other things
were you working with before Twine?

DC: I did Flash games for a little while; I did C++ before that. Two to
three years before that would have been middle of high school for me.
I’m in my early thirties now.

SM: It’s appalling how old people are who seem very young to me now.
Tis will happen to you eventually. People will say they are in their
early thirties and you’ll realize there’s this whole swatch of things that
happened before you were born.

SM: I noticed that people like Porpentine or Anna Anthropy use pen
names or screen names that have almost become a signature of Twine.
What’s your screen name?

DC: Videlais.

AS: Do you see Twine as belonging to the game space, the interactive
fction space, the web space, or belonging to some other tradition?

DC: I would say it belongs to the interactive fction space, since that
opens more doors than it closes. It has its roots in wikis, but I don’t
think it [does] anymore: for the longest time, it was built on Tiddly-
Wiki, from when Chris originally built it. If there’s any of that lef, it’s
just the barest of bare bones. 1.3.4 and 1.4.2 still are on that, but 2.X, as
far as I know, is not based on that.

SM: Tis is continuity with our interview with Chris, when I asked
him, “So why did you build a hypertext system?” and Chris replied, “I
didn’t think that’s what I was doing, I was much more thinking about
interactive fction.”

DC: I will just say, especially sort of post Gamergate—well, Gamer-
gate’s not really over—I’m way more open to applying things like

383 INTERVIEW WITH DAN COX

developer and gamer to things in Twine because of the hideousness
that came out of that, and especially conversations I was a part of
right before that where people were sort of dismissing it. Even before
Depression Quest was around, there were huge conversations about
“Twine stories aren’t games, they aren’t developers.”

SM: You’ve in fact anticipated another question from our list—should
we say Twine game or Twine story, or Twine fction? I put this to Darius
Kazemi, and he said, “Te kids just say Twine.”

DC: I’ve seen that in a number of places. I should put it to the commit-
tee and see what they say. I have at various times said Twine fctions,
Twine stories, myself.

SM: When we mentioned “Twines” to Chris, it raised the question of
trademarking Twine, which apparently has been discussed.

DC: Yes, it still is.

AS: Let’s talk about some of the things you’ve been working on, like
the Twine Cookbook. What motivated that project, and where do you
see it going?

DC: A not-small amount of it is me being sort of selfsh in that I’ve
got fve years’ worth of Twine tutorials and videos that are somewhere
around ten hours’ worth of content and I still get comments from peo-
ple looking at stuf that was recorded around four years ago and going,
“Hey, this doesn’t work anymore.” And I’m like, “Yes, because it was for
three versions ago, for systems that don’t exist anymore.”

When I joined the Twine Committee, I proposed something similar,
and they said they had had something like it on the backburner and asked
if I’d like to take it over. And I said yes because I’ve got years and years
of examples. We had discussions about how those examples would go in
and become a part of it. It’s still an ongoing conversation, and I think I just
did something yesterday, planning a meeting on how to move forward.

384 APPENDIX II

AS: Why GitHub?

DC: Tis was an interesting problem. We wanted to be as open as pos-
sible and traditionally—and I say traditionally in that it started with
Twine 2—most Twine documentation has been on BitBucket. Chris’s
stuf is there, Leon’s stuf is there, most of the story formats live there.

Te problem with BitBucket is that a lot of the people who contrib-
ute to projects are just more familiar with GitHub from a brand per-
spective. So with GitHub, it’s easier for those who don’t have accounts
to navigate. Given we were considering moving to GitHub anyway, this
was a good test, starting on one of IFTF’s private accounts, to let us play
with some things. We’re trying GitHub out to see if it works as well to
support open-source and ofer a better way to let people contribute.

SM: And you’re committed to the open-source aspect—it has a wiki
feel, so users will be updating and making changes?

DC: Yes. Tat was a Chris suggestion. He’d been looking at GitBook,
which is the format we use, and I played around with that—it’s weird
because my memory of it extends before it was public, and we tried
other things. But we liked GitBook for the free export to a range of
formats.

SM: Could you give us a little gloss on the IFTF? We heard a little bit
from Chris about it.

DC: My understanding of its rise is it came about from a number of
diferent problems. Te Interactive Fiction Competition (IF Comp)
wanted a place to keep track of code and funding and other things.
Simultaneously, Chris was feeling the pull of the Twine community
exploding and not being able to keep up with a lot of the development.
Tere’s also a bit of a history here in that 1.3.5 was Chris, but 1.4.2 sort
of wasn’t, in that it was Leon and a couple other people who had moved
into that space. Eventually, those people took over a story format, and
then they all moved into development for Twine 2.

385 INTERVIEW WITH DAN COX

IFTF came about as a confuence of wanting to keep track of a bunch
of interactive fction eforts and give them a place, and a nonproft, and
to pool funding and resources. I’ve really only been a part of it for a few
months now, but my understanding was we’ve got all of these diferent
funding sources and this was a way to put it all under a single nonproft
to protect their future.

SM: Do you have a sense that this is a formalization of the IF world,
that this might be a starting point to look for money?

DC: Tat’s in fact going on right now. We have an asynchronous meet-
ing this week, and we’ve started the conversation on If we fnd funding,
what do we do with that? And simultaneously, there’s been conversations
about formalizing specifcations, like the Twee specifcation, which is
currently informal. It doesn’t have an ISO or IEEE format or anything.
Tere’s been ongoing conversations about how we might standardize to
help people—the Twee stuf ’s not documented anywhere, for example.

SM: From my perspective sitting in the dinosaur world of higher ed,
this feels like the arrival of the mammals. As our institutions die out,
here’s maybe a way to keep the things we care about alive. Good luck
to you.

AS: Switching gears, we’ve discussed the open-source aspect of Twine:
How’s that model working for you, and what do you see as the successes
and challenges?

DC: My own experience with the open-source communities, which
has extended to three or four of them now, is that it tends to be the
eighty-twenty problem, where 20 percent of the contributors are doing
80 percent of the work.

Right now, at least within Twine, there is a great deal of support
coming out of the committee and less work coming out of the com-
munity, which isn’t doing technical work. Tey’re producing a lot of
interesting things, but they don’t always contribute back to the technical

386 APPENDIX II

documentation, which is a problem right now. Chris told me afer I
joined that the push for me to be on the committee was driven in part
by my history documenting Twine stuf and the need for a champion for
that. I’ve made it my mission to do the work of trying to document story
formats. As an example, Snowman hasn’t had any formal documenta-
tion for a year and a half. I personally wrote a lot of it, and Chris checked
it for me to make sure it was right. Tat went up on the wiki a few weeks
ago, and before that, we had some Google documents I had created.

Tese eforts are me trying to collect community knowledge, and
in doing that, I learned that a number of people had been doing that
already—Keegan Long-Wheeler, for instance. So community recep-
tion has been very positive, but it’s also turned out that a lot of people
have been doing this work but none of it is standardized or formalized.
We’re just now trying to get it on the site, which has been an interesting
open-source problem.

Te successes and problems, at least as I’ve been dealing with docu-
mentation and standardization, have been interesting in the push and
pull about how best to document code when we have existing docu-
mentation on diferent websites. How do we make it easier for people to
see that? One of the problems right now is that to see the documenta-
tion of story format, you have to know that you can change story for-
mats and then click a link to an outside site, which is three or four more
steps than it should be, but it’s been the traditional way. We’re trying to
fgure out UI/UX stuf at the same time as we improve documentation,
and solve parts of the problem with the Cookbook, and fgure out what
the future solution might look like. Tere’s a whole lot of stuf in the air
as we’re trying to fgure that out.

SM: Given this range of formats, do you think there’s any chance of
Twine having a schism where a format takes of on its own?

DC: Away from Twine?

SM: Like, there was Twine, but now there’s Harlowe. We don’t hold for
Snowman.

387 INTERVIEW WITH DAN COX

DC: I don’t think there’s been ofcial talk of that, but yes, my personal
feeling precommittee was that I was seeing people get annoyed when
I made videos supporting one story format over another. Anyone who
has looked at them over time realizes I do a run of like a dozen on one
format, and then I switch and do a run on another, but I have seen that
in places. I think it’s more because of the weird functionality overlaps
and disconnects. For instance, for a while, Harlowe didn’t do arrays,
but now it does—SugarCube did them better, so if you wanted to do
anything with arrays you would use it. And then, of course, Snowman
hasn’t had documentation in forever. Generally, they try to be on par
and support similar things, so I don’t think it would be purposeful.

AS: From an educational perspective, this is why it took me so long to
get on board with Twine 2—the variance in story formats, particularly
in syntax, creates a lot of [confusion] for students. Do you think the
formats will ever reconcile?

DC: I wish they would. I will say that while trying to write the Cookbook
stuf, I’ve gotten complaints that “I’m doing this wrong” on parts, and it’s
in part because [of] the transition between thinking in diferent story
formats—the diference in variable scope between formats, for instance.

SM: When people make up a language from the same root as yours that
isn’t yours, you’re in trouble.

DC: We had a whole conversation about whether we should make things
as close as possible to one another—if we’re using the replace macro here,
should we change it, or try and match the diferent functionality in the
story format? Link replacement in Harlowe and SugarCube works slightly
diferently, and Snowman doesn’t have link replacement at all. I wish they
would come together, but I don’t anticipate them ever doing that.

SM: How well are Twine folks connecting with the parser-driven In-
form 7 community, for instance? It’s almost like we’ve got diferent con-
gregations in our church, but then there are other churches.

388 APPENDIX II

DC: I will say on our IFTF Slack, the general channel is open to any-
one, and I’ve seen conversations between Chris and Zarf (who does
IFComp/Inform stuf), and I’ve seen groups gather and start general
conversations connected to past projects, such as the Inform Recipe
Book.

SM: History is a factor here, as we’re discovering.

AS: We talked a little about Twee and its documentation. What do you
see as the motivation and future of Twee?

DC: I can talk a lot more about the future of Twee than I can talk about
the past, since I don’t know the motivation behind the decisions Chris
made with Twee or the community’s view previous to me. I was aware
it existed, and my feeling is that they wanted a format that they could
exchange between versions and import and export. With Twine 2, the
ability to import from HTML, and thus to import anything that was
made afer Twine 2, in any story format, was essential.

As for the future of Twee, I haven’t been an active part of these con-
versations, but as part of the committee, I’ve been observing them. Te
story format editors, along with Chris and a couple of other people,
are trying to fgure out a way to standardize it so that other people can
build editors for it or tools that export it. One of the things we’ve found
is that people want to use parts of Twine in Unity and other engines,
so Twee has been a format bridge to help people with that. Tere’s no
specifcation for it, so you usually just have to go ask people, “Does
this work?”

As part of this, we’ve learned there’s no way to do commenting in-
ternal to Twee code either. You can do HTML comments in Harlowe
[and] JavaScript comments in SugarCube and Snowman. Tis turned
into a Cookbook problem: How do you put comments in the code to
show people on a website? I don’t know if anything will come of it this
year, but there is an active conversation about it and where we put com-
ments. For the future, I think the hope is to build something that can
move toward a visual interface.

389 INTERVIEW WITH DAN COX

AS: So moving out of the code and into the community, what has sur-
prised you the most in how people are using Twine? What do you most
admire?

DC: I would say the anti-Twine response has been the most interest-
ing, particularly since 2012. One of the things I’ve gotten the most
angry about with individual people is people saying Twine stuf ’s not
games, or Twine stuf ’s just projects, or even people going as low as to
say women can’t code, or we don’t want people of color, or we don’t
want queer people—a whole [lot of] homophobic, racist, misogynist
responses—which blew up during Gamergate. It makes sense in a weird
way that it blew up around Depression Quest because of Quinn’s use of
Twine. Tere’s a lot of silent hatred that was bubbling and exploded
in its wake. My frst response is, “Who cares—like, what are you, the
game police?”

AS: Which was, of course, a Twine game.

DC: My response pre-Gamergate would have been to say that you’re
not Chris, so who are you to say what Twine is? But in a positive way,
I’ve seen Twine embraced in academia, which I did not think was ever
going to happen—your Chronicle posts and mention of my videos,
which is where we met. Previous to that, I was told by people at my
current institution that Twine was a waste of time. I’d been doing the
videos for a while, but I don’t talk about Twine a whole lot outside
of Twitter. I was told Twine was a waste of time, it was never going
to catch on, and that I should stop doing the videos, and eventually
that I should just take the videos down. My feeling from that was
“Oh right, no one in academia is ever going to care about Twine.”
It has been adopted by academia in a number of surprising ways in
the last year.

Based on the initial negativity, I’d decided not to talk about Twine
at conferences, as my thought was of course, Everybody hates Twine,
so I’m just not going to talk about it. Last year, I introduced myself in a
workshop as the guy who does these videos, and everyone went, “Oh,

390 APPENDIX II

it’s you,” because they’d only ever heard my voice and didn’t know what
I looked like. “You’re Dan.”

When I started making videos in 2013, Anna Anthropy’s guide to
Twine already existed, so Twine being embraced by the personal game
community was not very surprising. It had been that way for as long as
I’ve known it. But the hatred? I’ve never understood it.

To turn to your next question, what have I admired? I tried my
hand at personal games, and I found that I have the teacher bug more
than I have the developer bug. I’m really good at explaining things, not
particularly good at creating things. Te people I admire are those who
can imbue wonderful and personal stories into Twine. I’m sometimes
jealous of that, when I’m moved by a game that’s amazing. I admire
people who do weird things with Twine, like when Porpentine’s done
something new, like a jQuery experiment pre–Twine 2 for a proto-
MMO with multiple players in the story. She always does wonderful,
delightfully weird things. Even Cowgirls Bleed by Christine Love was
really cool and inspired a whole lot of conversations around whether
we should try to enable that in Twine 1. I was excited to see a lot of that
come into Twine 2, like events and mouseovers suddenly were enabled.

A lot of student work is also great. My teaching experience with
Twine has been very strange—entirely online for fve years. I’ve never
taught it in a classroom. My experience with my students is that some-
one would email me a question, I’ll try to answer it, and then they will
disappear. Tere’s a couple people that have been very nice and a year
later or so will email me a “Tanks, Dan” and put me in the acknowl-
edgments or something. It’s usually triage. Student projects have always
been my favorite.

AS: From your perspective, what’s Twine’s place in larger culture?
You’ve talked about it fnding more of a space in academia, and of
course there’s the more literary world, the IF world—do you see Twine
as belonging, or really being its own community?

DC: My increasing feeling over the last few years is it doesn’t really mat-
ter as long as people are using it and doing good work—and good work

391 INTERVIEW WITH DAN COX

here defned as not hate speech. Over the last fve years, I’ve felt a very
strange connection to the community, in that at times, I feel like I’m
very, very close to it, and it feels like there are maybe ffy people who
are the main contributors and that I basically know the names of them.
Porpentine, Anna Anthropy, [and so on]. And then there’s times when
I’ll discover there was a whole other community producing hundreds
of works that I knew nothing about.

Te other day, when I put a call out on Twitter for teaching resources,
I found a community that had been using Twine for years. Tey had a
ton of personal projects, tutorials, student projects—all archived—that
I couldn’t believe I hadn’t seen. And still they said, “Tanks, Dan.” And
I’m just in a room by myself, talking to myself for hours at a time, trying
really hard to say things like “the value of the variable” and not screw
that up.

AS: Is there anything you would like to see from Twine in the future?

DC: Someone once asked me, “What can Twine do? Is it anything a
web browser can do?” And I said yes, and I’m going to forever tell that
story because the answer is always yes. Te possibilities are endless.
Tis includes things like game controllers—I’ve seen some projects use
game controllers. I’ve seen stuf integrate video, audio, like your thing
at SIGDOC last year. What haven’t we tried? Well, what hasn’t games
explored? Every time I think games cannot do that, someone comes out
with a game like Blindsight (all audio) or Hidden Agenda (using mobile
phones to play and vote on a story).

AS: So where do you think it’s headed in the next decade?

DC: I think it’s easier to say in the next year what I’m hoping will hap-
pen: documentation and standardization, which is sort of a double-
edged sword—formalization also cuts. My hope is that standardization
will help more than it hurts. As for the second decade, I have no idea. I
did not anticipate Twine 2 existing. I didn’t even know Chris was work-
ing on it, and then, hey—Twine 2. Harlowe has changed a whole lot. if

392 APPENDIX II

you’d asked me if Sugarcane would become SugarCube, I’d have no idea,
so in a decade—I have no idea. I’ve seen with Flash and HTML5 proj-
ects, they’re around because there’s a niche for them, and then when
there isn’t a niche, they fall. Will the web browser be around? Or is the
web browser the computer? I don’t know.

I will say, when I mentioned Inform the other day in a workshop,
someone laughed and said, “People are still using that?” And I laughed
and said, yes—me.

Appendix III

Bonus Practical Chapter: Beyond Twine

One of the major virtues of Twine, especially with the Chapbook story
format, is the way it connects smoothly to other kinds of sofware prac-
tice. In this encore practical chapter, we look beyond Twine into the
coding world we’ve briefy glimpsed in previous chapters. Te projects
in this chapter do not use Twine at all but depend instead on HTML
and JavaScript, the associated coding language supported by all modern
web browsers. We make this departure from Twine not because we’ve
exhausted its possibilities but to serve two complementary purposes.
On one hand, we explore some design techniques Twine does not
readily support. At the same time, this excursion into the wilderness
may put into welcome relief the things Twine makes easier. You may
come away from this chapter with a renewed appreciation for Twine,
especially if your interests lie mainly with storytelling and turn-based
interaction.

Tis chapter might not be for everyone. As we said all the way back
in chapter P-2, code work can be daunting. Twine spares its users sig-
nifcant drudgery and detail, including things like spelling, capitaliza-
tion, syntax, order of operations, and some basic math. Te projects
in this chapter involve only very modest code structures, but they do
raise the bar of complexity slightly above even our more code-intensive

394 APPENDIX III

Twine practicals. If you are willing to trade design constraints for rela-
tive simplicity, skip this wilderness tour and stay in the civilized pre-
cincts of Twine. It’s an eminently livable environment. If you’re tempted
but uncertain about the exploring that lies ahead, here are some ques-
tions for the boarding ramp:

1. Have you ever built your own web page or site, without using
a code-generating tool like Dreamweaver?

2. Are you considering working with more sophisticated game
design systems such as Unity?

3. Do you like making things that break conventions?

Answering yes to any of these questions qualifes you for the trip. Of
course, you may also proceed if you don’t have a choice—maybe this
chapter has been assigned for class—or if you’re just the kind of person
who always does things they’re told to avoid. We warned you.

Tools and Procedures

Even though this chapter does not work with Twine, supporting ma-
terials can be found online at https://github.com/AMSUCF/Twining.
You’re as welcome to adapt the code examples here as in the other
practical chapters. You won’t be able to import our .html pages into
Twine, obviously, but you can do something just as useful: use the
“View Source” feature of your web browser to see our code. If for
some reason your browser makes this difcult, we’ve provided the
code in text fles with notes in cases where the code is meant to be
placed anywhere other than the HEAD division of a web page (men-
tioned later).

Instead of the Twine application, you will need two other pieces of
freely available sofware: a web browser and a text editor. Any reason-
ably current browser will do except Microsof Edge, which for some
ill-considered reason makes opening local web pages very hard. At this
writing, Google’s Chrome browser is generally preferred by web profes-
sionals. When we say text editor, we do not mean a word processing

https://github.com/AMSUCF/Twining

BONUS PRACTICAL CHAPTER: BEYOND TWINE 395

program like Microsof Word but a simpler program designed to pro-
duce plain text or ASCII fles. If you have a Windows system, type
“Notepad” into your search window. You should have an application
by this name. On a Mac OS computer, the equivalent program is Text
Edit. For Linux users there is VI. Because we spend signifcant time
writing code, we use a commercial product called TextPad, available for
Windows and Mac OS. Tis program adds many useful features but is
by no means required.

Do not attempt to build any of the exercises in this chapter with
Word or another word processor, even if you choose the text-only save
or export option. Word processors ofen add unseen formatting infor-
mation that can cripple a web fle. In fact, because the level of detail
in code structures of these projects is high, you may not want to type
what you see at all. You’re better of downloading the digital version of
this chapter, or even better the complete fnished code, from the Twin-
ing website (https://github.com/AMSUCF/Twining). Open one of these
fles in a text editor and you can modify and tinker as you like. Because
of this recommendation, we’ll modify the visual convention of previ-
ous chapters. Code fragments will be boxed, but we’ve omitted the ◊
prompt for text entry.

Te kind of DIY web coding we describe here is a two-window ex-
perience. You need your text editor and your browser both running.
(Two windows does not mean two monitors; you can toggle back
and forth.) You need the same fle open in both applications—doing
this will not cause a crash. Te taskbar is your friend. Te typical
development process starts with entering some code into a web page
fle, which is a text-only document with the extension .htm or .html.
Te extension is not optional. If you try to open what you think is a
web page in a fle having any other extension, such as .txt or .rtf, all
you will see is the page markup, not what the markup is supposed to
produce. Once you’ve saved your changes in the text editor—make
sure to save—switch over to your browser and open the page fle
locally.

If you wonder what open the fle locally means, we have some news
for you. (Also, consider replacing that Microsof browser.) Browsers

https://github.com/AMSUCF/Twining

396 APPENDIX III

mainly pull in data from the internet at large by communicating with
computers called servers via HTTP. However, all web browsers—even
Microsof bleeding Edge—can obtain data by opening a document on
the computer on which they are running—which is to say, locally. Civi-
lized browsers allow you to do this by selecting something like “Open”
or “Open Local” from the fle menu or equivalent. Te keyboard short-
cut in Windows and Linux is usually CTRL+O (or on Mac OS, Apple
key and O). You may need to traverse your fle structure to fnd your
page fle, which brings us to another important point: always know
where your fles are!

In these Cloud-y days of remote and virtual storage, this principle
may need reinforcing. Before starting any web project, we recommend
two things. One, put your phone down, or set it aside because it may
come in handy if you need to look for help at some point—but a smart-
phone is not a coding tool. Two, a minimum requirement for coding is
access to a main directory or, ideally, a graphical desktop. You’ll need
the other kind of computer, a desktop or laptop machine. (Netbooks
are acceptable.) Tis brings us to the other basic procedure: create a
folder (or directory) on your PC desktop—by which we mean the level
of fle storage you see when you log into your computer—and save your
work there. Now we come to the contents of your web page, which will
eventually get us to code—but frst, one more preparatory section.

Basics of Page Coding

Te most important elements of a web page are three containers, one
called HTML, the second called head, and the last called body. In
terms of markup, which is another word for HTML code, a container
is a pair of tags. A tag is a statement within a set of angle brackets, or
a less-than and a greater-than sign:

<HTML>
<HEAD></HEAD>
<BODY></BODY>

</HTML>

BONUS PRACTICAL CHAPTER: BEYOND TWINE 397

Te closing tag of a container always begins with a forward slash.
Eventually, we’ll introduce some other containers, including the all-
important container <script></script>, within which almost all our
JavaScript code will reside.

With these basics out of the way, let’s look at the structure of a blank
web page. You can type this into your own blank text-editor document,
making sure you’ve saved your fle with the extension .htm or .html.
Tere’s enough complexity here that you might want to download from
our website rather than transcribe.

Here’s the page code before any JavaScript happens:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">
<html>
<head>

<meta charset="utf-8"/>

<title>A page needs a title</title>
<style type="text/css">

div{ font: 18pt Cambria; padding: 20px; }

</style>
<script>

//JavaScript goes here

</script>
</head>

<body>
<div id="out"></div>

</body>
</html>

If this were a book on HTML and general web coding, we’d go into
detail about various features of this markup—the document type def-
nition, the meta declaration, and the CSS style sheet, for instance. We
might also point out that though web code ignores white space, it’s
important for readability to keep tags on separate lines whenever you

398 APPENDIX III

can. We should also note that this page has a preconfgured style sheet
for the projects we intend to build. Tat style sheet contains a rule for
the page element called DIV, specifying that any text found within such
a container will be in eighteen-point Cambria with twenty pixels of
padding around it. You can see a blank DIV container within the body
container. Tis DIV has an ID attribute (informally speaking, a name),
which is the word out.

We direct your attention primarily to this pair of tags:

<script>
</script>

Tis is a script container. It’s where all our JavaScript code will be
installed. Tough you can put a script container at several points in
the markup, we’ll always place it within the head container. Putting
it there ensures that all the page elements we reference are loaded
into memory before we start doing things with them.

With this quick tour of page infrastructure done, we can proceed to
our frst coding project.

Bonus Example 1: JavaScript Text Selector

If you notice a certain resemblance between our frst two projects here
and example P-3.3, you’re paying attention. We’ll base all our projects
in this chapter on the same kind of substitution grammar we used in
chapter P-3, though we’ll move on to other techniques besides text
generation. In the JavaScript context, we can streamline text genera-
tion in a couple of important ways. Te frst of these improvements
is the use of specialized functions, or as programmers call them, cus-
tom methods. We’ll come to the second major refnement, the use of a
switch structure, in bonus example 2. For the moment, consider three
small but momentous bits of code. If you were typing along, we’d have
you enter them into the script container of our blank web page, yield-
ing this:

BONUS PRACTICAL CHAPTER: BEYOND TWINE 399

<script>
function r(range){

return Math.floor(Math.random()*range)

}

function g(source){

theArray = source.split(",")
return theArray[r(theArray.length)]

}

function outIt(what){

document.getElementById("out").innerHTML =
what

}
</script>

As we’ve mentioned earlier, a function is a set of code statements
that can be put fexibly into action or invoked as needed. Functions
can be invoked by handlers when a page loads or some other event
takes place in the browser. Tey can also be invoked by other functions,
which is what puts the fun in functions. Our three functions are called
r, g, and outIt. Te writer of a function can use any name not reserved
by JavaScript and the browser. Te name r refers to random numbers.
Te name g suggests “generate” or possibly “gimme.” Te name outIt
refers to output or display. As you can see, in each of our custom meth-
ods, the name is followed by a word in parentheses. Tis word is called
a parameter. It is a special kind of variable that passes a value from the
invoking code to the function.

In r, the parameter is called range, and as you can see, it is used to
set a maximum value for the generation of a random number, using the
same call to the JavaScript Math object we used (somewhat liberally) in
chapter P-3. Te r function supplies a random number between 0 and
(because it rounds down) a value one less than the range parameter.
Tis arrangement is perfect for working with arrays, which are series of

400 APPENDIX III

items numbered from 0 to a number that is one less than the number
of items—for an array of 6 items, 0 to 5. Te return statement converts
the chosen number into output so that if we write r(5), the expression
may translate as 0, 1, 2, 3, or 4.

Te parameter for g is called source, and unlike the range parameter
of r, it will be the type of variable called a string—which is to say, a non-
mathematical series of letters and numbers such as “hooey” or “44 A.D.”
or, closer to our context here, “frefy,omnivore,beauty.” Tat last ex-
ample is a comma-separated string. Te g function accepts a string and
does two things with it. First, it uses the built-in split method to convert
the comma-separated list into an array. So “frefy,omnivore,beauty”
yields the following array:

firefly

omnivore
beauty

“Firefy” is item 0, “omnivore” is item 1, “beauty” is item 2, and the
length of the array is 3. Next, the g function calls the r function to gen-
erate a random number between 0 and the length of the array, which it
uses to make a random selection from the array via square bracket no-
tation. Te result is again turned into output using the return statement.

Te outIt function does not use a return statement but instead
modifes a page element directly. JavaScript can do that! In fact, this
is what JavaScript was invented to do. Te outIt function changes the
innerHTML property of the DIV we created with the ID of “out”—our
display DIV, in other words. To achieve this, outIt traverses the DOM
of our web page. All pages automatically have such a model, which is a
listing of all the various elements they contain along with their names
and, in some cases, numbers. Te traversal uses something called dot
notation, which is a familiar convention in web coding. It uses the ge-
tElementById method of the document object to fnd a DIV called “out.”
When found, said object’s innerHTML property—what it contains—is
changed from something (or in this case, nothing) to something else.

BONUS PRACTICAL CHAPTER: BEYOND TWINE 401

Te custom methods g and r create a basic framework for randomly
selecting from comma-separated strings of text. We can show how they
work by adding a few more pieces to our page markup. First, let’s build
a string with which to test our random selector. We’ll add this line at
the top of the script container:

testSource = "firefly,omnivore,beauty,greeble,Prov

o,whimsical,flatiron,Mme. Ortega y Bullfrog"

Te fnal item of this test string shows our system will work even
with multiword phrases and punctuation marks, so long as they don’t
include commas. Notice the fnal item is not followed by a comma.

Next, also within the script container, we’ll add a fourth function
immediately afer outIt:

function writeUp(){

for(var i=0; i<5; i++){

outIt(g(testSource))+ " "

}
}

Tis function contains a for loop—we’ve mentioned this element
before. It’s a way of repeating an instruction a specifed number of times
and keeping track of the repetitions. We’ll see something like it in our
further examples. For loops are enormously useful. Notice also we’ve
appended a space to our output, using the + operator, which is smart
enough to know that it’s dealing with strings (because " " is a string)
and not numbers. Te line within the loop is the key to the show: it
calls the outIt function, passing it the result of the g function, which is
passed the test source string to work with. Te result on each iteration
of the for loop is a randomly chosen word from testSource, with a trail-
ing space added.

Finally, we need to invoke this new writeUp function. We do this by
adding an onLoad handler to the initial body tag of our page, which is

402 APPENDIX III

outside of both the script container and the head container. Te body
tag will now look like this:

<body width: 800px onLoad="writeUp()">

When we load the page in our browser, we may see something like
the following:

frefy omnivore Mme. Ortega y Bullfrog greeble beauty

Tough much more likely, we’ll have something like this:

frefy omnivore fatiron greeble fatiron

Repetitions! Yes, well, remember the orange wheelbarrow. As you’ll
recall, getting a random number generator to avoid repetition takes
some work, and for the sake of simplicity, we won’t bother this time.
Instead, we’ll move on to a more sophisticated application of the sub-
stitution grammar technique.

Bonus Example 2A:
JavaScript Generator (Sequential)

As we said in the previous section, switching to JavaScript and the
DIY web brings two major benefts for our text-generation project.
Custom methods are the frst. Te second is a very powerful program-
ming structure called switch. In this example, we’ll show how to apply
this technique. First, some setup. Assume we’ve opened a new copy
of the template web page introduced in the “Tools and Procedures”
section. Te script container is blank.

In this container, we’ll install our three core functions—r, g, and
outIt—exactly as they were in the previous example. (In the next ex-
ample, we’ll see a way to avoid this duplication of text. For clarity, we’ll
hold of on that for the moment.) At the top of our script container,
ahead of our core functions, we’ll add the following lines:

BONUS PRACTICAL CHAPTER: BEYOND TWINE 403

numOptions = 5;

switcher = 0;

function writeUp(){

for(var i=0; i<numOptions; i++){

outIt(generate())
}

}

Te frst two lines are variable declarations. Te numOptions vari-
able declares the number of grammar options we will have in our switch
statement (we’re coming to that). Te switcher variable is a counter
we’ll use to cycle through our options in sequence. Te writeUp func-
tion resembles its counterpart in the previous example, with two small
variations. First, the limit set for the loop is whatever value we assign
to numOptions. We could simply have put a 5 here, but referring to the
variable makes adding grammar options easier. If we add more options,
we can just increase the number assigned to numOptions. Second, the
function called for generating text is not the g function directly but a
new function called generate, which we’ll proceed to defne. We’ll start
by roughing in the bare outlines of this function:

function generate(){

t = "";

switch(switcher){

case 0:
//you wake up
break

case 1:

//somewhere nearby is the sound of
a chainsaw
break

404 APPENDIX III

case 2:

//you can smell woodsmoke
break

case 3:

//you remember there was a bonfire

break

case 4:

//go back to sleep
break

}

}

Before we come to our switch, structure let’s briefy discuss the frst
line, which defnes a variable called t. T is for text—this variable will
hold the text of the sentence we are generating. We’ll build it up step by
step. When we’re done, we’ll turn it into output with a return statement.
All that will be explained later.

First, let’s discuss the switch structure. As the name suggests, it’s a
mechanism for directing the operation of the program to certain lines
depending on the value of its parameter, the variable named in the pa-
rentheses that follow the word switch. For this version of our project,
we’ll use a sequential counting variable, switcher. A switch structure has
branching options called cases. A case is identifed by that keyword fol-
lowed by a value or an expression and a colon. Here we’re using integer
values, so you see a series of numbers. Switch cases can also be written
on strings or logical expressions.

Following each case line are two indented lines. Te indentation is
required by JavaScript—one of the few cases where it matters. Right
now, there are only two lines indented for each case. We’ll come to the
frst one momentarily. For the moment, let’s consider the second, which
is the single statement break. Tis very powerful command tells Java-
Script to break out of its current operation—marching through a series

BONUS PRACTICAL CHAPTER: BEYOND TWINE 405

of statements in a switch structure—and go to the next line outside of
that structure. In other words, break breaks the action. Every case in a
switch structure must have a break statement. Technically, the fnal case
doesn’t need one, but you should put one in just in case you decide to
add more cases, as you can do if you like.

Te other element in our switch structure is a series of sentences
preceded by double slashes, one for each case. Te // indicates that the
following text is a comment, material that will be skipped by the Java-
Script interpreter when the script is run. A comment introduced by //
continues to the end of its line. (Tere’s another construction for multi-
line comments, but it’s not relevant here.) Our comment sentences are,
strictly speaking, optional. Each one indicates a template or grammar
we’ll use for variation. We put them in as a mnemonic device to remind
us of the pattern we are matching. For the human writer, they are not
optional. You don’t have to set things up this way; it’s just one model,
though it’s served us well on many occasions.

We fesh out the switch structure by adding conditions under each
case. We’ll discuss the frst in detail, then look at the completed struc-
ture. Case 0 is our frst option—programmers like to count from zero.
We’ll fesh it out as follows:

case 0:
//you wake up
t += "you " + g("think you're
awake,cease to dream,open your good
eye")
break

Tat new line is kind of monstrous, but it’s very useful. It starts
by adding to the t variable: that’s what “+=” means. Technically, we
could have just said “=” at this point because the t variable is empty
when this line executes—it was declared that way. Since later cases
will have multiple assignments to the t variable, when we’ll need to
add rather than replace, we’ve used “+=” for the sake of uniformity.
Te frst thing we add to our t variable is the word you followed by a

406 APPENDIX III

space. All variations of our sentence will start this way. Tis brings us
to the variations.

Remember, our g function takes in a comma-separated string, splits
it into an array, and then chooses from the array at random. We’re pass-
ing along just such a list, consisting of a series of phrases that could
follow you. Tere are only three options in our string. Tat’s strictly
for convenient readability. You can add as many variations as you like
without any change to the g function. Te function always knows how
many options to choose from, no matter how many or few you throw
it. In setting up the string passed to g, which contains our variations,
some very careful typing is required. We have to remember to add no
spaces around the commas, to put the quotation marks around the
whole series and not single items (as we’d do for an array), and to make
sure there are “+” signs connecting all pieces of the template. Let’s just
say it’s easy to get all this wrong.

Afer a whole bunch of careful typing—or afer much sloppy typing
and some grumbly debugging—we end up with this completed version
of our switch construction:

switch(switcher){
case 0:

//you wake up
t += "you " + g("think you're awake,cease
to dream,open your good eye")
break;

case 1:

//somewhere nearby is the sound of a
chainsaw
t += "somewhere " + g("nearby,far away,not
here")
t += " is the " + g("sound of a
chainsaw,smell of mahogany,country of
smiles")
break;

BONUS PRACTICAL CHAPTER: BEYOND TWINE 407

case 2:

//you can smell woodsmoke
t += "you can smell " +
g("woodsmoke,begonias,an elephant")
break;

case 3:

//you remember there was a bonfire

t += "you " + g("forget,remember,imagine")

t += " there was a " + g("bonfire,search
party,barn raising")
break;

case 4:

//go back to sleep
t += "the " + g("chaplain,barista,walrus")

t += " says " + g("go back to sleep,dream
more carefully,walk on")

break;
}

Again, there are just three options at each substitution point,
mainly to make the example marginally readable. You may add more
without making any changes to the script. Just add a comma at the end
of any of the sequences and type in your additional text. Be sure to
preserve the closing quotation marks. You can also add template op-
tions by putting more cases into the switch structure. If you do that,
however, be sure to increase the value of numOptions. If you forget,
though the script will run successfully, you’ll never see your new
sentences.

Speaking of running the script, we need three more lines to make
this possible. Tey go outside of the curly brace that closes the switch
structure—the last character you see in the aforementioned block—but
before the curly brace that closes the generate function as a whole. Here
are those fnal instructions:

408 APPENDIX III

switcher ++;

if(switcher == numOptions) switcher = 0;

return t;

Te frst command increases the value of switcher by one. Te second
checks to see if switcher has reached the number set in numOptions—in
other words, have we run through all fve of our grammar templates?
Finally, we return t, the string variable in which we’ve been building
our variant sentence. (If a function contains a return statement, it must
always be the last statement in the function.)

With these details in place, we can run the example and observe the
output, which ought to look something like this:

you cease to dream
somewhere not here is the country of smiles
you can smell woodsmoke
you remember there was a barn raising
the chaplain says go back to sleep

or this:

you think you’re awake
somewhere nearby is the smell of mahogany
you can smell begonias
you imagine there was a barn raising
the chaplain says dream more carefully

Tere’s enough structure here—the unvarying sequence of those
fve sentences, designed to read as a certain kind of narrative—to bal-
ance the variations, which are written carefully enough, unlike our
free-verse excursions in chapter P-3, for at least an approximation of
coherence. For our next trick, we’ll make some key changes to the ex-
ample we’ve just completed to convert it from a sequential generator
to a random-access generator.

 BONUS PRACTICAL CHAPTER: BEYOND TWINE 409

Bonus Example 2B:
JavaScript Generator (Randomized)

Only a few changes are required to convert the sequential generator to
random operation. First, delete two of the lines we added to the bottom
of the script at the end of the previous example:

switcher ++;

if(switcher == numOptions) switcher = 0;

Do not delete the third line, containing the return statement! We’re
just dispensing with that sequential counter, the variable called switcher.
While we’re at it, we can also delete this line from the top of the script:

switcher = 0

Nothing bad happens if you don’t delete this line, but it’s good prac-
tice to eliminate useless lines, as they can be confusing when you try to
understand your code later on.

Next, change the parameter at the beginning of the switch structure
so that it looks like this:

switch(r(numOptions))

Now, instead of marching through the sequence of sentence tem-
plates, we’re choosing one on each pass, as randomly as we choose any
number in this chapter, using our faithful r function. Afer completing
these changes, the output looks like this:

the barista says walk on
somewhere not here is the smell of mahogany
you think you’re awake
the barista says dream more carefully
you can smell an elephant

410 APPENDIX III

or this:

somewhere not here is the smell of mahogany
somewhere not here is the country of smiles
the chaplain says walk on
you can smell woodsmoke
you imagine there was a bonfre

Once again, our little machine seems to hold up pretty well. Te
repetitions look almost deliberate (which they are, in an indirect
way). Te narrative scheme, such as it is, is impressionistic enough to
survive the imposition of randomness.

Externalizing the Generator

As we move toward our fnal three examples, we’ll need to make one
more important change to our text generator: moving it to an external
script fle. As it happens, JavaScript need not be written into a script
container on a single page. We can move JavaScript code to a separate
text fle with the fle extension .js. To set up our last examples, we will
do this, copying the complete contents of our script container into a
new text document, which we name “generator.js.” In that new docu-
ment, we delete the lines <script> and </script>. Externalized Java-
Script doesn’t need a script container.

Why do we move our work to an external fle? As you may suspect,
it’s so we can use the same instructions fexibly in multiple projects
without having to cut and paste or (mercy!) type them in. Once a set
of functions have been moved to an external fle, we can invoke them
from within JavaScript code on any other page, so long as we include
this special script container in our new page:

<script src="generator.js"></script>

An important detail here: the src (“source”) attribute added to the
initial script tag takes as its argument the location of the external fle. As

https://generator.js

BONUS PRACTICAL CHAPTER: BEYOND TWINE 411

the tag is written here, that fle must be in the same directory as the page
that is loading it. Put everything into one folder and you’ll be fne. Note,
however, that you can access external JavaScript pages from anywhere
in your local system or indeed from any point accessible to the web.
Our use of an external script demonstrates two important principles:
modularity and dependence. A program is a composite or assemblage
of distributed parts. Te parts depend on one another; they interoper-
ate. If you plan to use more sophisticated game development tools like
Unity, or if you think you might want to learn programming on a more
serious basis, you’ll need to understand these concepts.

Now back to our example. In efect, this blank container is flled,
at least virtually, with the contents of the external fle. (We’re not sure
that’s technically accurate, but it feels that way.) Web pages can have
more than one script container, as it happens, and in our next examples,
we’ll build additional containers and scripts that coordinate with our
original text generator.

Bonus Example 3: An Everlasting Scroll

When we discussed Montfort’s Taroko Gorge in chapter P-2, we noted
the importance of its limitless operation. Like the gorge, the poem keeps
unfolding (or in terms of its code, folding back on itself). What we see
is an infnite scroll. Tere may be no way to achieve such an efect in
Twine without slipping into JavaScript. (More on that possibility at the
end of this section.) It’s certainly not possible within the basic script
afordances of Chapbook, which includes no loop structures. Tere are
timed efects in Chapbook and Harlowe, but they are meant to run
only once and have generally limited function.1 Generally speaking,
the Twine idiom assumes that changes will follow player action, not
occur automatically.

We can break that taboo easily enough with JavaScript. All we
have to do is look away politely when a function invokes itself. We’ve

1 We have not experimented with SugarCube, a story format with robust support for
programming.

412 APPENDIX III

been using this technique for many years now without problems, so
until Skynet sends a robot assassin from the future, we’ll assume it’s
safe.

We start again with a blank version of our template web page. Te
frst thing we do is add, above the existing script container, the refer-
ence container for our externalized text generator:

<script src="generator.js"></script>

We’ll be using the feed from the text generator as content for our
endless scroll. Tis is, of course, an arbitrary choice, but it has the virtue
of tying our examples together and showing a remote script in opera-
tion. Note that the reference container does not do anything in itself
because the script we brought over has no activating instructions. If you
remember, its operation was triggered by an onLoad handler written
into the body tag of the page, which is not part of the external Java-
Script. So our generator code just sits in memory until we ask some bit
of it to do something—which we will, directly.

Before we discuss the fresh code for this example, let’s explain what
we’re trying to do and how we’ll go about it. We want text to scroll con-
stantly. We’ll decide that the new text should appear at the bottom and
disappear at the top of the window, because Star Wars. (It’s easy enough
to reverse the efect if desired.) We’re adding to our scroll in discrete
units, one sentence at a time. Tis makes the job a bit easier.

We need a data structure that will let us keep track of items in a
numerical sequence, with the ability to add new items to the bot-
tom of the sequence and delete from the top. Tis is why JavaScript
gave us arrays. By now, you’re very familiar with arrays in both Twine
and JavaScript. We’ll be using two built-in functions of the JavaScript
array object, push and shif, which perform the needed addition and
trimming. Since the code for this project is refreshingly compact
compared to our text generator, we’ll just show it complete and then
discuss its features. Everything you see here sits inside the main script
container.

BONUS PRACTICAL CHAPTER: BEYOND TWINE 413

textArray = new Array();

function writeUp(){

//push on a new line
textArray.push(generate());

//trim top line
if(textArray.length==10) textArray.shift()

//output
document.getElementById("out").innerHTML = ""

for(var i=0; i<textArray.length; i++){

outIt(textArray[i]);

}

//don't stop

theTimeout = setTimeout(writeUp, 1000);

}

First, we declare textArray to hold our generated sentences. We
use the keyword new (technically called a constructor) to generate an
array. Te empty parentheses mean the array has nothing in it and
an undefned size or length.

Next, we defne the lone function in this example, called writeUp. You
could call it anything you like. As you can see, we’ve marked of the four
parts of this script with descriptive comments. To add to the bottom of
our array, we use the push function, and what we push onto the array is
the output from generate, our randomized, template-based sentence gen-
erator that is sitting in the remote fle generate.js. (See how this works!)
Next, we set an instruction to trim of the top line of the array once the
array contains ten elements. Tat number is an arbitrary design decision,
entirely changeable. It determines how many sentences will be visible in
your scrolling window. You may want to keep this value low enough to ft

https://generate.js

414 APPENDIX III

the entire stack onto a typical screen. Tis could be accomplished math-
ematically by bringing in some parameters about the browser window
and the line height, but we’ll rely on guesswork for simplicity.

Next comes output, where we write the updated contents of textAr-
ray to the screen. Before we can do this, we remove any version that
may have been displayed on a previous pass through this script—it’s
designed for repetition, remember? So we replace the innerHTML of
our “out” DIV (in efect, the display window) with the null value, sig-
nifed by two quotation marks without a space between them: "". At
this point, you might wonder why we don’t use the outIt function that
is handily sitting in our remote script. We will use it later, but we can’t do
so here. Tat’s because outIt is designed to add to the contents of the
display DIV using the “+=” operator. Passing it a null value would just
add a null value. We need to replace, not add. If we wanted to be clever,
we could either write a second function (say, blankIt) or, even better,
change outIt to accept a second parameter determining whether it adds
or replaces. Tese improvements would have made the example more
complicated, so we leave them to your imagination.

With the board erased, we’re ready to write. You might think we
could just pass textArray to our outIt function. If you try this, you’ll
see your sentences all jammed together, separated by commas, which
is not what we want. We need to peel each of our sentences of, one at
a time. Tat’s what a good old for loop is for. It marches through the
array from 0 to the last value before its length (which is the last item),
referring to the item in question with the loop’s built-in counter vari-
able i. Notice we don’t need to add
 at the end of our sentences
because that’s included in outIt.

Now we come to the fnal piece of the code, thoughtfully labeled
“don’t stop.” Tis function reactivates itself. Generally speaking, pro-
grammers do not recommend that practice, but Montfort does much the
same thing in Taroko Gorge, and he has advanced degrees in computer
science and computational linguistics. As we said, this is technically an
infnite loop, but it does not crash the browser, destroy the internet, or
open any wormholes that we know of. Te simplest way for a function
to invoke itself is, of course, simply to write, on the last line of writeUp,

BONUS PRACTICAL CHAPTER: BEYOND TWINE 415

writeUp()

We could do that, but only at the expense of reading. Without some
delay, the function will simply spew sentences up the screen, iterating
several times a second. To avoid this, we wrap the reinvocation in a
setTimeout function, which formally requires us to create a new vari-
able called theTimeout and invoke the delay from there. Te number
parameter used is a value in milliseconds. One thousand milliseconds
equal one second. You can change this value if you like. Te efect of
setTimeout is much like the delay factors in Chapbook and Harlowe: it
holds operation until a certain amount of time has elapsed. Te difer-
ence here is that the function it eventually invokes sets up another timer
at the end of its run and so forth ad infnitum, if you can wait that long.

Te result is an eternal scroll, flled with a constantly changing (and
only occasionally repeating) series of sentences from our now famil-
iar generator. As in Taroko Gorge, you won’t see the scroll efect until
enough lines have appeared to start the trimming process. Afer that,
the business runs as long as you stay on the web page. As we’ve said,
Montfort’s poem may tell us something about the infnite complexity of
the natural world. What this little example says about anything except
coding is probably beside the point.

Finally, a further note on what can and can’t be done with Twine.
Because Chapbook supports both JavaScript code and HTML elements
like DIVs with IDs, we can in fact port almost every piece of this project
back to Twine and produce a passage (not page) with an endless scroll.
We could mix this feature with other afordances of Twine for a richly
hybridized experience. Te only thing we can’t do in this context is
move our key functions to an external JavaScript page. Actually, that
might be possible, but it would be necessary to know more about the
inner workings of Twine than you probably want to learn right away.
Te hybridized Twine story is included in our online examples as bonus
example 3A. We won’t go through the code because it’s essentially what
you’ve seen already.

416 APPENDIX III

Bonus Example 4: Drifing down the Screen

For our next set of tricks, we’ll explore another feature of the comput-
ing environment that has no obvious place in the Twine world: anima-
tion. From the start, we should point out that HTML and JavaScript
are less-than-ideal platforms for motion graphics. Yes, you can watch
movies through your browser, but you generally do so in a video win-
dow running a specialized resource called a coder/decoder (codec) or
sometimes a browser enhancement called a plugin. Back in the day,
before someone decided it should no longer be supported, there was a
famous plugin called Shockwave Flash, designed to run content devel-
oped by the two Adobe products of those names. You may recall our
mention of those programs in chapters T-1 and T-4. Tose applica-
tions and their plugin handled animation very, very diferently than
we can or will, depending on just the resources of your web browser,
unplugged. Nonetheless, these two simple exercises will at least give
you a taste of poetry in motion.

Let’s begin with a single falling object. We start, as always, with a
fresh copy of our starter web page, to which we add the reference con-
tainer to link up generator.js. Next, we go to the style sheet—the style
container found within the head just before the script containers. Te
style container is blank. We add the following:

div{
font: 18pt Cambria; padding: 20px; position:
absolute;

}

Te font and padding specifcations are familiar from earlier ex-
amples. Note that last item, though: it declares that the position of any
DIV in our document will be mathematically fxed, not determined in
relation to other page elements. Animation won’t work without this
declaration.

Next, we open the main script container of the page and add two
functions. Te frst of these is called setUp. It’s designed to run once

https://generator.js

BONUS PRACTICAL CHAPTER: BEYOND TWINE 417

when the page loads, so we also go down to the onLoad handler in the
body tag and set it to activate setUp. Here’s what setUp looks like:

function setUp(){

theDIV = document.
getElementsByTagName("DIV")[0]

theDIV.innerHTML = generate()
theLeft = r(600)

theDIV.style.left = theLeft + "px"

theTop = 0--r(100)

theDIV.style.top = theTop + "px"

animate()
}

Te frst line introduces a variable called theDIV and assigns it a
value. Te construction we use here looks a bit like the one with which
you’re probably familiar, getElementById, though actually, it’s the cousin
of that method, getElementsByTagName. Note it says “Elements,” plural.
Tis method of the document object can be used to reach out to a single
page element, as we do here, but it frst situates that element within a set
of similar elements—the collection of DIV elements on our page. You’ll
see why we do this when we get to our next example. For the moment,
have a look at the arguments we pass to the getElementsByTagName
method: a tag name in parentheses (“DIV”) followed by a number in
brackets [0]. Tis is the same notation used to identify elements of an
array—and, indeed, a document object collection is a bit like an array,
though it does not have all the features of that object. Why do we say
0 here? Because our page only contains one DIV, and programmers
always start with nothing (or count from zero). So item 1 (and only) is
item 0.

Why do we attach this laborious identifcation to a variable? Strictly
for convenience, because we are going to operate on our one and only
DIV in ways that require us to name it. Our variable theDIV acts
like a pronoun, saving much bothersome typing. What we’re doing,
specifcally, is placing our DIV at a specifc point on the screen. Yes,

418 APPENDIX III

JavaScript, the DOM, and HTML can do that. Tat’s what makes ani-
mation possible.

Any DIV, or block-level page element, has properties called top
and lef that indicate where its respective edges are located within the
browser window. To move the element, we reset those properties. Tey
are actually subproperties of a more general style property, so we ad-
dress them in dot notation as style.top or style.lef. Tere are some fur-
ther complexities beyond this. First, we can’t modify the values with a
statement like the following:

theDIV.style.top ++

For arcane reasons, the values of geometric properties must be ex-
pressed with metrics—for instance, 100px, which means one hundred
pixels from the top of the window. We need to append the text string
“px” to the number, which means we frst extract the number, assign
it to a variable—theTop and theLef—modify the variable as we wish,
append the metric, and then bang the result back in. Tis is quite ba-
roque, and we’ve never understood the reasoning behind it, but so be
it. You’ll see that for the lef position of the DIV (x-axis), we’re asking
good old r for a value between 0 and 599, which assumes the browser
window is at least six hundred pixels wide. (Here’s hoping.) For the
top position, we do something that may seem strange: we ask for a
random number between 0 and 99, subtracting that number from 0
to make it negative. Tat’s because we want our DIV positioned above
the top edge of the browser window. And yes, we can do that. Tis
way, we start with a blank screen, and our drifing DIV can make a
dramatic appearance.

Let’s get to the drifing part, which is the business of our second
function, animate—which, you’ll note, is invoked at the end of setUp.
Here’s the code:

function animate(){

theDIV = document.
getElementsByTagName("DIV")[0]

BONUS PRACTICAL CHAPTER: BEYOND TWINE 419

theTop += 5

theDIV.style.top = theTop + "px"

if(theTop > 500){

setUp()
}
else{
theTimeout = setTimeout(animate, 50);

}
}

We’re repeating that step from setUp where we identify our DIV
and assign it to a pronoun-like variable. Tere are ways to avoid this
inelegancy, but they would complicate the conversion of this one-DIV
example to a multi-DIV example in the next section, so we do it again,
somewhat mysteriously. Te variable theTop comes into play again in
the next statement. Until we modify it here, it has whatever value it re-
ceived in setUp. Our modifcation increases it by fve, meaning we move
our DIV fve pixels down the screen. We assign the modifed value in
the same way you saw in setUp. Notice we don’t change the lef position
of the DIV. We’re only animating in one axis, though you could use two
(or even three) if you wanted.

Now we come to that if test. Once our drifing DIV passes line 500
of the browser window, we want it to go through the setUp routine and
reposition at the top of the screen. We use an inequality (>) because
we’re using increments of fve, and it’s possible for our DIV to exceed
500 without ever having that value—for instance, if its position changes
from 499 to 504, which is possible. Remember, the vertical position
of the DIV is assigned randomly in setUp, so we don’t know the exact
value (and don’t really need to). We’re actually using an if/else construc-
tion here because we want another thing to happen if our DIV has not
yet dropped ofscreen. In that case, we start a setTimeout, just as we did
in our eternal scroll, using a delay factor of ffy milliseconds. Higher
values slow the animation, lower ones speed it up. Experiment as you
like. Once again, we have a function that calls itself. What’s a little re-
cursion among friends?

420 APPENDIX III

If all the pieces are properly assembled, this example drifs a ran-
domly generated sentence down the screen, followed by another and
another, at various horizontal locations. It’s about as simple as anima-
tions get. In our next and fnal example, we’ll make it just a bit more
interesting.

Bonus Example 5: It’s Raining Story

For our fnal example, we’ll multiply the foating DIVs to give greater
visual (and maybe narrative or poetic) interest to the project. To do
this, we’ll need a way to animate, track, and reset several page elements
independently. Now you’ll see why we started referring to our single
DIV via its place in the DIV collection. We’ll need the whole set in play
for this one.

Since we modifed our basic page template slightly for the previous
example, we’ll start this one by making a copy of that page fle, renam-
ing it, and erasing the contents of the main script container—the two
functions we created in example 5.4. We’ll end up rebuilding some of
that code, but there are enough diferences to reward a fresh start. Be-
fore we start on the JavaScript, we’ll go down into the body portion
of the markup and make two changes. We’ll add an onLoad handler
to the body tag:

<BODY width: 600px onLoad = "startUp">

Next, we’ll replace the single DIV that’s sitting in the body container
with a stack of fve:

<BODY>
<DIV></DIV>
<DIV></DIV>
<DIV></DIV>
<DIV></DIV>
<DIV></DIV>

</BODY>

BONUS PRACTICAL CHAPTER: BEYOND TWINE 421

Tese DIVs need neither IDs nor contents. Tere do need to be fve
of them, however.

Now for the scripting. At the top of our pristine script container,
we’ll declare and initialize three very important arrays:

leftNum = new Array(0,0,0,0,0);

topNum = new Array(0,0,0,0,0);
DIVSpeed = new Array(0,0,0,0,0);

You’ll remember that arrays can be set up with initial values, as we
do here. Tose zeroes will be replaced with nonzero numbers when
the script starts up. We could have used any number, so long as it’s an
integer. We need to start with integers here, since that’s what we’ll be
storing in these arrays as we go.

You’ll recall that in bonus example 4 we had a function called setUp.
Tis time we’ll have one called startUp. It’s a bit diferent from our pre-
vious setUp function:

function startUp(){

for(var i=0; i<5; i++){

reset(i);
}
theInterval = setInterval(animate, 50);

}

Here’s a familiar fve-step for loop, but all it does is call a function
called reset, passing it a number from 0 to 4. We’ll build reset next. Be-
fore we do, have a look at the fnal line of startUp, which uses the frst
cousin of setTimeout called setInterval. Te setTimeout method runs
once; that’s why we need to keep reinvoking it in our earlier examples.
By contrast, setInterval repeats automatically as long as the page is
loaded and the interval is not canceled by some other instruction.

When we only had one falling object, we could have it restart its
animation function every time it passed ofscreen. However, this time
we’ll control fve DIVs with one function. Under that scheme, it’s easier

422 APPENDIX III

to start the animating engine once and let it run. Before we can get to
animation, however, we need to create our reset function:

function reset(which){

theDIV = document.getElementsByTagName("DIV")
[which]

DIVSpeed[which] = 3 + r(5)

theDIV.innerHTML = generate()
leftNum[which] = r(600)

theDIV.style.left = leftNum[which] + "px"

topNum[which] = 0--r(100)

theDIV.style.top = topNum[which] + "px"

}

Tis is the function called fve times by startUp. Much of it will look
very familiar from bonus example 4. Tere are two main diferences.
First, this function takes a parameter called which (it could be called
anything). Tis parameter is an integer between 0 and 4, inclusive. No-
tice that in our DIV-identifer (theDIV), we use this number to say
which DIV we’re addressing. Remember, all the DIVs are numbered
in the collection. (Tis scheme assumes our animating DIVs are the
frst fve to appear in the markup. If you change the page in a way that
breaks this pattern, the animation won’t work.) Te second variation
here is the reference to that third array we created, DIVspeed. Tis array
stores an integer value for each of our fve animating DIVs, setting
the amount of downward displacement that will occur on each cycle
of the animation—in efect, the speed at which they fall. We require a
minimum of three pixels but add to that a random selection on a range
of fve, meaning the maximum amount is seven. You can experiment
with diferent values here. Te important thing about this feature is
that it can give each DIV a diferent rate of descent. Te efect is very
important visually.

Te fnal element of this project is the animate function, which goes
into operation at the end of the startUp function, activated on page
load. Here’s the code:

BONUS PRACTICAL CHAPTER: BEYOND TWINE 423

function animate(){

for(var i=0; i<5; i++){

topNum[i] += divSpeed[i];

theDIV = document.
getElementsByTagName("DIV")[i]

theDIV.style.top = topNum[i] + "px";

if(topNum[i] > 500) reset(i);

}
}

Te bones of this function should be familiar from the previous
example. Here we have a fve-way for loop that addresses each of our
falling objects in sequence (so quickly it seems instantaneous). We do
all the usual business of updating the top location of the DIV, handing it
of to the reset routine when the DIV passes the fve-hundred-pixel line.
But notice that the value passed to reset is just the number of that par-
ticular DIV. Tis animating routine manages each element separately.

Te result is a shower of sentences or a variable story crossed with
a confetti machine. What that might amount to, beyond an excuse to
practice JavaScript coding, is the subject of our very last section.

Conclusion

You’ll notice something conspicuously missing from the fve examples
presented in this chapter: interactivity. All fve are focused on display.
Tey presume a reader, or perhaps a viewer, but not really a player.
Should we conclude therefore that moving from Twine to JavaScript/
HTML means leaving behind interactive fction and games? Is web
coding primarily a replacement for the cinematic aesthetics and poet-
ics of dear, dead Flash?

Beware of hasty conclusions. It’s easy enough to see how some or all
of these examples could be harnessed for story-centered games. For
all three of our fnal examples (scroll and falling texts), imagine a stack
of clickable prompts (words, names, faces, symbols) that call on alterna-
tive text generators, allowing the reader/player to steer the unfolding

424 APPENDIX III

story in specifc directions. Adding features like these to the demonstra-
tions would make the code-crawling unbearably tedious. Te drawback
of simple examples is simplicity. We invite you to think beyond them.

Figure 25: Salter and Blodgett’s ALT-RT: Ctrl+A; DEL (2017)

Both authors of this book have built creative works that use HTML,
JavaScript, and other web resources to design evocative interfaces and
tell salient stories. Salter and Blodgett’s ALT-RT: Ctrl+A; DEL creates a
simulated tweetstream drawn from a database of actual and invented
material to capture the nightmare of social media (Salter and Blodgett).
It combines quasi-randomized text sampling with selectable options
for self-preservation. Tese selections have meaningful consequences,
making the work legitimately interactive. Its experience has a distinct
ending and alternative outcomes, making it very gamelike. Moulthrop’s
Emaji Naratgee Marakka, born of similar inspiration, renders trollish
tweets as a visually accreting mass that the player can suppress or erase
completely by doggedly choosing acts of resistance (Moulthrop). Suc-
cessfully wiping out the troll-storm (if only for a moment) earns the
reader an installment of a fable. Once this chunk of story has been
read, the tweets return, growing ever more deranged. To reach the end
of the fable, the reader must repeatedly fend of the troll, then pen-
etrate a few fnal mysteries of cryptographic text. Both of these works

BONUS PRACTICAL CHAPTER: BEYOND TWINE 425

are hypertextual, narrative, and gamelike; both depend on afordances
(database access; animation) not easily supported in Twine.

Figure 26: Moulthrop’s Emaji Naratgee Marakka (2018)

Twine is not the only way to make interactive fctions. However, as
the extent and density of even the modest code examples in this chap-
ter will show, there is a signifcant trade-of between the broad creative
scope of hand-built web work and the elegance, stability, and community
of Twine. As always, creators and communicators should understand the
range of possibilities implicit in these tools and feel empowered on any
platform.

Works Cited
Moulthrop, Stuart. Emaji Naratgee Marakka. Work in progress, 2018. www.smoulthrop

.com/lit/enm.
Salter, Anastasia, and Bridget Blodgett. “ALT-RT: Ctrl+A; DEL.” Persona Studies 3, no. 1

(2017). https://ojs.deakin.edu.au/index.php/ps/article/view/656.

https://ojs.deakin.edu.au/index.php/ps/article/view/656
www.smoulthrop

	Cover
	Half Title
	Title
	Copyright
	Contents
	Introduction
	CHAPTER T-1: Twine as Platform
	CHAPTER P-1: From Links to Stories
	CHAPTER T-2: Twine (R)evolutions
	CHAPTER P-2: Variation
	CHAPTER T-3: Twine and the Question of Literature
	CHAPTER P-3: Generation
	CHAPTER T-4: Queer Twine and Camp
	CHAPTER P-4: Too Much Twine
	CHAPTER T-5: Twine and the Critical Moment
	CHAPTER P-5: Conceptual Twining
	Conclusion
	Appendix I
	Appendix II
	Appendix III

