
PART III 

Computation and Performance 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



BLANK PAGE 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Chapter 8 
Combinators and Grammars 

“I once asked Bravura whether there were any Kestrels in his forest. He seemed some-
what upset by the question, and replied in a strained voice: ‘No! Kestrels are not 
allowed in this forest!’” 
Raymond Smullyan, To Mock a Mockingbird 

What does the theory presented in the earlier chapters actually tell us? Why 
should natural grammars involve combinatory rules, rather than the intuitively 
more transparent apparatus of the A-calculus? Why are the combinators in 
question apparently confined to Smullyan’s Bluebird, Thrush, and Starling— 
that is, to composition, type-raising, and substitution? Why are the syntactic 
combinatory rules further constrained by the Principles of Consistency and 
Inheritance? What expressive power does this theory give us? How can gram-
mars like this be parsed? 

8.1 Why Categories and Combinators? 

There is a strong equivalence between (typed and untyped) combinatory sys-
tems and the (typed and untyped) A-calculi, first noted by Sch6nfinkel (1924), 
elaborated by Curry and Feys (1958), and developed and expounded by Rosen-
bloom (1950), Stenlund (1972), Burge (1975), Barendregt (1981), Smullyan 
(1985, 1994), and Hindley and Seldin (1986). Even quite small collections of 
combinators of the kind already encountered are sufficient to define applica-
tive systems of expressive power equal to that of the A-calculus, as will be 
demonstrated below. 

The difference between the A-calculi and the combinatory systems is that the 
latter avoid the use of bound variables. One interest of this property lies in the 
fact that bound variables can be a major source of computational overhead— 
for example in the evaluation of expressions in programming languages re-
lated to the A-calculus, such as LISP. The freedom that their users demand to 
use the same identifier for variables that are logically distinct in the sense of 
having distinct bindings to values in distinct environments means that all the 
various bindings must be stored during the evaluation. This cost is serious 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



202 Chapter 8 
enough that considerable ingenuity is devoted to minimizing it by the design-
ers of such “functional” programming languages. One tactic, originating with 
Turner (1979b), is to avoid the problem entirely, by compiling languages like 
LISP into equivalent variable-free combinatory expressions, which can then 
be evaluated by structural, graph reduction techniques akin to algebraic sim-
plification. We will see that there some rather striking similarities between the 
combinatory system that Turner proposes and the one that is at work in natural 
languages. 

However, it seems quite unlikely that a pressure to do without vari-
, ables for reasons of computational efficiency is at work in natural language 

interpretation.| The computational advantage of the combinatory systems is 
highly dependent upon the precise nature of the computations involved, and it 
is far from obvious that these particular types of computation are characteristic 
of linguistic comprehension (although the extensive involvement of higher-
order functions in CCG is one property that does exacerbate the penalties in-
curred from the use of bound variables). Furthermore, the wide acceptance of 
the idea that the pronoun in sentences like Every farmer in the room thinks he 
is a genius is semantically a bound variable, as assumed in the analysis of such 

| phenomena in section 4.4 in chapter 4, suggests that there is no overall prohi-
bition against such devices at the level of Logical Form or predicate-argument 
structure. The binding conditions, and in particular Condition C, which are 
discussed in terms of CCG in Chierchia 1988 and Steedman 1997, are also 
phenomena that are most naturally thought of in terms of scope (although it 
has to be said that they do not look much like the properties of the usual kind 
of variables). 

It seems more likely that natural grammars reflect a combinatory semantics 
because combinator-like operations such as composition are themselves cog-
nitively primitive and constitute a part of the cognitive substrate from which 
the language faculty has developed. Such primitive and prelinguistic cogni-
tive operations as learning how to reach one’s hand around an obstacle to a 
target have many of the properties of functional composition, if elementary 
movements are viewed as functions over locations. The onset of the ability to 
construct such composite motions appears to immediately precede the onset of 
language in children (Diamond 1990, 653-655). Similarly, a notion very like 
type-raising seems to be implicit in the kind of association between objects 
and their characteristic roles in actions that is required in order to use those ob-
jects as tools in planned action. (The idea that tool use and motor planning are 
immediate precursors of language goes back to de Laguna’s (1927) observa-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 203 
tions on KGhler’s’s (1925) work on primate tool use and has been investigated 
more recently by Bruner (1968), Greenfield, Nelson and Saltzman (1972), 
Greenfield (1991), and Deacon (1988, 1997), among many others.) 

To the extent that languages adhere to the Principle of Head Categorial 
Uniqueness and project unbounded dependencies from the same categories that 
define canonical word order, the presumed universal availability of combina-

- tory operations in principle allows the child to acquire the full grammar of the 
language on the basis of simple canonical sentences alone, on the assumption 
of chapter 2, that the child has access (not necessarily error-free, and not nec-
essarily unambiguously) to their interpretations. (We will return briefly to the 
problems induced by exceptions to Head Categorial Uniqueness in chapter 10.) 

To see whether this hypothesis is reasonable, we must begin by examining 
the specific combinators that have been identified above—composition, type-
raising, and Schénfinkel’s S—and ask what class of concepts can be defined 
using them. 

8.2 Why Bluebirds, Thrushes, and Starlings? 

The equivalence between combinatory systems and the A-calculus is most 
readily understood in terms of a recursive algorithm for converting terms in 
the A-calculus into equivalent combinatory expressions. Surprisingly small 
collections of combinators can be shown in this way to completely support 
this equivalence. One of the smallest and most elegant sets consists of three 
combinators, I,K, and the familiar S combinator. The algorithm can be repre-
sented as three cases, as follows:° | 
()aAxx = | 

hx.y = Ky 
AxAB = S(Ax.A)(Ax.B) 

where x is not free in y 

The combinators [ and K have not been encountered before, but their defini-
tions can be read off the example: I is the identity operator, and K, Smullyan’s 
Kestrel, is vacuous abstraction or the definition of a constant function. This 
algorithm simply says that these two combinators represent the two ground 
conditions of abstracting over the variable itself and abstracting over any other 
variable or constant, and that the case of abstracting over a compound term 
consisting of the application of a function term A to an argument B is the Star-

ling combinator S applied to the results of abstracting over the function and 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



204 Chapter 8 
over the argument. (Given the earlier definition of S, it is easy to verify that 
this equivalence holds.) Since the combinator I can in turn be defined in terms 

of the other two combinators (as SKK), the algorithm (attributed in origin to 
Rosser (1942) in Curry and Feys 1958, 237) is often referred to as the “SK” 
algorithm. It is obvious that the algorithm is complete, in the sense that it will 
deliver a combinatory equivalent of any A-term. It therefore follows that any 
combinator, including composition and type-raising, can be defined in terms of S and K alone. , 

The SK algorithm is extremely elegant, and quite general, but it gives rise 
to extremely cumbersome combinatory expressions. Consider the following 
examples, adapted from Turner 1979b. The successor function that maps an 
integer onto the integer one greater might be defined as follows in an imaginary 
functional programming language: 

(2) succ = Ax.plus I x 

The obvious variable-free definition of this trivial function is the following: 

(3) succ = plus I 

However, the SK algorithm produces the much more cumbersome (albeit en-
tirely correct) expression shown in the last line of the following derivation: 

(4) succ = Ax.plus1x 
=> SdAx.plus 1hx.x 
=> S§(SAx.plusix.])I 
= $(SKplusK/)I 

The following is the familiar recursive definition of the factorial function 
(where cond A B C means “if A then B else C’):4 

(5) fact = Ax.cond(equal 0 x)1(times x(fact(minus x 1))) 

It yields the following monster: 

(6) S(S(S(K cond) (S(S(K equal)(K 0))D)(K 1)) 
(S(S(K times)D(S(K fact) 
(S(S(K minus)D(K 1)))) 

What is wrong with the SK algorithm is that it fails to distinguish cases in 
which either the function or the argument or both are terms in which the vari-
able x does not occur (is not free) from the general case in which both function 

and argument are terms in x. It is only in the latter case that the combinator S 
is appropriate. Curry and Feys (1958, 190-194) offer the following alternative 
algorithm: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 205 
(7) a Axx = | 

b. Axy = Ky 
c. Axfx = f 
d. Ax.fA = Bf(Ax.A) 
e. AxAy = C(Ax.A)y 
f. AxAB = S(Ax.A)(Ax.B) 
where x is not free in f, y 

This algorithm distinguishes the case (7c) (corresponding to n-reduction), in 
which the expression to be abstracted over consists of a function term that does 

not contain the variable and an argument term that is the variable. This case 
immediately preempts a great many applications of K (to constants), | (for the 

variable), and S (for the application). For example, it immediately gives us 
what we want for the successor function: 

(8) succ = Ax.plus1x 
=> plus 1 

The new algorithm also distinguishes the cases (7d) and (7e), where either 
the argument term or the function term do not include the variable. These 
cases correspond to the familiar functional composition combinator B, and the 

“commuting” combinator C, which has not been encountered in natural syntax 
before, but whose definition is as follows:® , 
(9) Cfxy = fyx 

This algorithm gives rise to much terser combinatory expressions. For ex-
ample, the earlier definition of factorial comes out as follows: 

(10) S(C(Bcond(equal 0)) 1)(Stimes(Bfact(Cminus 1))) 

Like the SK set, this set of combinators is complete with respect to the A-
calculi. This result is obvious, since it includes S and K. More interestingly, 
in includes other subsets that are also complete. The most interesting of these 
is the set BCSI. This set is complete with respect to the A-calculus with the 
single exception that K itself is not definable. This set therefore corresponds to 
the A-calculus without vacuous abstraction, which is known as the /y-calculus 

(Church 1940), as distinct from the Ax-calculus. Vacuous abstraction is the op-
eration that figured as an irrelevant side effect of Huet’s unification algorithm in 

the discussion in chapter 7 of work by Dalrymple, Shieber, and Pereira (1991; 
see also Shieber, Pereira and Dalrymple 1996), who used it as an operation on 
predicate-argument structures, to recover interpretations for VP ellipsis. It is 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



206 Chapter 8 
therefore interesting to note the existence of calculi and combinatory systems 
that exclude it, corresponding to linear, relevance, and intuitionistic logics, and 
to recall that it is not represented among the syntactic combinatory rules either. 

Turner (1979a,b) and others have proposed further cases to optimise and | 
extend similar translations of A-terms into combinatory equivalents, including 
combinators corresponding to T, the type-raising combinator (which is a nat-
ural partner to C in (7)), to Curry’s ®, the combinator that is implicit in the 
coordination rule proposed earlier, and to the “paradoxical” fixed-point com-

binators that are required to complete the combinatory definition of recursive 
functions like (10). 

What then can we say concerning the nature and raison d’étre of the com-

binatory system BTS that we have observed in natural language syntax? The 
most obvious question is whether this set of combinators is complete. To begin 
with, note that the linguistic combinatory rules, unlike the systems discussed — 
in most of the literature cited above (but see Church 1940; Barendregt 1981, 
app. A; Hindley and Seldin 1986), are a typed combinatory system. That is to 

say, rules like the forward composition rule of chapter 3 are defined in terms of 
(variables over) the types of the domain and range of the input functions and 
the function that results. Indeed, the syntactic categories of a categorial gram-
mar are precisely types, in that sense. So we are talking about completeness 
with respect to the simply typed A*-calculi. Since mathematicians and com-
puter scientists usually think of functions in this way, the typed A-calculi are 
useful and interesting objects. 

Interestingly, the paradoxical combinators such as Curry’s ¥Y and Smullyan’s 
Ax.xx are not definable in the typed systems. Since the existence of such fixed-
point combinators is what allows the definition of recursion within the pure 
A-calculus, recursive functions like fact cannot be defined within the pure A‘-
calculi. There is also an interesting relation (discussed by Fortune, Leivant and 
O’ Donnell 1983) to type systems in programming languages like PASCAL and 
ML. 

_ Exactly the same correspondence holds between typed combinators and the 
typed A-calculi as we have seen for the untyped versions. In particular, the 

SK system is complete with respect to the Ay-calculus. The BCSI system 

is similarly complete with respect to the Aj-calculus. Since the type-raising 
combinator T is equivalent to the combinatory expression Cl, and since the 
linguistically observed set BTS includes B and S, it seems highly likely that 

BTS is related to BCSI and hence also to the A;-calculus. Certainly C is 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 207 
definable in terms of T and B, as shown by Church (see Smullyan 1985, 113).’ 

The only qualification to the correspondence that I have been able to identify 
is that the combinator I itself does not appear in general to be definable in 
terms of BTS. A combinator corresponding to a special case of I, of type 
(a — B) — (a — B), can be defined as CT. This is not the true | combinator, 

for it will not map an atom onto itself. Nevertheless, CT constitutes the identity 
functional for first-order functions and all higher types, so this does not seem 

a very important deviation. We may assume that the A;-calculus constitutes an 

upper bound on the expressive power of the BTS system and that the two are 
essentially equivalent.® 

It follows immediately that all of the important constraints on the system 
as a theory of natural grammars stem from directional constraints imposed 
upon syntactic combinatory rules by the twin Principles of Consistency and 
Inheritance, discussed in chapter 4. This observation raises the further question 
of the expressive or automata-theoretic power of CCG. 

8.3 Expressive Power 

The way the Dutch cross-serial verb construction was captured in examples 
like (2) of chapter 6 suggests that CCG is of greater strong generative power 
than context-free grammar.’ The Dutch construction intercalates the depen-
dencies between arguments and verbs, rather than nesting them, and therefore 
requires this greater power, at least for strongly adequate capture. Whether 
standard Dutch can be shown on the basis of this construction not to be a 
weakly context-free language is of course another question. Huybregts (1984) 
and Shieber (1985) have shown that a related construction in related dialects 
of Germanic is not even weakly context-free. It is therefore clear that Uni-
versal Grammar has more than context-free power, and the further question of 
whether standard Dutch happens to exploit this power in a way that makes the 
language non-context-free (as opposed to the strongly adequate grammar) is 
of only technical interest. 

The question is, how much more power do cross-serial dependencies de-
mand and does CCG offer? An interesting class of languages to consider is the 
class of indexed grammars, which are discussed by Gazdar (1988) with refer-
ence to the Dutch construction. More recently Vijay-Shanker and Weir (1990, 
1994) have argued that several apparently unrelated near-context-free gram-
mar formalisms, including the present one, are weakly equivalent to the least 
powerful level of indexed grammars, the so-called linear indexed grammars. !° 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



208 Chapter 8 
This section presents an informal version of their argument. 

Indexed grammars (IGs) are grammars that, when represented as phrase 
structure rewriting systems, allow symbols on both sides of a production to 
be associated with features whose values are stacks, or unbounded pushdown 

stores. We can represent such rules as follows, where the notation [...] rep-
resents a stack-valued feature under the convention that the top of the stack 
is to the left, and where & and B are nonterminal symbols and W; and W) are 
strings of nonterminals and terminals, in the general case including nontermi-
nals bearing the stack feature: 

(1) o,) — W By W 
Such rules have the effect of passing a feature encoding arbitrarily many long-

range dependencies from a parent a to one or more daughters B. The rules are 
allowed to make two kinds of modification to the stack value: an extra item 
may be “pushed” or added on top of the stack, or the topmost item already 
on the stack may be “popped” or removed. These two types of rule can be 
represented as similar schemata, as follows: 

(12) a. “pushing:” o,) — W, By) We 
b. “popping:” 7.) — Wi By.) We 

In general, IGs may include rules that pass stack-valued features to more than 
one daughter. The most restrictive class of indexed grammars, linear indexed 
grammars (LIGs), allows the stack-valued feature to pass to only one daughter; 
that is, W; and W, are restricted to strings of terminals and nonterminals not 
bearing the stack feature. 

It is easy to show that Linear Indexed Grammar (LIG) offers a formalism 
that will express cross-serial dependencies. I will simplify the Dutch problem 
for illustrative purposes and assume that the goal is to generate a language 
whose strings all have some number of nouns on the left, followed by the same 
number of verbs on the right, with the dependencies identified by indices in the 
grammar. The following simple grammar (adapted from Gazdar 1988) will do 
this. 

(3) S.) 7 nm Sy 
/ 1 ~” >. 

Sy oT? SEY 
S; —> € 

[| 

The derivation tree for the string nj nz n3 Vy V2 V3 1S Shown in figure 8.1. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 209 
St] 

Nn, 
S[v] N 

S[v,v] 
~~ 

fi viv, Vv] 

S’[v,v,v] 
/ 

S’[v,v] 

fh nn n, e v, ., v, 
Figure 8.1 
LIG derivation for n>v> 

This is rather reminiscent of the structure produced by the (linguistically 
incorrect) CCG derivation using crossed composition but lacking type-raised 
categories shown in figure 6.2. While this particular grammar is weakly equiv-
alent to a context free grammar (since a”b” is a context-free language, although 
a context-free grammar assigns different dependencies), it is equally easy to 
write a related grammar for the language a”b"c", which is not a context-free 
language. 

Vijay-Shanker and Weir (1990, 1994) identify a characteristic automaton 
for these grammars, and show on the basis of certain closure properties that 
it defines what they call an “abstract family of languages” (AFL), just as the 
related pushdown automaton does. They provide polynomial time recognition 
and parsing results, of the order of n°. These results crucially depend upon the 
linearity property, because it is this property that ensures that two branches of 
a derivation cannot share information about an unbounded number of earlier 
steps in the derivation (Vijay-Shanker and Weir 1994, 591-592). This fact 
both limits expressivity and permits efficient divide-and-conquer algorithms to apply. | 

Weir (1988) and Weir and Joshi (1988) were the first to observe that there 
is a Close relation between linear indexed rules and the combinatory rules of 
CCG. Function categories like give and zag helpen voeren can be equated with 
indexed categories bearing stack-valued features, as follows: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



210 Chapter 8 
(14) give = (VP/NP2)/NP] = VP NP) ,NP>| 

zag helpen voeren := (((S\NP4)\NP3)\NP2)\NP7 = Swp,,NP>,NP3,NP4] 

Note that the LIG categories no longer encode directionality—itt is up to the 
LIG rules to do that. 

Combinatory rules can be translated rather directly in terms of such cat-
egories into sets of LIG productions of the form shown on the right of the 
equivalences in (15) and (16). Since LIG categories do not capture direction-
ality, the grammar for a particular language will be made up of more specific 
instances of these schemata involving just those categories that do in fact com-
bine in the specified order for that language.!! — 

(15) X/Y Y = X = Xi = Xy Yi) 

(16) X/Y Y/Z => X/Z = Xiz..j — Xy Yiz 
Rule (15) is forward application, realized as a binary LIG rule of the “push” 

variety. Rule (16) is first-order forward composition, B, and involves both 
pushing a Y and popping a Z. Crucially, the stack, represented as ..., is passed 
to only one daughter. The same is true for the substitution rule: 

(17) Y/Z (X\Y)/Z = X/Z = Xz.) > Vz Xzy.... 
The same linearity property also holds for the rules corresponding to B’, B’ 

and so on, because the set of arguments of the function into Y is bounded. 
It would not hold for an unbounded schema for a rule corresponding to B”. 
This rule, which can be written in the present notation as follows, involves two 
stack-valued features, written ...; and ...2: — / / (18) X/Y Y/Z$ > X/Z$ — Xi Zoo] _? Xv] ¥0...1,Z] 

It is not currently known precisely what strong generative power such general-
ized rules engender. They may not take us to the full power of IGs, because the 
translation from CCG forces us to regard the left-hand side of the rule as bear-
ing a single stack feature, which the production nondeterministically breaks 
into two stack fragments that pass to the daughters. This is not the same as 
passing the same stack to two daughters—crucially, the two branches of the 
derivation that it engenders do not share any information, and therefore seem 
likely to permit efficient divide-and-conquer parsing techniques. 

Weir and colleagues treat type-raising as internal to the lexicon, rather than 
as a rule in syntax, However, Hoffman (1993, 1995b) has pointed out that a 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



| Combinators and Grammars 211 
similar increase in power over LIG follows from the involvement of type-raised 

categories like T/(T\WP) if T is regarded as a true variable, rather than a finite 
schematization. To a first approximation, the indexed category corresponding 

- to a type-raised category looks like this: 

(19) T/(T\Y) = Xitel 

Again, the LIG category does not capture the order information, and in partic-
ular the order-preserving character, of the original. That has to be captured in 
the LIG productions, in such facts as that for every instance of rule (15) there 
is a rule like the following: 

(20) X",4) Xixty jet] XY] | 
The LIG equivalent of a raised category has two copies of the stack ...;. How-
ever, as far as functional application goes, it is simply a function like any 
other—that is, an instance of Og). It follows that this rule is simply an-
other instance of (15). Again, no information is shared across branches of the 
derivation. 

However, by the same reasoning, when two of the raised categories com-

pose, even via the first-order composition rule (16), so that Y is Ty}, their 
two distinct stack variables give rise to a nonlinear production, as follows: 

(21) XX 9) rm XX op-2I XZ.Xiy jl] 

This composition has the characteristic noted earlier of nondeterministically 
partitioning a single stack feature on the left-hand side into two fragments, 
passed as stack features to the daughters. In effect, the variable transforms 
bounded composition into the unbounded variety. Again no information is 
shared across the two branches of the derivation. 

Hoffman shows how the language a”b"c"d"e" (which is outside the set of 
linear-indexed languages) can be defined by exploiting this behavior of vari-
ables in type-raised categories. It is therefore known that if this property is 
allowed in CCGs, it raises their power strictly beyond LIG. What is not cur-
rently known is how much beyond LIG it takes us, or whether CCLs so defined 
are a subset of IL, the full set of indexed languages. ; os 

Alternatively, we can, as suggested earlier, confine ourselves to LIG power 
by eschewing the general interpretation of composition and type-raising and 
by interpreting the variables involved in each as merely finite schemata. Such 
a limitation allows all derivations encountered in parts I and II of the book and 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



212 Chapter 8 
keeps CCG weakly equivalent to LIG.'” 

The advantages of keeping to such a limitation are potentially important, as 
Vijay-Shanker and Weir (1990, 1994) show. As noted earlier, because LIGs 
pass the stack to only one branch, they limit expressive power and allow effi-
cient algorithms to apply. As a result, Vijay-Shanker and Weir have been able 
to demonstrate polynomial worst-case complexity results for recognizing and 
parsing CCGs and TAGs, which are also weakly equivalent to LIGs. It is cur-
rently unclear whether similar advantages obtain for the more general class of 
CCGs. The important fact that neither generalised composition nor variables 
in type-raised categories pass any one stack feature to more than one daughter 
gives reason to suppose that they too may be polynomially recognizable using 
divide-and-conquer techniques. 

As Gazdar (1988) has pointed out, it is not clear that the linguistic facts allow 

us to keep within either of these bounds. The full generality of the Dutch verb-
raising construction in noncoordinate sentences can be captured with weakly 
LIG-equivalent rules, but they allow functions of arbitrarily high valency to be 
grown. If such functions can coordinate, then we need the full power of IG. 
This result follows immediately from the fact that the unbounded coordination 
combinator ®” corresponds to a production that passes the same stack feature 
to two daughters: 

(22) X44) > =X, CONT X.__)) 

The crucial cases for Dutch are those in which unboundedly long sequences of 
nouns or verbs of unbounded valency coordinate. However, once the valency 
or number of arguments gets beyond four, the limit found in the Dutch and 
English lexicon, the sentences involved become increasingly hard to process, 
and hard to judge. 

Rambow (1994a) makes a similar argument for the translinear nature of 
scrambling in German. However, this argument depends on the assumption 
that unbounded scrambling is complete to unbounded depth of embedding. 
Because these sentences also go rapidly beyond anything that human proces-
sors can handle, any argument that either kind of sentence is grammatical de-
pends on assumptions about what counts as a “natural generalization” of the 
construction, parallel to a famous argument of Chomsky’s (1957) concerning 
the non-finite-state nature of center embedding. 

Joshi, Rambow and Becker (to appear) have made the point that this analogy 
may not hold. They note that all such arguments—including Chomsky’s—fall 
if a lesser automaton or AFL that covers all and only the acceptable cases 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 213 
is ever shown to exist. The status of any residual marginal cases is then de-
cided by that automaton. It is only because no one has yet identified such a 
finite-state automaton that Chomsky’s claim that context-free grammars con-
stitute a lower bound on competence still stands, and is unlikely ever to be 
overthrown.!? 

It follows that if LIG alone can be shown to be of sufficient power to pro-
vide strongly adequate grammars for the core examples, or alternatively if un-
bounded composition rules and variable-based type-raising are indeed of lesser 
power than IG, and if a class of automata characterizing an AFL can be iden-
tified, the question of whether that lesser power provides an upper bound on 
natural complexity comes down to the question of whether some exceedingly 
marginal coordinations and scramblings are acceptable or not. If an automa-
ton exists that is strongly adequate to recognize all and only the sentences that 
we are certain about, then we might well let that fact decide the margin, in the 
absence of any other basis for claiming a natural generalization. This is a ques-
tion for further research, but however it turns out, CCG should be contrasted in 
this respect with multimodal type-logical approaches of the kind reviewed by 
Moortgat (1997), which Carpenter (1995) shows to be much less constrained 
in automata-theoretic terms. 

8.4 Formalizing Directionality in Categorial Grammars 

In chapter 4, I claimed that the Principles of Adjacency, Consistency, and In-
heritance are simple and natural restrictions for rules of grammar. In chapters 
6 and 7, I claimed that a number of well-known crosslinguistic universals fol-
low from them. We have just seen that low automata-theoretic power and a 
polynomial worst-case parsing complexity result also follow from these prin-
ciples. So quite a lot hinges on the claim that these principles are natural and 
nonarbitrary. 

The universal claim further depends upon type-raising’s being limited (at 
least in the case of configurational languages) to the following schemata:'* 

(23) X >7 T/(T\X) 
X =7 T\(T/X) 

If the following patterns (which allow constituent orders that are not otherwise 
permitted) were allowed, the regularity would be unexplained. In the absence 
of further restrictions, grammars would collapse into free order: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



214 Chapter 8 
(24) X =>7 T/(T/X) | 

X >7 T\(T\X) 

| But what are the principles that limit combinatory rules of grammar, to include 
(23) and exclude (24)? And how can we move type-raising into the lexicon 
without multiplying NP categories unnecessarily? 

The intuition here is that we want to make type-raising sensitive to the direc-
tionality of the lexically defined functions that it combines with. However, the 
solution of combining type-raising with the other combination rules proposed 
by Gerdeman and Hinrichs (1990) greatly expands their number.!° 

| The fact that directionality of arguments is inherited under the application of 
combinatory rules, according to the Principle of Inheritance, strongly suggests 
that directionality is a property of arguments themselves, just like their cate-
gorial type, NP or whatever, as suggested in Steedman 1987, and as in Zeevat, 
Klein and Calder 1987 and Zeevat 1988. 

Our first assumption about the nature of such a system might exploit a vari-
ant of the notation used in the discussion of LIGs above (cf. Steedman 1987), 
in which a binary feature marks an argument of a function as “to the left” or 
“to the right.” In categorial notation it is convenient to indicate this by sub-
scripting the symbol < or — to the argument in question. Since the slash in 
a function will now be nondirectional, both \ and / can be replaced by a sin-

gle nondirectional slash, also written /, so that for example the transitive verb 
category is written as follows:'® 

(25) enjoys := (S/NP._)/NP_, Oo 
(The result S has no value on this feature until it unifies with a function as its 
argument, so it bears no directional indication. It is just an unbound variable.) 

In this notation the (noncrossed) forward composition rule is written as fol-
lows: 

(26) Forward composition | 
X/Y. Y/Z.. =p X/Z. (>B) , 

The forbidden rule (6) of chapter 4, which violates the Principle of Inheritance, 
would be written as follows: 

(27) X/Y.. Y/Z, £# X/Z 
However, given the definition of directionality as a feature of Z, this is not 
a rule of composition at all. As long as the combinatory rules are limited to 
operations like composition, only rules obeying the Principle of Inheritance 
are permitted. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 215 
The feature in question does not have the equally desirable effect of limiting 

type-raising rules to the order-preserving kind in (23). Those rules are now 
written as follows: 

(28) X= T/(T/X_) 
X>T T/(T/X_,)— 

Since the input to the rule, X, is unmarked on this feature, there is nothing to 
stop us from writing the order-changing rules in (24): 

(29) XT /(T/X.).. 
X >7 T/(T/X_) 

This is very bad. Although we can easily exclude the latter rules to define 
srammars for languages like English, we could with equal ease exploit the 
same degree of freedom to define a language in which only order-changing 
type-raising is allowed, so that the directionality of functions in the lexicon 
would be systematically overruled. Thus, we could have a language with an 
SVO lexicon, but OVS word order. Worse still, we could equally well have a 
language with one of each kind of type-raising rule—say, with an SVO lex-
icon but a VOS word order. Such languages seem unreasonable, and would 
certainly engender undesirably cynical attitudes toward life in any child faced 
with the task of having to acquire them. 

Zeevat, Klein and Calder (1987) and Zeevat (1988) offer an ingenious, but 
partial, solution to this problem. Of the two sets of rules (28) and (29), it is 
actually the order-changing pair in (29) that looks most reasonable, in that the 

raised function can at least be held to inherit the same directionality as its argu-
ment. That is, both rules are instances of a schema in which the directionality 
value is represented as a variable, say, D. In the present notation they can both 
be conveniently represented by the following single rule: 

(30) xX >T T/(T/Xp)p 

This rule has the attractive properties of being able to combine with either 
rightward- or leftward-combining arguments and of inheriting its own direc-
tionality from them. Since it therefore only combines to the left with leftward 
arguments and to the right with rightward ones, it offers a way around the prob-
lem of having multiple type-raised categories for arguments. We can simply 
apply this rule across the board to yield one type for NPs. In fact, we can do 
this off-line, in the lexicon, as Zeevat, Klein, and Calder propose. 
~ However, there is a cost in theoretical terms. As noted earlier, since this 
is the direction-changing rule, the lexicon must reverse the word order of the 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



216 Chapter 8 
language. An SVO language like English must have an OVS lexicon. This is 
in fact what Zeevat, Klein and Calder (1987) propose (see Zeevat 1988, 207— 
210). 

Despite this disadvantage, there is something very appealing about this pro-
posal. It would be very nice if there were a different treatment of the direction-
ality feature that preserved its advantages without implicating this implausible 
assumption about the lexicon. Of course, as a technical solution we might en-

code the values — and + as list structures [0,1] and [1,0], and write a similar 
single order-preserving rule as follows, using variables over the elements: 

(31) X 7 T/(T/Xpy) py | 
But such a move explains nothing, for we could equally well exploit this de-
vice to write the order-changing rule or, by using constants rather than vari-
ables, define any mixture of the two. What is wrong is that directionality is 
being represented as an abstract feature, without any grounding in the prop-
erties of the string itself. If instead we define the feature in question in terms 
of string positions, in a manner that is familiar from the implementation of 
definite clause grammars (DCGs) in logic programming, we can attain a more 
explanatory system, in which the following results emerge: 

1. The Principle of Inheritance is explained as arising from inheritance of this 
feature under unification of categories. 

2. A single order-preserving type-raised category combining either to the right 

or to the left can be naturally specified. | 
3. No comparable single order-changing type-raised category can be specified 

(although a completely order-free category can). 

Since these matters are somewhat technical, and since they impinge very 
little upon linguistics, this whole discussion is relegated to an appendix to the 
present chapter, which many readers may wish to skip entirely. Since the nota-
tion becomes quite heavy going, it is emphasised here that it is not a proposal 
for anew CCG notation. It is a semantics for the metagrammar of the present 
CCG notation. 

Appendix: Directionality as a Feature 

This appendix proposes an interpretation, grounded in string positions, for the 

symbols / and \ in CCG. This interpretation is easiest to present using unifi-
cation as a mechanism for instantiating underspecified categories and feature 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 217 
value bundles, a mechanism that has been implicit at several points in the ear-
lier discussion. 

For a full exposition of the concept of unification, the reader is directed to 
Shieber 1986. The intuition behind the notion is that of an operation that amal-
gamates compatible terms and fails to amalgamate incompatible ones. The 
result of amalgamating two compatible terms is the most general term that is 
an instance of both the original terms. For example, the following pairs of 
terms unify, to yield the results shown: 

(32) x a! = + 
fi(gia’) x = f'(s'd’) 
f'x fi(s'y) => fg'y) 
fia'x f'yy —>, flada' 

The following pairs of terms do not unify: 

(33) a’ b’ => fail 
fx gy => fail 
fab’ f'yy => fail 

(Constants are distinguished from variables in these terms by the use of 
primes.) 

Besides providing a convenient mechanism for number and person agree-
ment, unification-based formalisms provide a convenient way of implement-
ing combinatory rules in which X, Y, and so on, can be regarded as variables 
over categories that can be instantiated or given values by unification with cat-

egories like NP or S\NP. This observation provides the basis for a transparent 
implementation of CCG in the form of definite clause grammar (DCG; Pereira 
and Warren 1980) in programming languages like Prolog (and its higher-order 

descendant A-Prolog), and in fact such an implementation has been implicit at 
a number of points in the exposition above—for instance in the discussion of 
agreement in chapter 3. A example of a simple (but highly inefficient) pro-
gram of this kind for use as a proof checker for the feature-based account of 
directionality that follows is given in Steedman 1991c. 

The unification-based implementation has the important attraction of forc-
ing the Principle of Combinatory Type Transparency to apply to combinatory 
rules interpreted in this way, because of the resemblance between a model-
theoretic semantics for unification and the set-theoretic representations of cat-
egories (see van Emden and Kowalski 1976; Stirling and Shapiro 1986; Miller 
1991, 1995). 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



218 , Chapter 8 
One form of DCG equivalent of CFPSG rewrite rules like (34a) is the Prolog 

inference rule (34b), in which : — is the Prolog leftward logical implication 
operator, and PO, Pi, P are variables over string positions. such as the posi-
tions 1, 2, and 3, in (34c) (see Pereira and Shieber 1987 for discussion): 

(34) a. S — NP VP 
b. s(PO,P) :— np(PO,P1),vp(P1,P). 
c. ; dexter > walks 3 

The Prolog clause (34b) simply means that there is a sentence between two 
string positions PO and P if there is an NP between PO and some other position 
Pi, and a VP between the latter position and P. This device achieves the effect 
of declarativizing string position and has the advantage that, if lists are used 
to represent strings, the Prolog device of difference-list encoding can be used 
to represent string position implicitly, rather than explicitly as in (34c) (see 
Pereira and Warren 1980; Stirling and Shapiro 1986). 

The basic form of a combinatory rule under the Principle of Adjacency is 
ap = y. However, this notation leaves the linear order of a and B implicit. 
We therefore temporarily expand the notation, replacing categories like NP by 
4-tuples, of the form {a, DPg, Ly, Ro}, comprising (a) a type such as NP; (b) 
a distinguished position, which we will come to in a minute; (c) a left-end 
position; and (d) a right-end position. The latter two elements are the exact 
equivalent of the DCG positional variables. 

The Principle of Adjacency then finds expression in the fact that all legal 
combinatory rules must have the form in (35), in which the right-end of © is 
the same as the left-end of B: | 

(35) {a,DP.,P1,P2} | {B,DPg,P2,P3} => {Y, DP, P71, P3} 

I will call the position Pz, to which the two categories are adjacent, the “junc-
ture.” 

The distinguished position of a category is simply the one of its two ends that 
coincides with the juncture when it is the “canceling” term Y, which from now 
on we can refer to as the “juncture term” in a combination. A rightward com-
bining function, such as the transitive verb enjoy, specifies the distinguished 
position of its argument (here underlined for salience) as being that argumen-
t’s left-end. So this category is written in full as in (36a), using a nondirectional 
Slash /: 

(36) a. enjoy = {{VP,DPp,Lyp;Rip}/{NP,LnpsLup:Rup}sDPrerbsLverb,Rvev} 

b. enjoy := {VP/{NP, Lup, Lap, Rp}; -1Lverbs Rverb } 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars , 219 
The notation in (36a) is rather overwhelming. When positional features are of 
no immediate relevance in such categories, they will be suppressed, either by 
representing the whole category by a single symbol or by representing anony-
mous variables whose identity and binding is of no immediate relevance as 
« 17 For example, when we are thinking of such a function as a function, 
rather than as an argument, we will write it as in (36b), where VP stands for 

{VP, DP,p,Lyp, Rvp} and the distinguished position of the verb is written _. It is 

important to note that although the binding of the NP argument’s distinguished : 
position to its left-end Ly», means that enjoy is a rightward function, the distin-

guished position is not bound to the actual right-end of the verb, R,.-p, as in 
the following version of (36b): 

(37) *enjoy = {VP/{NP, Ryerb, Rverbs Rnp }; -,_Lyerb, Ryerb } 

It follows that the verb can potentially combine with an argument elsewhere, 
just so long as it is to the right. This property was crucial to the earlier analysis 
of heavy NP shift. Coupled with the parallel independence in the position of 
the result from the position of the verb, it is the point at which CCG parts 
company with the directional Lambek calculus, as we will see. | 

In the expanded notation the rule of forward application is written as fol-lows: | 
(38) {{X,DP,,P1,P3}/{Y,P2,P2,P3},-,P1,P2} {Y,P2,P2,P3} = {X,DP,,P1,P3} 

The fact that the distinguished position must be one of the two ends of an ar- — 
gument category, coupled with the requirement of the Principle of Adjacency, — 
means that only the two order-preserving instances of functional application 
can exist, and only consistent categories can unify with those rules. 

A combination under this rule proceeds as follows. Consider example (39), 
the VP enjoy musicals. (In this example the elements are words, but they could be any constituents.) | | | 
(39) 1 enjoy 2 musicals 3 

{VP/{NP, Larg; Larg,Rarg}, -1Lfuns Rfun} . {NP, DP np, Lnp,Rup } , 

The derivation continues as follows. First the positional variables of the cate-
gories are bound by the positions in which the words occur in the string, as in 
(40), which in the first place we will represent explicitly, as numbered string 
positions: !® 

(40) 1 enjoy 2 musicals 3 | 
{VP/{NP, Larg,Larg,Rarg}, -,1,2} {NP, DPnp,2,3} / . 

Next the combinatory rule (38) applies, to unify the argument term of the func-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



220 Chapter 8 
tion with the real argument, binding the remaining positional variables includ-
ing the distinguished position, as in (41) and (42): 

(41) 1 enjoy 2 musicals 3 
{VP/{NP, Lare, Largs Rare }s-11,2} {NP, DP np, 2,3} 

{x /{Y,P2,P2,P3},-,P1,P2} {Y, P2, P2, P3} 

(42) 1 enjoy 2 musicals 3 
{VP/{NP,2,2,3},-,1,2} {NP,2,2,3} 

{VP, 1,3} 

At the point when the combinatory rule applies, the constraint implicit in the 
distinguished position must actually hold. That is, the distinguished position 
must be adjacent to the functor. 

Thus, the Consistency property of combinatory rules follows from the Prin-
ciple of Adjacency, embodied in the identification of the distinguished position 
of the argument terms with the juncture P2, the point to which the two combi-
nands are adjacent, as in the application example (38). , 

The Principle of Inheritance also follows directly from these assumptions. 
The fact that rules correspond to combinators like composition forces direc-
tionality to be inherited, like any other property of an argument such as being 
an NP. It follows that only instances of the two very general rules of composi-
tion shown in (43) are allowed, as a consequence of the three principles: 

(43) a. {{X,DP,,Lx,Rx}/{¥,P2,P2,Ry},-,P1,P2} {{Y,P2,P2,Ry}/{Z,DP,,Lz,Rz},-,P2,P3} 

=p {{X,DP,,L,,R.}/{Z,DPz,Lz,Rz};-,P1,P3} 

b. {{Y, P2,L,,P2}/{Z,DP.,Lz,Rz},-,P1,P2} {{X,DPz,Lx,Rx}/{Y,P2,Ly,P2},-,P2,P3} 

=p {{X,DPy,L,,R.}/{Z,DPz,Lz,R2};-,P1, P3} 

To conform to the Principle of Consistency, it is necessary that L, and Ry, 
the ends of the canceling category Y, be distinct positions—that is, that Y not 
be coerced to the empty string. This condition has always been explicit in 
the Principle of Adjacency (Steedman 1987, 405, and see above), although 
in any Prolog implementation such as that in Steedman 1991c it has to be 
explicitly imposed. These schemata permit only the four instances of the rules 
of composition proposed in Steedman 1987 and Steedman 1990, and chapter 4, 
repeated here as (44) in the basic CCG notation: 

(44) The possible composition rules 

a. X/Y Y/Z =>pg X/Z (>B) b. X/Y Y\Z =p X\Z (>B,.) c. Y\Z X\Y =>p X\Z (<B) d. Y/Z X\Y =p X/Z (<B,.) 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 221 
“Crossed” rules like (44b,d) are still allowed (because of the nonidentity noted 
in the discussion of (36) between the distinguished position of arguments of 
functions and the position of the function itself). They are distinguished from 
the corresponding noncrossing rules by further specifying DP,, the distin-
guished position on Z.!? However, no rule violating the Principle of Inheri-
tance, like (27), is allowed: such a rule would require a different distinguished 
position on the two Zs and would therefore not be functional composition at 
all.2° This is a desirable result: as shown in the earlier chapters, the non-
order-preserving instances (44b, d) are required for the grammar of English 
and Dutch. In configurational languages like English they must of course be 
carefully restricted with regard to the categories that may unify with Y. 

The implications of the present formalism for the type-raising rules are less 
obvious. Type-raising rules are unary, and probably lexical, so the Principle of 
Adjacency does not obviously apply. However, as noted earlier, we only want 
the order-preserving instances (23), in which the directionality of the raised 
category is the reverse of that of its argument. But how can this reversal be 
anything but an arbitrary property? 

Because the directionality constraints are defined in terms of string posi-
tions, the distinguished position of the subject argument of a predicate walks— 
that is, the right-edge of that subject—is equivalent to the distinguished posi-
tion of the predicate that constitutes the argument of an order-preserving raised 
subject Dexter—that is, the left-edge of that predicate. It follows that both of 
the order-preserving rules are instances of the single rule (45) in the extended 
notation: 

(45) {X, DParg, Larg, Rare } 

= {T/{T/{X,DParg, Larg, Rare}, DPargs pred: Rpred}:s Largs Rarg} 

The crucial property of this rule, which forces its instances to be order-
preserving, is that the distinguished-position variable DParg on the argument 
of the predicate in the raised category is the same as that on the argument 
of the raised category itself. (The two distinguished positions are underlined 
in (45).) Notice that this choice forces the raised NP and its argument to be 
string adjacent; it is exactly the opposite choice from the one that we took in 
allowing lexical categories like (36) to unify with arguments anywhere in the 
specified direction.*! Of course, the position is unspecified at the time the rule 
applies, and it is simply represented as an unbound unification variable with 
an arbitrary mnemonic identifier. However, when the category combines with 
a predicate, this variable will be bound by the directionality specified in the 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



222 Chapter 8 
predicate itself. Since this condition will be transmitted to the raised category, 
it will have to coincide with the juncture of the combination. Combination 
of the categories in the nongrammatical order will therefore fail, just as if the 
original categories were combining without the mediation of type-raising. 

Consider the following example. Under rule (45), the categories of the 
words in the sentence Dexter walks are as shown in (46), before binding. 

(46) 1 Dexter 2 walks 3 
{S/{S/{NP, DP, ,Lg,Re},DP2,LpredsRpred},-,Lg,Re} {S/{NP, Rap, Lnp;Rnp },DPw,Lw,Rw } 

Binding of string positional variables yields the categories in (47). 

(47) 1 | Dexter 2 walks 3 
{5/{S/{NP, DP, ,1,2},DPg,Lpred,Rprea}, - 1,2} {S/{NP, Rup, Lp, Rnp },DPy,,2,3} 

The combinatory rule of forward application (38) applies as in (48), binding 
further variables by unification. In particular, DP,z, Rup, DPw, and P2 are all 

, bound to the juncture position 2, as in (49): 

(48) 1 Dexter 2 walks 3 
{S/{S/{NP, DP,, 1,2},DPo,Lpred;Rpred}s-1,2} {S/{NP,Rnp,LnpsRnp},DPw,2,3} 

{X/{Y,P2,P2,P3},-,P1,P2} {Y, P2, P2,P3} 

(49) i Dexter 2 walks 3 
{S/{S/{NP,2,1,2},2,2,3},1,2} {S/{NP,2,1,2},2,2,3} {S,1,3} OT 

By contrast, the same categories in the opposite linear order fail to unify with 
any combinatory rule. In particular, the backward application rule fails, as in 
(50): 

(50) 1 * Walks 2 Dexter 3 
{S/{NP,Rnp,Lnp;Rnp}5-1,2} {S/{S/{NP, DP,,2,3},DPy,Lpred,Rpred}s-12,3} _{¥, P2, PI, P2} {X/{Y,P2,P1,P2},-,P2,P3} 

(Combination is blocked because 2 cannot unify with 3.) 
On the assumption implicit in (45), the only permitted instances of type-

raising are the two rules given earlier as (23). The earlier results concerning 
word order universals under coordination are therefore captured. Moreover, 
we can now think of these two rules as a single underspecified order-preserving 
rule directly corresponding to (45), which we might write less long-windedly 
as follows, augmenting the original simplest notation with a vertical “order-
preserving” slash | to distinguish it from the undifferentiated nondirectional 
slash /: 

(51) The Order-preserving type-raising rule 
X = TI\(TIX) 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Combinators and Grammars 223 
The category that results from this rule can combine in either direction, but 
will always preserve order. Such a property is extremely desirable in a lan-
guage like English, whose verb requires some arguments to the nght and some 
to the left, but whose NPs do not bear case. The general raised category can 
combine in both directions, but will still preserve word order. Like Zeevat’s 
(1988) rule, it thus eliminates what was earlier noted as a worrying extra de-
gree of categorial ambiguity. As under that proposal, the way is now clear to 
incorporate type-raising directly into the lexicon, substituting categories of the 

form T|(T|X), where X is a category like NP or PP, directly into the lexicon 
in place of the basic categories, or (more readably, but less efficiently), to keep 
the basic categories and the rule (51), and exclude the base categories from 
all combination. Most importantly, we avoid Zeevat’s undesirable assumption 
that the English lexicon is OVS, thus ensuring continued good relations with 
generations of language learners to come. 

Although the order-preserving constraint is very simply imposed, it is in 
one sense an additional stipulation, imposed by the form of the type-raising 
rule (45). We could have used a unique variable—say, DPp;eq—in the crucial 

position in (45), unrelated to the positional condition DP,;g on the argument 
of the predicate itself, to define the distinguished position of the predicate-
argument of the raised category, as in (52): 

(52) *{X,DParg,Larg;Rarg} => 

, {T/{T/{X, DParg Largs Rarg }DP pred, Lpred; Rprea} - Largs Rare } 

However, this tactic would yield a completely unconstrained type-raising rule, 
whose result category could not merely be substituted throughout the lexicon 
for ground categories like NP without grammatical collapse. (Such categories 
immediately induce totally free word order—for example, permitting (50) on 
the English lexicon.) 

Although it is conceivable that such non-order-preserving type-raised cate-
gories might figure in grammars for extremely nonconfigurational languages, 
such languages are usually characterized by the presence of some fixed el-
ements. It seems likely that type-raising is universally confined to the 
order-preserving kind and that the sources of so-called free word order lie 
elsewhere.”” 

Such a constraint can therefore be understood in terms of the present pro-
posal simply as a requirement for the lexicon itself to be consistent. It should 
also be observed that a single uniformly order-changing category of the kind 
proposed by Zeevat (1988) is not possible under this theory. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



224 Chapter 8 
That is not to say that more specific order-changing categories cannot be 

defined in this notation. As noted earlier, in a non-verb-final language such 
as English the object relative-pronoun must have the category written in the 
basic notation as (V\N)/(S/NP), which is closely related to a type-raised cat-

egory. In the extended notation, and abbreviating N\WN as R, this category is 
the following: 

(53) whom := {R/{T/{X, Larg, Largs Rarg };Lpred: Lred» prea}; -, Larg, Rarg } 

In fact, provided we constrain forward crossed composition correctly, as we 
must for any grammar of English, the following slightly less specific category 
will do for the majority dialect of English in which there is no distinction 
between subject and object relative-pronouns who, or for the un-case-marked 
relative-pronoun that: 

(54) who/that = {R/{T/{X, DParg, Larg, Rarg}; Lyreds Lpreds Rpred } - Largs Rarg } 

In the former category both the complement function and its argument are 
specified as being on the right. In the latter, the directionality of the comple-
ment argument is unspecified. Thus, we need look no further than the relative-
pronouns of well-attested dialects of English to see exploited in full all the 
degrees of freedom that the theory allows us to specify various combinations 
of order-preserving and non-order-preserving type-raising in a single lexical 
category. 

The account of pied-piping proposed by Szabolcsi (1989), to which the 
reader is directed for details, is also straightforwardly compatible with the 
present proposal.” 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Chapter 9 

Processing in Context 

[After the second word of Tom wanted to ask Susan to bake a cake] we have in the 
semantics a function, which we might call (Tom want). ...If the parser is forced to 
make a choice between alternative analyses, it may make reference in this choice to | semantics. | 
John Kimball, “Predictive Analysis and Over-the-Top Parsing” 

To account for coordination, unbounded dependency, and Intonation Structure, 
strictly within the confines of the Constituent Condition on Rules, we have 
been led in parts I and II of the book to a view of Surface Structure according to 
which strings like Anna married and thinks that Anna married are constituents 
in the fullest sense of the term. As we have repeatedly observed, it follows that 
they must also potentially be constituents of noncoordinate sentences like Anna 
married Manny and Harry thinks that Anna married Manny. For moderately 
complex sentences there will in consequence be a large number of nonstandard 
alternative derivations for any given reading. 

We should continue to resist the natural temptation to reject this claim out 
of hand on the grounds that it 1s at odds with much linguistic received opinion. 
We have already seen in earlier chapters that on many tests for constituency— 
for example, the list cited in (1) of chapter 2—the combinatory theory does 
better than most. The temptation to reject the proposal on the basis of pars-
ing efficiency should similarly be resisted. It is true that the presence of such 
semantic equivalence classes of derivations engenders rather more nondeter-
minism in the grammar than may have previously been suspected. Although 
this makes writing parsers a little less straightforward than might have been 
expected, it should be clear that this novel form of nondeterminism really is 
a property of English and all other natural languages and will be encountered 
by any theory with the same coverage with respect to coordination and intona-
tional phenomena. It is also worth remembering that natural grammars show 
no sign of any pressure to minimize nondeterminism elsewhere in the gram-
mar. There is therefore no a priori reason to doubt the competence theory on 
these grounds. 

The only conclusion we can draw from the profusion of grammatical non-
determinism is that the mechanism for coping with it must be very powerful. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



226 Chapter 9 
This chapter will argue that the most important device for dealing with nonde-
terminism in the human processor is a process of eliminating partial analyses 
whose interpretation is inconsistent with knowledge of the domain under dis-

| cussion and the discourse context. 
The chapter will also claim that combinatory grammars are particularly well 

suited to the incremental, essentially word-by-word assembly of semantic in-
terpretations, for use with this “interactive” parsing tactic. Any attempt to 
argue for the present theory of competence and against any other on the basis 
of this last observation alone would be fallacious. The methodological prior-
ity of competence arguments remains unassailable, and none of the theories 
currently on offer, including this one, have yet come close to descriptive ad-
equacy as competence theories. Since all of them are compatible in principle 
with incremental interpretation in this sense of the term, all bets are off until 
the question of descriptive adequacy has been settled. 

Nevertheless, we can draw the following weaker conclusion. If the program 
sketched in this book is ultimately successful, and CCG, together with the 
view of constituency and syntactic structure that it implicates, is in the end 

, vindicated as a descriptively adequate theory of competence grammar, then it 
is likely that it will also be very simply and directly related to the parser as well. 

In other words, if it is descriptively adequate, then it is probably explanatorily adequate as well. , | 
9,1 Anatomy of a Processor | 

| All language-processors can be viewed as made up of three elements. The 
first 1s a grammar, which defines how constituents combine to yield other con-

stituents. The second is an algorithm for applying the rules of the grammar to 
a string. The third is an oracle, or mechanism for resolving nondeterminism. 
The oracle decides which rule of grammar to apply at points in the analysis 
where the nondeterministic algorithm allows more than one rule to apply. The 
following sections briefly discuss these elements in turn.! 

9.1.1 Grammar , , 
The strong competence hypothesis as originally stated by Bresnan and Kaplan 
(1982) assumes that the grammar that is used by or implicit in the human sen-

| tence processor is the competence grammar itself. It is important to be clear 
that this is an assumption, not a logical requirement. The processors that we 

: design ourselves (such as compilers for programming languages) quite often 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 227 
do not exhibit this property. There is no logical necessity for the structures 
involved in processing a programming language to have anything to do with 
the structures that are implicated by its competence grammar—that is, the syn-
tactic rules in the reference manual that are associated with its semantics. The 
compiler or interpreter can parse according to a quite different grammar, pro-
vided that there exists a computable homomorphism mapping the structures of 
this “covering grammar” onto the structures of the competence grammar. If the 
homomorphism 1s simple, so that the computational costs of parsing according 
to the covering grammar plus the costs of computing the mapping are less than 
the costs of parsing according to the competence grammar, then there may be 
a significant practical advantage in this tactic. For this reason, it is quite com- -

mon for compilers and interpreters to parse according to a weakly equivalent 
covering grammar, mapping to the “real” grammar via a homomorphism un-
der concatenation on a string representing the derivation under the covering 
grammar. For example, programming language compilers sometimes work 
like this, when a parsing algorithm that is desirable for reasons of efficiency 
demands grammars in a normal form that is not adhered to by the grammar in 
the reference manual (see Gray and Harrison 1972; Nijholt 1980). Such a sit-
uation also arises in artificial parsers for natural languages, when it is desired 
to use top-down algorithms, which can be ill suited to the left-recursive rules 
that commonly occur in natural grammars (see Kuno 1966 for an early exam-
ple). As Berwick and Weinberg (1984, esp. 78-82) note, there is therefore no 
logical necessity for the structures involved in human syntactic processing to 
have anything to do with the structures that are implicated by the competence 
grammar—that is, the structures that support the semantics. 

Nevertheless, similar considerations of parsimony in the theory of language 
evolution and language development to those invoked earlier might also lead 
us to expect that, as a matter of fact, a close relation is likely to hold between 
the competence grammar and the structures dealt with by the psychological 
processor, and that it will in fact incorporate the competence grammar in a 
modular fashion. One reason that has been frequently invoked is that lan-
guage development in children is extremely fast and gives the appearance of 
proceeding via the piecemeal addition, substitution, and modification of in-
dividual rules and categories of competence grammar. Any addition of, or 
change to, a rule of competence grammar will not in general correspond to a 
similarly modular change in a covering grammar. Instead, the entire ensemble 
of competence rules will typically have to be recompiled into a new cover-
ing grammar. Even if we assume that the transformation of one grammar into 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



228 Chapter 9 
another is determined by a language-independent algorithm and can be com-
puted each time at negligible cost, we have still sacrificed parsimony in the 
theory and increased the burden of explanation on the theory of evolution. In 
particular, it is quite unclear why the development of either of the principal 
components of the theory in isolation should confer any selective advantage. 
The competence grammar is by assumption unprocessable, and the covering 
grammar is by assumption uninterpretable. It looks as though they can only 
evolve as a unified system, together with the translation process. This is likely 
to be harder than to evolve a strictly competence-based system.” 

Indeed, the first thing we would have to explain is why a covering grammar 
was necessary in the first place. The reference grammars of programming lan-
guages are constrained by human requirements rather than the requirements of 
the machines that process them. Such grammars can be ill suited to parsing 
with the particular algorithms that we happen to be clever enough to think of 
and to be able to implement on that kind of machine. It is we humans who find 
requirements like Greibach Normal Form tedious and who prefer grammars 
with left-recursive rules, forcing the use of covering grammars on some artifi-
cial processors. If convenience to the available computing machinery were the 
only factor determining the form of computer languages, then their grammars 
would take a form that would not require the use of a covering grammar at all. 
It is quite unclear what external force could have the effect of making natural 
grammars ill-matched to the natural sentence processor.” 

It is important to note that the strong competence hypothesis as stated by 
Bresnan and Kaplan imposes no further constraint on the processor. In par-
ticular, it does not limit the structures built by the processor to fully instan-
tiated constituents. However, the Strict Competence Hypothesis proposed in 
this book imposes this stronger condition.* The reasoning behind this strict 
version is again evolutionary. If in order to process sentences we need more 
than the grammar itself, even a perfectly general “compiler” that turns gram-
mars into algorithms dealing in other structures, then the load on evolution is 
increased. Similar arguments for the need for the grammar and processor to 
evolve in lockstep mean that a theory that keeps such extras to the minimum is 
preferred. 

This strict version of the strong competence hypothesis has the effect of 
generalizing the Constituent Condition on Rules to cover the processor. The 
claim is that the constituents that are recognized in the grammar (and their 
interpretations) will be the only structures the processor will give evidence of. 
Anything else we are forced to postulate is an extra assumption and will require 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 229 
an independent explanation if it is not to count against the theory. Of course, 
such an explanation may be readily forthcoming. But if it is not, then it will 

remain a challenge to explanatory adequacy. 

9.1.2 The Algorithm 
If we believe that the natural processor must incorporate the competence gram-
mar directly, what more must it include? According to the assumptions with 
which this section began, it must include a nondeterministic algorithm that 
will apply the rules of the grammar to accept or reject the string, together with 
some extra apparatus for simultaneously building a structure representing its 
analysis. Provided that the competence grammar is monotonic, this structure 
can be the semantic translation itself, rather than a strictly syntactic structure. 
Under this view (which has been standard in computational linguistics at least 
since Woods’s (1970) ATN), a syntactic derivation is simply a trace of the way 
in which this interpretable structure was built. 

The processor must also include an oracle (dealt with in section 9.1.3) to 
resolve the nondeterminism that the grammar allows (or at least rank the alter-
natives) for the algorithm. A theory will be successful to the extent that both 
of these components can be kept as minimal and as language-independent as 
possible. For this reason, we should be very careful to exclude the possibil-
ity that either the algorithm or the oracle covertly embeds rules of a grammar 
other than the competence grammar. 

There are of course a great many algorithms for any given theory of gram-
mar, even when we confine ourselves to the simpler alternatives. They may 
work top-down and depth-first through the rules of the grammar, or work 
bottom up from the string via the rules, or employ some mixture of the two 
strategies. For obvious reasons, most parsers with any claim to psychological 
realism work from the earliest elements of the sentence to the last, or (for the 
present orthography) leftmost-first, but alternatives are possible here, too. 

Such algorithms require an automaton, including a working memory such as 
the chart mechanism discussed below, in addition to the competence grammar 
and a mechanism for eliminating nondeterminism. For context-free grammars 
the automaton is a pushdown automaton. For the classes of grammars treated 
in this book, it is Vijay-Shanker and Weir’s (1990; 1994) generalization of the 
same device, the extended pushdown automaton, also discussed below. The 
question we must ask under the strict competence hypothesis is, how little 
more can we get away with? In particular, can we get away with nothing more 
than the theoretical minimum—that is, an algorithm that does not need to know 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



230 Chapter 9 
about anything except rules of grammar, the string, and the state of the stack 
and the working memory, subject to the adjudication of the oracle? 

CCGs are very directly compatible with one of the simplest classes of al-
gorithm, namely, the binary-branching bottom-up algorithms. They are most 
easily understood by considering in turn: (a) a nondeterministic shift-reduce 
parser, and (b) a chart-based deterministic left-right incremental version of the 
Cocke-Kasami- Younger (CKY) algorithm (Cocke and Schwartz 1970; Harri-
son 1978).> 

The nondeterministic leftmost-first shift-reduce algorithm can be stated as follows: , 
(1) 1. Initialize the stack to the empty stack and make a pointer point to posi-

, tion 0 in the string, before the first word. 
2. As long as there are any words left in the string or a combinatory rule 

can apply to the topmost item(s) on the stack either: 
a. Put on the stack (shift) a category corresponding to the word that 

starts at the pointed-to position, or: 
b. Apply the combinatory rule to the topmost categories on the stack 

and replace them by its result (reduce). 

For a simple sentence, Thieves love watches, this algorithm allows an anal-
ysis via the sequence shift, shift, reduce, shift, reduce (for simplicity, NPs are 
shown as lexically raised): 

(2) | (S\NP)/NP : love’ 
S/(S\NP) : Ap.p thieves’ 

a. Shift, Shift b. Reduce 
S\(S/NP) : Ap.p watches’ 

c. Shift d. Reduce 
One (very bad) way of making this algorithm deterministic is to choose a 

default strategy for resolving shift-reduce ambiguities—say, “reduce-first’”— 
and to keep a trail of parse states including alternatives not taken, backtracking 
to earlier states and trying the alternatives when the analysis blocks. This will 
cope with the fact that all three words in the sentence are ambiguous between 
nouns and verbs. However, if we want to be sure that we have found not only 

an analysis, but in fact all possible analyses of the sentence, we must restart 
the process and backtrack again until all possible avenues have been examined 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 231 
and no choices are left on the trail. Because naive backtracking parsers ex-
amine all possible paths in the search space, they are time-exponential in the | 
number of words in the sentence. The source of this exponential cost lies in 
the algorithm’s tendency to repeat identical analyses of the same substring, as 
when, the algorithm having mistakenly chosen the auxiliary category for the 
first word of the following sentence and having failed to find an analysis at the 
word take, the entire analysis of the arbitrarily complex subject NP has to be 
unwound and then repeated once the alternative of analyzing the first word as 
a main verb is taken (the example is from Marcus (1980)): 

(3) Have the students who missed the exam take the makeup. 

Because of the extra nondeterminism induced by type-raising and the as-
sociative composition rules, there is even more nondeterminism in CCG than 
in other grammars, so even for quite small fragments, particularly those that 
involve coordination, naive backtracking parsers are in practice unusable. Un-
like standard grammars and parsing algorithms, because of the associativity of 
functional composition and the semantics of combinatory rules, CCG deriva-
tions fall into equivalence classes, with several derivations yielding identical 
interpretations.° Of course, it does not matter which member of any equiva-
lence class we find, so long as we find some member of each. However, the 
search space is unacceptably large, and to ensure that we have found at least 
one member of all possible equivalence classes of derivation for a string of 
words, we are still threatened by having to search the entire space. | 

Karttunen (1989), Pareschi and Steedman (1987), and Pareschi (1989) dis-
cuss the use of a “chart” (Kay 1980) to reduce the search space for combinatory 
parsers. Chart parsing is by origin a technique for parsing CFPSG using a data 
structure in which all constituents that have been found so far are kept, indexed 
by the position of their left and right edge or boundary in the string. Each chart 
entry identifies the type of the constituent in question. It is common to refer to 
chart entries as “arcs” or “edges” and to represent the chart as a graph or net-
work. We will be interested in the possibility that the chart may also associate 
other information with an arc or entry, such as the predicate-argument structure 
of the constituent. (For a sentence of length n, this chart can be conveniently 
represented as an n x n half-matrix with sets of categories as entries.) 

Using a chart overcomes the main source of exponential costs in naive back-
tracking, arising from repeated identical analyses of a given substring. In the 
case of mere recognition, it is enough to make one entry in the table for a con-
stituent of a given type spanning a given substring. For the task of finding all 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



232 Chapter 9 
distinct parses of a sentence, the chart must include an entry for each distinct 
analysis spanning that substring. 

Since even context-free grammars can approach bracketing completeness, 
and do so in practice for constructions like multiple noun compounding, to 
similarly reduce the worst-case complexity of the parsing problem to n° re-
quires the use of structure-sharing techniques to produce a “shared forest” of 
analyses using linked lists (see Cocke and Schwartz 1970; Earley 1970; Pratt 
1975; Tomita 1987; Billot and Lang 1989; Dorre 1997). 

As noted earlier, because of the associative nature of function composition, 
CCG parsers will potentially deliver structurally distinct derivations for a con-
stituent of a given type and interpretation spanning a given substring—the 
property that is misleadingly referred to as “spurious” ambiguity.’ If multi-
ple equivalent analyses are entered into the chart, then they too will engender 
an explosion in computational costs. To the extent that CCGs approximate the 
bracketing completeness of the Lambek calculus version, the number of deriva-
tions will proliferate as the Catalan function of the length of the sentence— 
essentially exponentially. 

Pareschi, following Karttunen, proposed to eliminate such redundancies via 
a check for constituents of the same type and interpretation, using unification. 
Any new constituent resulting from a reduction of existing constituents whose 
predicate-argument structure was identical to one already existing in the chart 
would not be added to it. This reduces the worst-case complexity of combina-
tory parsing/recognition for the context-free case to the same as that for stan-
dard context-free grammars without “spurious” ambiguity—that is, to n°, with 
the same proviso that interpretation structures are shared, and with a constant 
overhead for the redundant reductions and for the unification-based matching entry check.® 

Vijay-Shanker and Weir (1994) discuss the problem of generalizing the 
context-free algorithms to mildly context-sensitive formalisms including the 
present one. Because such grammars potentially introduce infinitely many 
nonterminal categories, generalizing the CKY algorithm discussed below to 
deal with them potentially makes it worst-case exponential, unless a technique 
of structure sharing of category entries that they describe is used. It should 
not be forgotten that this is strictly a worst-case complexity result. As always, 
caution is needed in drawing conclusions for practical average-case complex-
ity. Komagata (1997a) suggests that average-case recognition complexity for 
significant practical grammar fragments for Japanese and English is roughly 
cubic, so that the overhead of Vijay-Shanker and Weir’s technique may not be 
worthwhile in practical applications. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 233 
As a first step toward defining a psychologically reasonable parser, it is in-

structive to see a trace of an algorithm of this kind, the left-to-right breadth-first 
bottom-up context-free chart parser. This can be defined in terms of an algo-
rithm that can be informally stated as follows.’ 

(4) 1. Initialize the chart to the empty chart, and make a pointer point to po-
sition 0 in the string, before the first word. 

2. Until the end of the sentence is reached: 
a. Add entries corresponding to all categories of the word that starts at 

the pointed-to position. Make the pointer point to the next position 
in the sentence. 

b. As long as there is a pair of entries in the chart that can reduce, do the 
reduction and add an entry representing the result to the chart, unless 
the matching-entry test reveals that an equivalent entry is already 
present. 

Since by definition shifting a new lexical category for the jth word can only 
induce new reductions to give categories whose right boundary is at position 
j in the sentence, an efficient way of carrying out step 2 is to ask for all i 
where 0 <i < (j —2) whether there are any such reductions. This in turn 
means asking for all k where i < k < j whether there are entries spanning (i,k) 

and (k, j) that reduce. Since adding a new entry (i, 7) during this process may 

itself enable further reductions, it is necessary to compute the new entries (i, /) 
bottom up—that is, by starting with i = j — 2 and stepping down to i = 0. 
Hence, we can state the algorithm more completely and formally as follows, 
where present is the test for a matching entry already in the table, and A, B, 
C are category-interpretation pairs of the form & : A where & is a syntactic 
category such as NP or S/NP, and A is a predicate-argument structure: 

(5) 1. for j7:=1tondo 
begin 
t(j — 1,7) := {AJA is a lexical category for a;} 

2. for i := 7 — 2 down to 0 do 
begin 

3. t(i,j) := {Althere exists k,i<k< j, such that B C => A for some 
B e€t(i,k), C €t(k, j), and not present(A,i,j)} end | 

end 

This algorithm is complete, in the sense that it finds all possible grammatical 
constituents and all complete analyses for the sentence. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



234 Chapter 9 
. Dexter. must , know  . Warren . well , 
Figure 9.1 
The start-state: string and empty chart am 

T/(T\WP) V(S\NP)/VP . Dexter. must , know  . Warren . well , 
Figure 9.2 
Shift Dexter, shift must, reduce 

Imagine that such a parser is faced with the sentence Dexter must know 
Warren well, and suppose (simplifying) that all words have a unique category, 
including the adverb well which is a VP modifier with the single category 
VP\VP. The reduce-first strategy goes through the following stages. Since the 
chart is initially empty, as in figure 9.1, nothing can happen until categories 
have been shifted to the chart for the first two words, Dexter must. At that 
point a single reduction is possible via the composition rule, leaving the chart 
in the state shown in figure 9.2. No further reductions are possible, so we shift 

a category for the next word, know. Two new reductions are now permitted, 
; again via the composition rule. One of these is with the previously shifted 

modal, (S\NP)/VP, and one with the result of the previous reduction, S/VP. 
The first induces a result that can further reduce with the subject, but this yields 
a result equivalent to the second in predicate-argument structural terms, so one 
or the other is detected to be redundant. No further reductions are possible, so 
the state is as in figure 9.3. We must shift a category for the word Warren, 
a shift that precipitates reductions and new entries as shown in figure 9.4. 
These include a number of redundant constituents that will take part in no 
grammatical analysis, including the S$, Dexter must know Warren. Many of 
them have multiple analyses that must be detected by the matching check (or 
preempted by some other mechanism such as the normal form parsers that 
Hepple and Morrill (1989), Hendriks (1993), Konig (1994), and Eisner (1996) 
have proposed). Finally we shift a category for the adverb and halt in the state 
shown with a single S spanning positions 0 through 5, as in figure 9.5. 

This derivation reveals the tendency for bottom-up parsers to build unnec-
essary constituents, here typified by the spurious S, Dexter must know Warren. 
Even the comparative simplicity of the derivation described above is mislead-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 235 | S/NP ; 
[7 BRIN 
TT \WP) “ (S\NP)/VP /vpinp S . Dexter. must. know  . Warren . well , 

Figure 9.3 
Shift know, reduce, reduce 

S PN 
lr, ZX P)/NPFS A VP : 
TTP) (S\NP)/VP VP/NP T\(T/NP) . Dexter. must. know  . Warren . well ; 

Figure 9.4 
Shift Warren, reduce, reduce, reduce 

ing in this respect. There is at least one other category for Warren (namely, 
the subject type-raised category), and it can combine with another category for 

know (namely, VP/S). In more complex sentences such fruitless analyses will 
proliferate. 

However, this example serves to reify some of the main components of a 
practical parser, in preparation for the discussion of how this sort of device 
could be made more like a human processor. Human beings are rarely aware 
of lexical or global syntactic ambiguity in the sentences that they process, and 
they rarely encounter difficulty arising from nondeterminism in the grammar. 
How can this be? There was a broad hint in chapter 5, where we saw that into-
national boundaries can on occasion reduce the ambiguity of CCG derivation. : 
Although such indicators are frequently missing, the occasions on which they 
are missing can plausibly be argued to be exactly the occasions on which the 
Information Structure, and therefore some important aspects of Surface Struc-
ture, can be assumed to be known to the hearer. Perhaps there are other sources 
of information that mean that redundant structure building and proliferation of 
categories exemplified above can be eliminated for the benefit of the parser. | 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



236 Chapter 9 
S 

S\NP 

YANG Se eon 
T/T WP) (S\NP)/VP VP/NP T\(T /NP) VP\VP . Dexter. must. know .  Wartren . well , 

Figure 9.5 
Shift well, reduce, reduce, halt 

9.1.3 The Oracle 
Nothing about the expected close relation between syntax and semantics en-
tails that the mapping should be unambiguous, even though the grammars for 
artificial languages we design ourselves typically permit only the most local of 
nondeterminism, because they are designed for use as formal calculi. Expres-
sions in natural languages seem to be remarkably free with ambiguity, both 
global and local, as in the following famous examples; 

(6) Flying planes can be dangerous. 

(7) a. Have the students taken the exam? 
b. Have the students take the exam! 

In the latter example, from Marcus 1980, the substring have the students is 
(syntactically and semantically) locally ambiguous, in the sense that a pro-
cessor cannot immediately know which rule of grammar to apply after en-
countering it. Human beings seem to be remarkably adept at resolving such 
ambiguities, which are astonishingly profuse in natural language.!° 

Probably for the same reason, we do as a matter of fact tend to design our 
artificial languages in ways that make their symbols “locally” ambiguous, ei-
ther in terms of which rule of syntax should apply, or in terms of which rule of 
semantics should apply. (An example of the latter is the “overloading” of an 
operator like + to denote distinct operations applying to integers, real numbers, 
and complex numbers.) The one lesson that we can derive from our experience 
with artificial languages and processors like compilers is that such ambiguities 
must be resolvable quickly and locally if the computational complexity of pro-
cessing is to be contained. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 237 
In order to facilitate this requirement, programming languages are invariably 

carefully designed so that local ambiguity can be resolved immediately, either 
syntactically by examining the next symbol in the string, or semantically by 
examining the types of functions and arguments (as in the case of overloading 
above). However, natural language shows no sign of any such constraint from 
within grammar. For example, although the locally ambiguous substring Have 
the students ... in (7) is disambiguated by the phrase take/taken the exam, an 
indefinite amount of further linguistic material may intervene between the am-
biguous substring and the disambiguating information, as when the sentences 
begin Have the students who were late with the homework ..., Have the stu-
dents who were late with the homework that I assigned last Monday ... , and so 
on. This apparent nondeterminism in the grammar is an anomaly that requires 
further explanation, for if we allow the ambiguities to proliferate, then the costs 
of maintaining the alternatives will explode. Indeed, as Marcus points out, we 
must be able to eliminate all but some bounded number of alternative paths 
on the basis of purely local evidence, since there is no evidence that process-
ing load increases as a worse-than-linear function of sentence length. I will 
call the device that eliminates nondeterminism, and decrees which rule of the 
grammar should be invoked at any point in the derivation, an “oracle.” How-
ever this device works, it is clear that it must be very effective in order to deal 
with the degree of nondeterminism that natural grammars exhibit. Moreover, 
as noted earlier, it must also be entirely language-independent, if it is not to 
compromise the parsimony and modularity of the theory of the processor. 

Most accounts of the human sentence-processing mechanism have assumed 
that local attachment ambiguity resolution is based on structural criteria, such 
as parsing “strategies” (Fodor, Bever and Garrett 1974; Kimball 1973), struc-
tural preferences (Frazier 1978), rule orderings (Wanner 1980), lexical prefer-
ences (Ford, Bresnan and Kaplan 1982), or lookahead (Marcus 1980). Such 
accounts have been claimed to explain a wide range of sentence-processing 
phenomena, the most spectacular of which is undoubtedly the identification 
by Bever (1970) of the “garden path phenomenon”—that is, the existence of 
sentences like the following, for which a local ambiguity is misresolved in a 

way that makes a perfectly grammatical sentence unanalyzable: 

(8) The horse raced past the barn fell. 

However, such accounts have generally been characterized either by empiri-
cal shortcomings or by proliferation of devices and degrees of freedom in the 
theory (see e.g. the exchange between Frazier and Fodor (1978), and Wanner 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



238 Chapter 9 
(1980)). In particular, since the earliest stages of the inquiry, it has been clear 
that all human parsing phenomena are extremely sensitive to the influence of 
semantics and especially referential context. Bever (1970) notes a difference in 

the strength of the garden path effect in minimal pairs of sentences analogous 
to the following, raising the possibility of an influence either from different 
word transition probabilities or from the related differing pragmatic plausibil-
ity of analyzing the initial NP as a subject of the ambiguous verb/participle 
sent: 

(9) a. The doctor sent for the patient arrived. 
b. The flowers sent for the patient arrived. 

Various computational proposals have been made for how pragmatic plau-
sibility might have this effect via a “weak” interaction between syntax and 
semantics, using a filtering process of comparing rival partial analyses on the 
basis of their success or failure in referring to entities in the model or dis-
course context (see Winograd 1972 and Hirst 1987). In particular, Crain and 
Steedman (1985) and Altmann and Steedman (1988) proposed a criterion for 
selecting among analyses called the “Principle of Parsimony,’ which can be 

stated as follows: 

(10) The Principle of Parsimony 
The analysis whose interpretation carries fewest unsatisfied but accom-

_ modatable presuppositions or consistent entailments will be preferred. 

These authors use the term “presupposition” in the “pragmatic” sense of Stal-
naker (1974) and Lewis (1979), and explain this principle in terms of the as-
sociated notion of accommodation of unsatisfied presuppositions. They point 
out that the two analyses of sentence (8), which differ according to whether it 

begins with a simple NP the horse or a complex NP the horse raced past the 
barn, also differ in the number of horses whose existence in the model they 
presuppose (one or more than one) and in the number of properties that they 
assume to distinguish them—none in the case of the singleton horse, and being 

caused to race along a given path in contrast to some other property in the case 
of multiple horses. They argue that contexts which already support one or the 
other set of presuppositions—say, because a single horse has previously been 
mentioned, or several horses and some racing—will favor the related analy-
sis at the point of ambiguity and thereby either induce or eliminate the garden 
path for this sentence under the Principle of Parsimony. Crucially, they also 
argue that the empty context, in which no horses and no racing have been 
mentioned, will favor the simplex NP analysis, because its interpretation car-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 239 
ries fewer unsatisfied but consistent presuppositions and is therefore easiest to 
accommodate. The principle accordingly predicts a garden path in the empty context. , : | 

In support of this view, Crain and Steedman (1985) offer experimental evi-
dence that attachment preferences are under the control of referential context. 
Subjects were presented with minimal pairs of target sentences displaying local 
attachment ambiguities, preceded by contexts that established either two ref-
erents, respectively with and without a distinguishing property, or one referent 
with that property. Examples (modified from the original) are as follows: 

(11) a. Contexts: 
i. A psychologist was counseling two women. He was worried about 

one of them, but not about the other. 
i. A psychologist was counseling a man and a woman. He was wor-

ried about one of them, but not about the other. 
b. Targets: 

i. The psychologist told the woman that he was having trouble with 
her husband. 

ui. The psychologist told the woman that he was having trouble with 
to visit him again. 

Both target sentences have a local ambiguity at the word that, which is resolved 
only when the italicized words are encountered. Frazier’s (1978) Minimal At-
tachment Principle would predict that the second target would always cause a 
garden path. In fact, however, this garden path effect is eliminated when the 
sentence is preceded by the first context, which satisfies the presupposition of 
the relative-clause analysis. Moreover, a garden path effect is induced in the 
first target when it is preceded by the same context, because by the same token 
it fails to support the presupposition that there is a unique woman. Crain and 
Steedman (1985) also confirmed certain related predictions concerning the ef-
fect of definiteness on garden paths in the null context. The experiments were 
repeated and extended with improved materials by Altmann (1988) and Alt-
mann and Steedman (1988), and the effect has been show to be robust across a 
number of experimental measures of processing load including brain-imaging 
and Event-Related Potential (ERP) measures (van Berkum, Brown and Ha-
goort 1999). | 

Whereas examples like (9) are compatible with an alternative explanation 
based on word transition probabilities and higher-order statistics of the lan-
guage, these experiments showing effects of referential context with minimal 
pairs of targets are much harder to plausibly account for in this way. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



240 Chapter 9 
The majority of early psycholinguistic experiments on processing loads 

used only empty contexts, and therefore failed to control for this sort of ef-
fect. However, more recent experiments (see e.g. Carroll, Tanenhaus and 
Bever 1978; Tanenhaus 1978; Marslen-Wilson, Tyler and Seidenberg 1978; 
Swinney 1979; Tanenhaus, Leiman and Seidenberg 1979; Crain 1980; Alt-
mann 1985; Trueswell, Tanenhaus and Kello 1993; Trueswell, Tanenhaus and 
Garnsey 1994; Spivey-Knowlton, Trueswell and Tanenhaus 1993; Sedivy and 
Spivey-Knowlton 1993; and van Berkum, Brown and Hagoort 1999) have now 
built up a considerable body of evidence that effects of semantics, knowledge-
based plausibility, and referential context are extremely strong. Indeed, almost 
all theories of performance nowadays admit that some such component, in 
the form of a “thematic processor” (Frazier 1989), “construal” (Frazier and 
Clifton 1996), or the equivalent, can intervene at an early stage of process-
ing. The only remaining area of disagreement is whether anything else besides 
this potentially very powerful source of ambiguity resolution is actually re-
quired. (See the exchange between Clifton and Ferreira (1989) and Steedman 
and Altmann (1989)). For, if interpretations are available at every turn in sen-
tence processing, then there is every reason to suppose that the local syntactic 
ambiguities that abound in natural language sentences may be resolved by tak-
ing into account the appropriateness of those interpretations to the context of 
utterance, even when the rival analyses are in traditional terms incomplete. In-
deed, the possibility that human language-processors are able to draw on the 
information implicit in the context or discourse model seems to offer the only 
mechanism powerful enough to handle the astonishing profusion of local and 
global ambiguities that human languages allow and to explain the fact that hu-
man language users are so rarely aware of them. Such a selective or “weak” 
interaction between syntactic processing and semantic interpretation is entirely 
modular, as J.A. Fodor (1983, 78 and 135) points out. 

If interpretation in context is the basis of local ambiguity resolution, then a 
number of further properties of the parser follow. The felicity of an interpre-
tation with respect to a context is not an all-or-none property, comparable to 
syntactic well-formedness. Utterances are often surprising—indeed, they are 
infelicitous if they are not at least somewhat novel in content. It follows that 
evaluation in context can only yield information about the relative good fit of 
various alternatives. We might therefore expect the parser to use a tactic known 
as “beam-search,” whereby at a point of local ambiguity, all alternative analy-
ses permitted by the grammar are proposed in parallel, and their interpretations 
are then evaluated in parallel. Readings that fail to refer or are otherwise 1m-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 241 
plausible are discarded or ranked lower than ones that are consistent with what 
is known, along the lines suggested earlier (see Gibson 1996; Collins 1997, 
1998; Charniak, Goldwater and Johnson 1998.) The parsing process then pro-
ceeds with the best candidate(s), all others being discarded or interrupted. (A 
similar tactic is widely used in automatic speech processing to eliminate the 
large numbers of spurious candidates that are thrown up in word recognition; 
see Lee 1989). 

On the assumption that the number of alternative analyses that can be main-
tained at any one time is strictly limited, we can also assume that the process 
of semantic filtering occurs very soon after the alternatives are proposed. It 
should at least be completed before the next point of local ambiguity, for oth-
erwise we incur the penalties of exponential growth in the number of analyses. 
Given the degree of nondeterminism characteristic of natural grammars, this 
means that the interplay of syntactic analysis and semantic adjudication must 
be extremely intimate and fine-grained. Since most words are ambiguous, se-
mantic adjudication will probably be needed almost word by word. 

For example, consider (9), repeated here: 

(12) a. The doctor sent for the patient arrived. 
b. The flowers sent for the patient arrived. 

The garden path effect in (12a) is reduced in (12b), because flowers, unlike 
doctors, cannot send for things. The very existence of a garden path effect in 
(12a) suggests that this knowledge must be available early. If the processor 
were able to delay commitment until the end of the putative clause the flowers 
sent for the patient, then it would have got to the point of syntactic disam-
biguation by the main verb, and there would be no reason not to expect it to 
be able to recover from the garden path in (12a). It follows that to explain the 
lack of such an effect in (12b), we must suppose that the interpretation of an 
incomplete proposition the flowers sent for... is available in advance of pro-
cessing the rest of the PP, so that its lack of an extension can cause the garden 
path analysis to be aborted.!! 

However, the proposal to resolve nondeterminism by appeal to such inter-
pretations immediately leads to an apparent paradox. If the processor resolves 
nondeterminism in midsentence, more or less word by word, on the basis of 
contextual appropriateness of interpretations, then those interpretations must 
be available in mid-sentence, also more or less word by word. However, under 
the rule-to-rule hypothesis and the strict competence hypothesis, only con-
stituents have interpretations, and only constituents are available to the pro-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



242 Chapter 9 
cessor. Now, there is no particular problem about constructing a grammar 
according to which every leftmost string is a constituent, so that processing 
can proceed in this incremental fashion. Any left-branching grammar provides 
an example. For such grammars, the assumption of a rule-to-rule composi-
tional semantics means that, for each terminal in a left-to-right pass through 

the string, as soon as it is syntactically incorporated into a phrase, the interpre-
tation of that phrase can be provided. And since the interpretation is complete, 
it may also be evaluated; for example, if the constituent is a noun or an NP, 
then its extension or referent may be found. 

A right-branching context-free grammar, on the other hand, does not have 
this property for left-to-right processors. In the absence of some further ap-
paratus going beyond rule-to-rule processing and rule-to-rule semantics, all 
comprehension must wait until the end of the string, when the first complete 
constituent is built and can be interpreted. Until that point any processor that 
adheres to the strict competence hypothesis must simply pile up constituents 
on the stack. It therefore seems that we should, under the strict competence hy-
pothesis, expect the languages of the world to favor left- branching construc-
tions, at least wherever incremental interpretation is important for purposes 
of resolving nondeterminism. However, the languages of the world make ex-
travagant use of right-branching constructions—the crucial clause in (12), The 
flowers sent for the patient, being a case in point. The availability of an inter-
pretation for what are in traditional terms nonconstituents (e.g. the flowers sent 
... and/or the flowers sent for ...) therefore contradicts the strict competence 
hypothesis, if we assume the orthodox grammar. 

It is therefore interesting that CCG makes such fragments as the doc-
tor/flowers sent for... available in the competence grammar, complete with 
an interpretation, and comparable in every way to more traditional constituents 
like the clause and the predicate. To the extent that the empirical evidence—for 
example, from comparison of the garden path effect in similar minimal pairs 
of sentences by Trueswell and Tanenhaus and colleagues—suggests that inter-
pretations are available to the processor for such fragments, it follows that the 
present theory of grammar delivers a simpler account of the processor, with-
out compromising the strict competence hypothesis. Derivations like (56) in 
chapter 6 show that this claim extends to the SOV case.'* 

It is important to be clear that this problem for traditional right-branching 
grammars is independent of the particular algorithms discussed in section 
9.1.2. It applies to bottom-up and top-down algorithms alike, so long as they 
adhere to the strict competence hypothesis. Top-down algorithms have the ap-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 243 
parent advantage of being syntactically predictive, a fact whose psychological 
relevance is noted by Kimball (1973) and Frazier and Fodor (1978). How-
ever, neither algorithm of itself will allow an interpretation to be accessed for 
the leftmost substring, in advance of their being combined into a constituent. 
Therefore, neither algorithm unaided will allow word-by-word incremental se-
mantic filtering as a basis for the oracle within right-branching constructions. 

To say this is not of course to deny that incremental interpretation is possible 
for right-branching grammars if they do not adhere to the strict competence 
hypothesis in this extreme form. In fact, the requisite information is quite easy 
to compute from the rules of the grammar. It would not be unreasonable to 
postulate a language-independent mechanism using functional composition to 
map traditional grammar rules onto new rules defining parser-specific entities 
like S/NP. 

For example, Pulman (1986, 212-213) proposes a bottom-up shift-reduce 
processor that includes a rule “Clear” that combines subjects like the flowers 
and a transitive verb sent (with the “summon” reading) on a stack, thus:!° 

(13) 

= 
The rule Clear corresponds to an operation of semantic composition on cate-
gories on the parser’s stack, as distinct from a grammatical rule. It therefore 
violates the strict competence hypothesis. If such violations are permitted, 
then it is clearly easy for a processor to gain access to interpretations more 
incrementally than the grammar would otherwise allow. 

However, this argument cuts two ways. If such entities can be associated 
with semantic interpretations, why are they not grammaticalized? Under the 
assumption that grammar is just the reification of conceptual structure, why 
are these apparently useful concepts getting left out? 

Of course, there is a lot that we don’t know about the conceptual infras-
tructure of grammar. We are not yet in a position to say whether or not there 
is anything odd about those concepts that causes them to be left out. How-
ever, given that such conceptual objects seem to be accessible to the parser 
for resolving nondeterminism, it is interesting to remember at this point that 
categorial grammars of the kind discussed here already do grammaticalize the 
fragments in question. Since they do so by including composition as a compo-
nent of competence grammar, they predict that the same operation should be 
available to the processor, under the strict competence hypothesis, rather than 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



244 Chapter 9 
requiring it as an extra stipulation and thereby violating that principle. 

There is in fact no sense in which a parser using a right-branching grammar 
under strict competence can access interpretations for substrings that are not 

| constituents. In the case of (12b), this means that the anomaly of the clausal 
reading of the substring the flowers sent for the patient cannot be detected until 
after the word patient. However, this is rather late in the day. The very next 
word in the sentence is the disambiguating main verb arrived. Since we know 
that there is a garden path effect in (12a), and we know that in context the 
grammatical reading can be comprehended, we have reason to believe that the 
human disambiguation point must be earlier, around the verb or the preposi-
tion. If so, then the degree of incremental interpretation permitted under the 
strict competence hypothesis for standard right-branching grammars for this 
construction is of insufficiently fine grain. 

Stabler (1991), criticizing an earlier version of this proposal (Steedman 
1989), has argued that the present claims are in error, and that incremental 
interpretation of right-branching constituents is in fact possible without violat-
ing the strong competence hypothesis in the strict sense used here. 

Stabler does not in fact adhere to the strict form of the strong competence 

hypothesis. It is clear that he is assuming a weaker form of the competence hy-
pothesis, although he gives no explicit definition (see Stabler 1991, 233, n.1). 
In particular, in his first worked example, (p. 226) he binds a variable Subj in 
the interpretation of the sentence to the interpretation of the actual subject, via 
Prolog-style partial execution in the rule J7 (p. 208). This is possible only be-
cause he is using the grammar as a predictive parser. He uses this information 
to identify the fact that since the context includes only one predication over this 
subject, that must be the one that is to come, under a caricature of incremental 
evaluation similar to that used above.'* 

However, we have seen that this much is merely information that could le-
gitimately have been built into the grammar itself, via type-raising. (In fact, 
this analogy seems to be effectively embodied in Stabler’s second example us-
ing an LR parser (Aho and Johnson 1974), although the details here are less 
clear.) As in the example offered above, Stabler’s processor has not actually 
handled any interpretations that correspond to nonconstituents. It is therefore 
more important to ask whether it adheres to the strict competence hypothesis 
in all other respects by entirely avoiding interpretation of nonconstituents of 
the the flowers sent variety, or whether it violates the hypothesis by covertly 
constructing interpreted objects that are not merely constituents according to 
the competence grammar, either in the form of dashed categories or in the form 
of partially instantiated semantic interpretations. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 245 
Curiously, since his paper is addressed to a predecessor of the present pro-

posal, and even though he technically allows strict competence to be compro-
mised, all of Stabler’s examples take the first tactic. Thus, in his exegesis of 
the (right-branching) sentence The joke is funny, there is no sense in which 
there ever exists an interpretation of the nonconstituent the joke is, or indeed 
anything comparable to The flowers sent (see Stabler 1991, 215, and 232).) 
His parser offers no help with the question raised by (12). It is neither consis-
tent with the strict competence hypothesis nor incrementally interpretative in 
the sense argued for here. 

Shieber and Johnson (1993) have also argued against the same earlier ver-
sion of the present proposal on a rather different ground. They freely admit 
(p. 29) that their proposal for incorporating a version of incremental interpre-
tation in a more or less traditional grammar violates of the strict competence 
hypothesis. (The violation arises when they exploit the fact that the state of 
their LR parser encodes a shared forest of possible interpretable partial analy-
ses in much the same way as Pulman’s (1986) parser discussed above; see pp. 
18-22.) However, they claim that within such a not strictly competence-based 
parser, incremental interpretation is actually simpler than strictly constituent-
based interpretation. The reasoning behind this interesting claim is that, once 
interpretation of nonconstituents is allowed by the addition of extragrammat-
ical apparatus, imposing strict competence on the system requires the reim-
position of synchrony, via further additional mechanisms such as a clock or 
switch. 

As in the simpler examples discussed earlier of incrementally interpreting 
parsers using categories and the stack as interpretable objects, the real force of 
this argument depends upon the extent to which the apparatus for interpreting 
LR states as encoding partial analyses can be given some independent motiva-
tion. All the earlier questions about why these interpretations are not grammat-
icalized also remain to be answered, especially when it is recalled that other 
competence phenomena (e.g. coordination, considered in part II) suggest that 
similar interpretations indeed behave like grammatical entities. Such questions 
are simply open, and they will remain so until the rival competence theories 
attain something closer to descriptive adequacy than any of them do today. 

The resolution of the apparent paradox of incremental interpretation does 
not lie in Stabler’s or Shieber and Johnson’s parsers, but in the observation 
that strings like Anna married and the flowers sent are in the fullest sense 
constituents of competence grammar. We can retain the strict version of the 
strong competence hypothesis and continue to require the grammar to support 
incremental interpretation, if we also take on board the combinatory theory of 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



246 . Chapter 9 
grammar. This theory offers a broader definition of constituency, under which 
more substrings, and in particular more left prefixes, are associated with in-
terpretations as a matter of grammar. The interpretations of such nonstandard 
constituents can therefore be used to compare rival analyses arising from non-
determinism on the basis of their fit to the context, without violating the strict 
competence hypothesis. 

9.2 Toward Psychologically Realistic Parsers 

How could a reasonably efficient parser of this kind be built? One possibil-
ity is a very simple modification of the breadth-first incremental CKY parser 
sketched in section 9.1.2. The modification is that when a new constituent 
(i, 7) is found, we not only check that it is not already present in the chart before 
adding it. We also check that it makes sense by evaluating it either with respect 
to a priori likelihood with respect to the knowledge base, as Winograd (1972) 

suggests for disambiguating compound NPs like water meter cover adjustment 
screw or (if it is a main-clause prefix) with respect to referential context, as in 
the flowers/doctor example (12). 

: We noted in the earlier discussion that we need only consider new arcs end-
ing at 7 when the categories of the jth word a; are shifted, and that it is nec-
essary to compute the new entries (i, 7) bottom up—that is, by starting with 
i= j —2 and stepping down toi = 0. For each i we ask for all kK where i <k < j 

whether there are entries spanning (i,k) and (k, 7) that reduce. If so, then the 

result is added to the table t as t(i, j) if it survives the matching check. The 
algorithm can be defined as follows. (Compare Harrison 1978, 433, and exam-

ple (5) above—the present version differs only in assuming that categories are 
accompanied by interpretations and that all reductions are considered in the 
innermost loop.) A, B, C are category-interpretation pairs 2: A as before: 

(14) 1. for j:=1tondo | 
begin 

t(j —1,j) := {AJA is a lexical category for a;} 
2. for i := 7 —2 down to 0 do 

begin , 
3. a. t(i, j) :={A| there exists k, i< k < j, such that BC > A for some 

B ét(i,k),C €t(k, j), and not present(A, i,j) } 
b. t(i, j) := rank(t(i,j)) 
end 
end 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 247 
The function rank is assumed to order the constituents in t(i, 7) according 
to plausibility, either intrinsically or in terms of the state of the context or 
database and the Principle of Parsimony (10). For the sake of simplicity I will 
assume in what follows that the highest-ranked element is assigned a plausibil-
ity value of I and the rest are assigned a plausibility value of 0, although more 
realistically a range of values summing to | and/or a threshold for entry to the 
chart could be used. 

To make the proposal more concrete, I will again assume a very simplified 
account of the discourse model related to an extensional version of the Alterna-
tive Semantics of Rooth (1985, 1992) used in chapter 5.'° In particular, I will 
assume that a context is a database containing modal propositions as individ-
uals, corresponding to the fact that it is possible for a person to send anything 
for a person, that it is possible for a person to summon a person, that it is 
possible for anything to arrive, that doctors and patients are persons, and that 
flowers are not. To further simplify, I will ignore the “send into raptures” sense 
of send. In the null context the discourse model might look something like the 
following, where the © prefix means that the event to its right is possible and 
can be accommodated in the sense defined earlier, and where I use the logic-
programming convention that variables are implicitly universally quantified: 

(15) person'x A person'z > ©Osend'xyz , 
person'x /\ person'y — ©summon' xy 

- Sarrive'x 

doctor'x — person'x 
patient'x — person'x 

flowers'x — —person’x | 
This database rather crudely represents the fact that propositions about peo-
ple sending and summoning can be readily accommodated or added to the 
hearer’s representation of the situation, but that in our simplified example no 
propositions with flowers as the subject of sending or summoning can be ac-
commodated. 

As far as the grammar goes, we have the usual problem of deciding whether 
nouns like flowers optionally subcategorize for modifiers like relatives and past 
participials or not. On the argument given in section 4.3.2 to the effect that 
anything out of which something can be right node raised must be an argument, 
examples like the following suggest that such modifiers are arguments: 

(16) a. afew men that I gave and women that I sold flowers | 
b. the flowers sent for and chocolates given to the patient 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



248 Chapter 9 
Continuing to simplify, I will represent this by simple lexical ambiguity on the 
noun flowers. For the same reason I will also continue to assume that type-
raising applies lexically. 

Consider what happens when the sentence The flowers sent for the patient 
arrived is processed in this context. We shift the definite article the and the 
two categories for the noun flowers, which can then reduce to yield a subject 
(among other irrelevant raised categories) meaning something like the follow-
ing, in which 1 is Russell’s definite existential quantifier (Russell 1905—see 
van der Sandt 1988; Beaver 1997): 

(17) a. S/(S\NP) : Ap.ux.flowers'x \ px 

b. (S/(S\NP))/(N\N) : Ag.Ap.tx.(flowers’x A gx) A px 

The 1 operator in the first category requires the existence of exactly one entity 
of type flowers’ The 1 operator in the interpretation of the second category 
requires the existence of exactly one entity of type flowers’ having one other property q : 

There are no such entities in the database, but they can be consistently ac-
commodated. Since the first category requires accommodating one proposition 
and the second requires accommodating two, the first is more plausible. It is 
therefore ranked 1, and the accommodation is carried out. The second is ranked 
0 and not accommodated. Importantly, both categories remain in the table. 

Let us represent the accommodation by existentially instantiating the flowers 

with an arbitrary constant—say, gensym',—and adding the following fact to the 
database: 

(18) flowers’ gensym'’, 

We next encounter the word sent, which has three categories: 

(19) a. ((S\NP)/PP)/NP : \x.Ay.Az.send'yxz 
b. (S\NP)/PP : Xx.Ay.summon'xy 

c. (N\N)/PP: \x.Ap.hy.p y A send’ yxsomeone’ 

The raised subject (17a) can compose with the categories (19a,b) to yield the 
following categories: 

(20) a. S/PP: Ay.1x.flowers’x \ summon’ yx : 
b. (S/PP)/NP : Ay.Az.tx.flowers'x \ send’ zyx 

The other subject category, (17b), can compose with the last verbal category, 
(19c), to yield the following category: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 249 
(21) (S/(S\NP))/PP : Ay.Ap.ix.(flowers'x \ send'yxsomeone’) \ px 

To assess the plausibility of (20a,b), the processor must ask if it is possible for 
flowers to send things for people or send for people: 

(22) a. Oflowers’x \ summon! yx : 
b. ©flowers'x /\ send’ zyx 

Neither possibility is supported by the database, so both of these categories are 
associated with a low probability by the ranking function rank when entered in 
the chart. 

The plausibility of category (21) depends on there being just one thing 
around of type flowers’ with the property that they were sent. Although there 
is nO corresponding proposition in the database, the knowledge base does at 
least support the possibility of sending flowers: 

(23) flowers’y A send’ zyx 

Category (21) therefore ends up as the highest-ranked category for The flowers 
sent ..., ranked 1 on entry to the chart. Its presuppositions are accommodated 
by adding the following facts to the database about the already present arbitrary 
flowers gensym,: 

(24) send’z gensym', someone’ 

The next word to shift is the preposition for, which first reduces with (20b) 
and (21) by composition. Since flowers cannot send for anything, and can be 
sent for people, the first is ranked O and the second 1 on entry to the chart: 

(25) a. S/NP: Xy.1x.flowers'x \ summon'yx 

b. (S/(S\NP))/NP : Ay.Ap..x.(flowers’x \ send’ yxsomeone’) (\ px 

Note that this preference for the modified subject reverses that on the subject 
alone. (Other reductions, which we will come back to later, are possible at this 
stage.) 

Next we shift the, shift patient, and reduce to yield a number of cat-
egories as in the case of the subject, of which the following (where NP! 
schematizes as usual over various raised categories) carries fewest presupposi-
tions/entailments and is highest ranked: 

(26) NP! : Ap.tx.patient’x A px 

A unique patient must therefore be accommodated using another arbitrary con-
stant: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



250 Chapter 9 
(27) patient’ gensym’, 

The raised NP can combine with both categories in (25) for The flowers sent 
jfor.... Since patients are people and can be summoned and sent things, two 
categories go in the chart for The flowers sent for the patient ...: 

(28) a. S:ty.patient'y \1x.flowers'x /\ summon’ yx 

b. S/(S\NP) : Ap.ty.patient’y \1x.(flowers'x \ send’xysomeone’') ( px 

The first of these is again implausible. The second is plausible to the extent 
that it is possible to send flowers for a patient, and that there is exactly one 
thing with the property flowers’ and one with the property patient’, and that 
a proposition subsuming the following one—namely, (24)—is already accom-
modated: 

(29) send’ gensym’ gensym', someone’ 

The subject in turn can combine with the main verb arrived and complete the 
analysis, since anything can arrive. 

This version of the CKY parser is complete, in the sense that it builds all 
legal constituents, even when they are zero-ranked for likelihood. Other con-
stituents will be built, some of which will be rejected under the matching-entry 
test as being redundant without any further evaluation and without affecting the 
rankings already assigned to the equivalent constituents already in the chart. 
The important thing to note is that the anomaly of the tensed-verb reading is 
apparent as soon as the ambiguous word sent is encountered. 

The analysis of the sentence The doctor sent for the patient arrived is iden-
tical, except that because of the plausibility of doctors sending for people, and 
the lesser presuppositional demand of the simple NP, the tensed-verb analysis 
is favored over the modifier analysis until the disambiguation point: 

(30) S/(S\NP) : Ap.ty.doctor’y A 1x.(patient'x \ send'xysomeone’) \ px 

S : ty.doctor’y \1x.patient'x \ Asummon'xy 

Now suppose that a single doctor is already identified in the context. 

(31) doctor’ dexter’ 

Here the analysis of The doctor sent for the patient arrived will proceed exactly 
as in the null context, except that the unique doctor will no longer need to be 
accommodated. The analysis will receive a low rank for the same reason. 

However, consider the case where there are two known doctors in the con-
text: 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 251 | (32) doctor’ dexter’ 
doctor’ warren’ 

Even if the entailment of the restrictor (that someone sent one of them for the 
patient) is not known and must be accommodated, the simple NP will fail to 
refer from the start and the complex NP will be highly ranked, as in the case 
of The flowers sent for the patient arrived. 

| We have already noted that the CKY algorithm as described here is com-
plete. This means that it does not of itself predict exactly which sentence-
context pairs will lead to unrecoverable garden paths. Moreover, we have 
unrealistically assumed that the ranking function does not need to take into 
account the preference values of the inputs to combinations. However, the al-
gorithm shows that alternatives can be ranked consistently with the observed 
effects up to the point of disambiguation. This means that less conservative 
algorithms such as the beam-searching CCG parser of Niv (1993, 1994), the 
best-first chart-parser of Thompson (1990), or a version of CKY in which con-
tinuous probabilities are used to calculate exact likelihood values—say, using 
methods discussed by Collins (1996, 1997, 1998)—-and subjected to a thresh-
old, can be used to make more precise predictions. 

9.3 CCG Parsing for Practical Applications 

As noted earlier, the CKY algorithm has worst-case time complexity n° for 
| recognition in the context-free case (because it involves three nested loops of 

complexity order n), and the n° worst-case complexity of recognition for Vijay-
Shanker and Weir’s (1990; 1993; 1994) generalization to CCG depends upon 

, a complex structure-sharing technique for categories. Moreover, polynomial 
worst-case complexity for the corresponding parsers depends in both cases 
upon similarly subtle techniques for structure sharing among parse trees or 
interpretable structures using devices like “shared forests” (Billot and Lang 
1989). | 

However, experiments by Komagata (1997a, 1999) with a CKY parser for 
hand-built CCG grammar fragments of English and Japanese for real texts 
from a constrained medical domain suggests that average-case parsing com-
plexity for practical CCG-based grammars can in practice be quite reasonable | 
even in the absence of semantic disambiguation or statistically-based opti-
mization, despite its worst-case exponentiality.!’ To the extent that the psy-
chological processor limits attachment ambiguities by the kind of semantic 
strategy outlined here, or by the related probabilistic techniques discussed in 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



252 Chapter 9 
section 9.2, psychologically implausible mechanisms to manage shared forests 
as a representation of the alternative parsers may also be eliminated. 

The modified CKY algorithm is only one among a number of possibili-
ties, including parsers based on more predictive algorithms such top-down and 
mixed top-down and bottom-up algorithms, such as that of Earley (1970). The 
important point in terms of psychological realism is that by using CCG as 
the grammatical module, all such algorithms can be semantically incremen-
tal, while remaining entirely neutral with respect to the particular theory of 
grammar involved and exactly as incremental as the grammar itself allows, in 
keeping with the strict competence hypothesis. 

Nevertheless, for many applications this kind of algorithm will always be 
vulnerable to well-known limitations on our ability to represent our everyday 
knowledge about practical domains in ways that will support adequate assess-
ment of plausibility. For many applications such a parser will therefore benefit 
very little from the pruning step. Moreover, as we saw at the end of chapter 8, 
this particular algorithm, being bottom-up, inherits the disease of building use-
less constituents. | 

Many of the worst effects of the disease can be eliminated by being more 
careful about which categories for a; are input to the algorithm in step 1. For 
example, almost all nouns like thieves in English can be either N or NP. How-
ever, when preceded by an article, as in the thieves, the relevant category is, 
with overwhelmingly high probability, N rather than NP. This fact provides the 
basis for a number of low-level, purely stochastic, syntax-independent “’part-
of-speech-tagging” (POS) methods for disambiguating lexical form-class (Je-
linek 1976; Merialdo 1994), based on algorithms that can be automatically 

| trained on text or speech corpora. POS tagging can be used to limit the can-
didate categories input to the CKY algorithm to the “n-best” or most likely 
categories, as de Marcken (1990) points out, eliminating much of the disad-
vantage of bottom-up techniques. 

Indeed, it is likely that CCG and other lexicalized grammars, such as TAG, 
will benefit more from such stochastic filtering. POS tagging is commonly 
based on around 60 form classes (Francis and Kuéera 1964, 23-25), some 
of which, such as VBZ (verb, 3rd person singular present), are not as infor-
mative as they might be. By contrast, CCG and TAG have several distinct 
categories or elementary trees corresponding to VBZ, distinguishing intran-
sitive and a number of distinct varieties of transitive and ditransitive verbs. 
This suggests that better POS-tagging algorithms could be developed by using 
CCG or TAG categories in place of the standard POS categories, a proposal 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Processing in Context 253 
that has been investigated by B. Srinivas and Joshi (1994). Experiments of this 
kind are reported by B. Srinivas (1997) and Doran and B. Srinivas (to appear), 
with promising results. One interesting question for this research is whether 
stochastic methods will be effective in disambiguating type-raising. 

Recent work by Collins (1996, 1997, 1998) points to the advantages of an 
even greater integration of probabilistic information with syntax in parsers 
for lexicalized context-free grammars, including CCG. Collins (1997, 1998) 
presents a technique for supervised learning of probabilistic Dependency 
Grammars, in which the production rules are induced from a tree-bank and 
probabilities are found for a given rule applying with a given lexical ”head” 
and arguments with other given heads. Some of the distinctive features of the 
procedure for assigning these probabilities are a method based on maximum 
likelihood estimation and a ’backing off’ method for use in the face of sparse 
data. The probabilities can be used to guide search in any one of a number 
of standard parsing algorithms, including shift-reduce, beam search, and CKY. 
This parser was at the time of writing the most accurate wide coverage parser 
by the standard measures, with precision/recall figures better than 88% on un-
seen Wall Street Journal text. 

Because of its simultaneous clean theoretical separation between compe-
tence grammar, parsing algorithm, and probability, and because of its close 
coupling of these elements in processing, Collins’s method is extremely gen-
eral. More or less any class of lexicalized grammar can be made to yield depen-
dency structures, and so probabilistic parsers can in principle be induced for 
them too, provided that the tree-bank that is used records the relevant depen-
dencies. Combinatory Categorial Grammar is a particularly interesting case 
to consider, not only because of the historically close relation between Cate-
gorial Grammar and Dependency Grammar, and because the Logical Forms 
that CCGs build capture the dependencies in question, but also because of the 
simple way in which they project lexical dependencies, and hence the asso-
ciated head-dependency probabilities, onto unbounded and fragmentary con-
structions including coordination. (The advantages of this property for gram-
mar induction have already been mentioned in connection with human lan-
guage acquisition.) 

Jt is not clear what psychological reality such stochastic methods can lay 
claim to. It does not seem likely that the semantic methods I have advocated 
for resolving attachment ambiguities will solve the problem of lexical ambi-
guity. On the other hand, it does seem possible that human processors could 
derive plausibility measures directly from properties of the syntax and associa-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



254 Chapter 9 
tive properties of the memory for concepts underlying word meanings, rather 
than by collecting higher-order statistics over large volumes of data. The rule-
based POS taggers of Brill (1992) Voutilainen (1995), Kempe and Karttunen 
(1996), and Cussens (1997), and related sense-disambiguation work by Resnik 
(1992) using WordNet (Miller and Fellbaum 1991) are suggestive in this re-
spect. However, to the extent that very transient changes to the sets of refer-
ents that are available in the discourse model can affect processing load and 
garden path effects, as in the experiments discussed earlier, processes of ac-
tive interpretation, including limited amounts of inference, seem to be the only 
plausible basis for resolution of structural or attachment ambiguities by the 
psychological processor. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Chapter 10 

The Syntactic Interface 

Lofty designs must close in like effects. 

Robert Browning, “A Grammarian’s Funeral” 

This book began by stating some uncontroversial assumptions in the form of 
the rule-to-rule condition and the competence hypothesis, deducing the even 
more widely accepted Constituent Condition on rules of competence grammar. 

| The Introduction also endorsed the methodological priority of investigating 
competence syntax over performance mechanisms. Having noted the diffi-
culties presented by coordination and intonation in relation to the Constituent 
Condition on Rules, part I of the book went on to advance an alternative combi-
natory view of competence grammar under which these apparently paradoxical 
constructions were seen to conform to that condition after all. After putting the 

theory through its syntactic paces in part II, the progression has been brought 
full circle in part III by deriving some consequences for the theory of perfor-
mance under a “strict” version of the competence hypothesis. 

10.1 Competence 

The competence theory that was developed along the way is conveniently 
viewed in terms of a third and final version of the by-now familiar Y-diagram in 

figure 10.1, which combines figures 4.1 and 5.3, again including mnemonic ex-
emplars of the constructs characteristic of each module of the theory. Accord-

ing to this theory, lexical items and derived constituents (including sentences) 
pair a phonological representation with a syntactic category (identifying type 
and directionality only) and an interpretation. Chapter 5 showed that the inter-
pretations of the principal constituents of the sentence correspond to the infor-
mation structural components called theme and rheme. These in turn combine 

by function application or “B-normalization” to yield fairly standard quantified 
predicate-argument structures or Logical Forms. Predicate-argument struc-
tures preserve fairly traditional relations of dominance and command. In par-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



256 Chapter 10 
LEXICON 

married := (SVB )/NR, : *married ° 
L+H* 

Combinatory | Projection 

KN p 

Phonology Function Application 
PHONETIC FORM LOGICAL FORM 

"Someone MARRIED EVERYONE" a. Vx. married x (Skl con *) 

Figure 10.1 
Architecture of Combinatory Categorial Grammar III 

ticular, they embody the obliqueness hierarchy on grammatical relations over 
, arguments. The order of combination that is defined by the syntactic category 

need not conform to the obliqueness hierarchy, and in VSO and SVO languages 
cannot conform to it. 

Traditional notions of command and dominance have nothing to do with 
derivation in this sense. Instead, derivations capture directly the notion of 
constituency relevant to relativization, coordination, and phrasal intonation, 
without the invocation of empty syntactic categories or syntactic operations 
of “movement,” “deletion,” “copying,” or “restructuring,” distinct from those 

implicit in the automatic construction of the appropriate Logical Form. This 
notion of structure should be identified with Information Structure, rather than 
traditional Surface Structure. Although it is convenient to represent Informa-
tion Structures as trees, they do not constitute a level of representation in the 
theory. In contrast to Logical Form and the associated predicate-argument 
structural domain of the binding theory, no rule or relation is predicated over 
such structures. 

The responsibility of the combinatory rules is to “project’’ both components 
of the lexical categories, synchronously and in lockstep, onto the correspond-
ing constituent components of the derivation.’ The types of the constituents 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



The Syntactic Interface 257 
that they yield are considerably more diverse than those implicated in tradi-
tional Surface Structures or GB S-Structures. They provide the input to rules 
of coordination, parentheticalization, and extraction, all of which are thereby 
brought under the Constituent Condition on Rules. They also provide the input 
to purely local phonological processes, such as vowel harmony or liaison and 
the Rhythm Rule (Selkirk 1984), which directly map information-structural 
constituents onto Phonetic Form proper. 

There is no conflict between such a view of surface constituency and more 
traditional theories of grammar. In categorial terms, such theories can be seen 
as predominantly concerned with predicate-argument structure and hence with 
elements of semantic interpretation or Logical Form, rather than syntax proper. 
To the extent that such theories provide a systematic account of the relation be-
tween interpretations in this sense and syntactic categories, they provide what 
amounts to a theory of the categorial lexicon—a component of the present the-
ory that continues to be lacking in this and preceding discussions of CCG. 

By contrast, the normalized Logical Form or quantified predicate-argument 
structure, which is the exclusive domain of the binding theory, provides the in-
put to such systems as reference and the binding of pronouns. It is presumably 
at this level that the effects associated with “weak crossover” and “subjacency”’ 
make themselves felt. Although we may find it convenient to think about these 
processes in terms of a further structural level of Logical Form, such a repre-
sentation is not in principle necessary, for the reasons discussed by Montague 
(1970), and in fact this level is eschewed in other versions of Categorial Gram-
mar. In chapter 4, I discussed how such systems should capture ambiguities of 
quantifier scope without movement at LF or the equivalent, drawing on work 
by VanLehn (1978), Webber (1978, 1983), Reinhart (1991, 1997), Park (1995, 
1996), Winter (1997), and Schlenker (to appear). 

The question of how well the theory generalizes to more parametrically di-
verse languages than English and its Germanic relatives, and in particular to 
languages with freer word order and those that use morphological markers of 
Information Structure rather than intonational ones, goes beyond the scope 
of the present book. However, Kang (1988), Segond (1990), Foster (1990) 
Nishida (1996), Hoffman (1995a,b, 1996, 1998), Bozsahin (1998), Komagata 
(1997b, 1999), Baldridge (1998, 1999), and Trechsel (to appear) offer CCG 
analyses for the grammar and Information Structure of Korean, French, Span-
ish, Old Spanish, Turkish, Japanese, Tagalog and Tzotzil. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



258 Chapter 10 
10.2 Acquisition | , 
The explanatory adequacy of the theory will also depend on its compatibility 
with a reasonable account of language acquisition. This question also lies be-
yond the scope of the present book, and the following remarks are restricted to 
the briefest of preliminary sketches. (See Briscoe 1997, forthcoming, Osborne 
and Briscoe (1997), and Watkinson and Manandhar 1999 for specific proposals 
for acquiring categorial grammars in the face of noise and situational ambigu-
ity, and see Kanazawa 1998 on the computational complexity of the problem.) 

The considerations discussed in chapters | and 8 suggest that language ac-
quisition mainly reduces to the problem of learning the categorial lexicon and 
the language-specific instances of the combinatory rule types that are involved. 
Lexical learning must in the earliest stages depend upon the child’s having ac-
cess to mental representations of the concepts underlying words, in a form 
more or less equivalent to the lexical Logical Forms assumed here, perhaps 
along lines suggested in Pinker 1979, Fisher et al. 1994, Steedman 1994, and 
Siskind 1995, 1996. Under the assumptions inherent in the Principle of Cate-
gorial Type Transparency, the semantic type of such concepts defines the syn-
tactic type in every respect except directionality. The Principle of Head Cate-
gorial Uniqueness ensures that in most cases the child need have access only to 
combinatory rules of functional application in order to deduce the latter prop-
erty, and hence the lexical category or categories of each word. The tendency 
of languages toward consistency in head-complement orders suggests that this 
search is constrained accordingly. 

As far as the combinatory rules go, it seems likely that the repertoire of 
semantic combinators is fixed as composition, substitution and (possibly as a 
lexical rule) type-raising over the categories that are actually encountered in the 
erammar acquired so far. Once some lexical categories are known, the child 
is therefore immediately in a position to master constructions like relatives 
by inducing the particular instances of combinatory rules that the grammar 
includes—principally those of the composition family— and the categories 
to which they apply, working on the basis of the lexical categories learned 
in the manner sketched above and contextually available compound concepts, 
perhaps along lines sketched in Steedman 1996a. (The fact that lexical learning 
generalizes in this way is an important reason why natural languages should 
adhere as closely as possible to the Principle of Head Categorial Uniqueness.) 
The simplest way to do this would be to include only the most specific instance 
of a combinatory rule that supports a combination that yields the concept in 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



The Syntactic Interface 259 
question. However, such an assumption raises the same questions of inductive 
generalization and stability in the face of noise and ambiguity that arise in 
other frameworks. 

The most serious problem that this account faces arises from the inclusion of 
exceptions to the Principle of Head Categorial Uniqueness, such as the subject 
extraction category stipulated in chapter 4 at example (20) for verbs like think. 
When children who are acquiring English encounter subject extraction, they 
have three options. They might wrongly assume that the grammar of English 
includes the rule of crossed composition that was rejected in chapter 4—in 
which case they will begin to overgenerate wildly. Or they might rightly as-
sume that this counts as a different construction headed by think, specified by 
a separate lexical entry, but wrongly assume that this lexical entry conforms to 
the Principle of Head Categorial Uniqueness—in which case they will begin 
to overgenerate sentences like *I think fell the horse. Or they might correctly 
further assume that this lexical entry is independent, violating the Uniqueness principle. 

One way to ensure that the child makes the right choice, despite the penalty 
associated with violating this principle, is to stipulate that categories that are 
not induced via an application-only derivation of the kind described earlier, 
but (like this one) are first encountered under extraction, are assigned the most 

conservative category that will allow the sentence—that is, one confined to an-
tecedent government, an assumption analogous to Baker’s (1979) proposal for 
conservative acquisition of dative shift. (Similar remarks may apply to ac-
quisition of the antecedent government-restricted combinatory rules for phe-
nomena like Heavy NP shift, discussed in chapters 4 and 6.) Such a pro-
cedure seems to be one that could only be safely applied in the last stages 
of fine-tuning a stable grammar based on a sizable corpus. Stromswold’s 
(1995) results showing that complement subject extraction is one of the last 
constructions to be acquired in English (see section 4.2.1) are consistent with 
this procedure.” 

10.3 Performance 

The architecture schematized in figure 10.1 embodies the strongest possible 
relation between Surface Structure or derivation, Intonation Structure and In-
formation Structure. The evidence for it is entirely based on linguistic argu-
mentation, and it must in the first place be judged on those grounds. Never-
theless, this property of the theory has significant implications for processing 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



260 Chapter 10 
under the strict competence hypothesis. The fact that syntactic constituency 
subsumes intonational constituency in the sense discussed in chapter 5 implies 
that modular processors that use both sources of information at once should be 
easier to devise. Such an architecture may reasonably be expected to simplify 
the problem of resolving local structural ambiguity in both domains. 

However, we have noted that a considerable amount of nondeterminism re-
mains in the grammar, for both spoken and written language. Although this 
nondeterminism can be kept within polynomial complexity bounds using tech-
niques discussed in chapter 9, the associativity implicit in functional composi-
tion means that the average-case complexity potentially remains serious. The 
properties of the grammar are consistent with the suggestion that the basis for 
the oracle that renders the process as a whole deterministic is the incremental 
availability of semantic interpretations (possibly compiled in the form of re-
lated head-dependency probabilities of the kind discussed by Collins (1998).) 

The generalized notion of constituency that is engendered by the combina-
tory rules ensures that many leftmost substrings are potentially constituents 
with interpretations, subject of course to the limitations of the grammar and 
any further information that may be available from intonation. Such a theory 
of grammar may therefore have the added advantage of parsimony, in being 
compatible with such a processor without compromising the strict competence 
hypothesis. 

Indeed, we can stand this argument on its head. If we believe that the parser 
has to know about interpretations corresponding to strings like The flowers sent 
for..., and we identify such interpretations with the notion of abstraction, then 
advocates of more traditional notions of constituency must ask themselves why 
their grammar does not accord such useful and accessible semantic concepts 
the status of grammatical constituents. 

The claim is strengthened by the observation that the residual nondetermin-
ism in the grammar of intonation, arising in part from the widespread presence 
of unmarked themes, as discussed in connection with example (55) in chap-
ter 5, is confined precisely to those occasions on which the topic or theme is 
believed by the speaker to be entirely known to all parties, and to be recover-
able by comparing the interpretation of a (usually leftmost) substring with the 
contextual open proposition or theme. It would be surprising if the mechanism 
for disambiguating written language were very different from its ancestor in 

‘the processor for spoken language. 
It is of course unlikely that we will ever know enough about the biological 

constraints to evaluate the assumptions on which the “strict” version of the 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



The Syntactic Interface 261 
competence hypothesis is based with any certainty. In the absence of such 
certainty, we must beware of falling into the error of evolutionary Panglossism. 
However, it is appropriate to speculate a little further upon the implications of 
the Strict Competence Hypothesis for the theory as a whole, for the following 
reason. 

Competence grammar and performance mechanism originally evolved as 
components of a single biological system. The methodological priority of 
competence that has been continually endorsed in the present work is no more 
than a research strategy. Any claim about competence grammar is ultimately a 
claim about the entire computational package. As soon as our linguistic theo-
ries have attained the level of descriptive adequacy, they will have to be judged 
not merely on their purity and parsimony as theories of competence, but on 
their explanatory value as part of a psychologically and biologically credi-
ble performance system. Chapter 9 noted that all theories will require some-
thing more, in the form of a language-independent mechanism for resolving 
local ambiguity, or grammatical nondeterminism, together with a language-
independent algorithm and automaton. But if a theory of competence requires 
much more than that, or if that mechanism in turn implicates a notion of struc-
ture that is not covered by the competence grammar, then those assumptions 
will weigh against it. If there is another descriptively adequate theory that re-
quires fewer such assumptions, perhaps even no further assumptions beyond 
the mechanism for resolving nondeterminism and the minimal bottom-up algo-
rithm, by virtue of having a different notion of surface syntax, then the scales 
may tilt in its favor. 

None of the current theories of grammar, including the present one, have 
yet attained the full descriptive adequacy that would allow us to weigh them in 
the balance in this way. But if it is true that the principal responsibility for lo-
cal ambiguity resolution lies with word-by-word incremental interpretation (or 
with correspondingly fine-grain probabilistic evaluation), then any theory that 
does not make assumptions similar to those of CCG concerning constituency 
in the competence grammar will, as we saw in chapter 9, have to make some 
strikingly similar structures available to the processor, complete with inter-
pretations. Such additional assumptions could not by definition be inconsis-
tent with the pure competence theory itself. However, they compromise the 
Strict Competence Hypothesis. To the extent that a combinatory grammar can 
achieve the same result without any additional assumptions, and to the extent 
that it is descriptively correct to include identical structures and interpretations 
in the competence grammar of coordination and intonation, the combinatory 
theory may then be preferred as an explanatory account. 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



| BLANK PAGE 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194



Notes 

Chapter 1 

1. The HOLD-register analysis of wh-movement was in part anticipated in earlier 
work by Thorne, Bratley and Dewar (1968), who called their register *. 

2. Wood (1993) provides a useful review of theories by Lambek (1958), Ades and 
Steedman (1982), Bach (1979), Dowty (1979), Steedman (1987), Oehrle (1988), Hep-
ple (1990), Jacobson (1990, 1992b), Szabolcsi1 (1989, 1992), and Wood (1988), al-
though my colleagues should not be assumed to endorse all the assumptions of the ver-
sion that is outlined here. The present proposal is more distantly related to a number of 
other generalizations of the early categorial systems of Ajdukiewicz, Bach, Bar-Hillel, 
Dowty, Lambek, Geach, Lewis, Montague, van Benthem, Cresswell, and von Stechow, 
to many of which the conclusions of this book also apply. In particular, Oehrle (1987), 
Moortgat (1988a), and Morrill (1994) explicitly relate Lambek-style categorial gram-
mars to prosody. 

3. Marr expressed some doubt about whether natural language is in fact a modular 
system, apparently because he was aware of the way knowledge and inference interact 
with language understanding. I will argue against this conclusion in chapter 9. 

Chapter 2 

1. This claim should not be taken as denying that such learning can be usefully 
thought of in terms of supervised machine learning techniques, or as excluding the 
possibility that the substrate of such conceptual representations may be associative or 

. probabilistic. 
2. The “Standard Theory” presented in Chomsky 1965 did not explicitly recognize 
any level of Logical Form distinct from Deep Structure. However, had it done so, 
it would have had to derive it from Deep Structure. The fact that later “Extended,” 
“Revised Extended,” and “Principles and Parameters” or “Government-Binding (GB)” 
versions of Chomsky’s theory derived Logical Form from a level called “S-Structure” 
should not be allowed to confuse the point. S-Structure is not the same as Surface Struc-
ture, as will become clear when this level is discussed in more detail below. The rather 
different view of Logical Form sketched in Chomsky 1971 is discussed in chapter 5. 

3. There are a number of well-known exceptions to this generalization, which I will 

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 3.17.110.194


