
Chapter 8
Combinators and Grammars

“I once asked Bravura whether there were any Kestrels in his forest. He seemed some-
what upset by the question, and replied in a strained voice: ‘No! Kestrels are not
allowed in this forest!’”
Raymond Smullyan, To Mock a Mockingbird

What does the theory presented in the earlier chapters actually tell us? Why
should natural grammars involve combinatory rules, rather than the intuitively
more transparent apparatus of the A-calculus? Why are the combinators in
question apparently confined to Smullyan’s Bluebird, Thrush, and Starling—
that is, to composition, type-raising, and substitution? Why are the syntactic
combinatory rules further constrained by the Principles of Consistency and
Inheritance? What expressive power does this theory give us? How can gram-
mars like this be parsed?

8.1 Why Categories and Combinators?

There is a strong equivalence between (typed and untyped) combinatory sys-
tems and the (typed and untyped) A-calculi, first noted by Sch6nfinkel (1924),
elaborated by Curry and Feys (1958), and developed and expounded by Rosen-
bloom (1950), Stenlund (1972), Burge (1975), Barendregt (1981), Smullyan
(1985, 1994), and Hindley and Seldin (1986). Even quite small collections of
combinators of the kind already encountered are sufficient to define applica-
tive systems of expressive power equal to that of the A-calculus, as will be
demonstrated below.

The difference between the A-calculi and the combinatory systems is that the
latter avoid the use of bound variables. One interest of this property lies in the
fact that bound variables can be a major source of computational overhead—
for example in the evaluation of expressions in programming languages re-
lated to the A-calculus, such as LISP. The freedom that their users demand to
use the same identifier for variables that are logically distinct in the sense of
having distinct bindings to values in distinct environments means that all the
various bindings must be stored during the evaluation. This cost is serious

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

202 Chapter 8
enough that considerable ingenuity is devoted to minimizing it by the design-
ers of such “functional” programming languages. One tactic, originating with
Turner (1979b), is to avoid the problem entirely, by compiling languages like
LISP into equivalent variable-free combinatory expressions, which can then
be evaluated by structural, graph reduction techniques akin to algebraic sim-
plification. We will see that there some rather striking similarities between the
combinatory system that Turner proposes and the one that is at work in natural
languages.

However, it seems quite unlikely that a pressure to do without vari-
, ables for reasons of computational efficiency is at work in natural language

interpretation.| The computational advantage of the combinatory systems is
highly dependent upon the precise nature of the computations involved, and it
is far from obvious that these particular types of computation are characteristic
of linguistic comprehension (although the extensive involvement of higher-
order functions in CCG is one property that does exacerbate the penalties in-
curred from the use of bound variables). Furthermore, the wide acceptance of
the idea that the pronoun in sentences like Every farmer in the room thinks he
is a genius is semantically a bound variable, as assumed in the analysis of such

| phenomena in section 4.4 in chapter 4, suggests that there is no overall prohi-
bition against such devices at the level of Logical Form or predicate-argument
structure. The binding conditions, and in particular Condition C, which are
discussed in terms of CCG in Chierchia 1988 and Steedman 1997, are also
phenomena that are most naturally thought of in terms of scope (although it
has to be said that they do not look much like the properties of the usual kind
of variables).

It seems more likely that natural grammars reflect a combinatory semantics
because combinator-like operations such as composition are themselves cog-
nitively primitive and constitute a part of the cognitive substrate from which
the language faculty has developed. Such primitive and prelinguistic cogni-
tive operations as learning how to reach one’s hand around an obstacle to a
target have many of the properties of functional composition, if elementary
movements are viewed as functions over locations. The onset of the ability to
construct such composite motions appears to immediately precede the onset of
language in children (Diamond 1990, 653-655). Similarly, a notion very like
type-raising seems to be implicit in the kind of association between objects
and their characteristic roles in actions that is required in order to use those ob-
jects as tools in planned action. (The idea that tool use and motor planning are
immediate precursors of language goes back to de Laguna’s (1927) observa-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 203
tions on KGhler’s’s (1925) work on primate tool use and has been investigated
more recently by Bruner (1968), Greenfield, Nelson and Saltzman (1972),
Greenfield (1991), and Deacon (1988, 1997), among many others.)

To the extent that languages adhere to the Principle of Head Categorial
Uniqueness and project unbounded dependencies from the same categories that
define canonical word order, the presumed universal availability of combina-

- tory operations in principle allows the child to acquire the full grammar of the
language on the basis of simple canonical sentences alone, on the assumption
of chapter 2, that the child has access (not necessarily error-free, and not nec-
essarily unambiguously) to their interpretations. (We will return briefly to the
problems induced by exceptions to Head Categorial Uniqueness in chapter 10.)

To see whether this hypothesis is reasonable, we must begin by examining
the specific combinators that have been identified above—composition, type-
raising, and Schénfinkel’s S—and ask what class of concepts can be defined
using them.

8.2 Why Bluebirds, Thrushes, and Starlings?

The equivalence between combinatory systems and the A-calculus is most
readily understood in terms of a recursive algorithm for converting terms in
the A-calculus into equivalent combinatory expressions. Surprisingly small
collections of combinators can be shown in this way to completely support
this equivalence. One of the smallest and most elegant sets consists of three
combinators, I,K, and the familiar S combinator. The algorithm can be repre-
sented as three cases, as follows:° |
()aAxx = |

hx.y = Ky
AxAB = S(Ax.A)(Ax.B)

where x is not free in y

The combinators [and K have not been encountered before, but their defini-
tions can be read off the example: I is the identity operator, and K, Smullyan’s
Kestrel, is vacuous abstraction or the definition of a constant function. This
algorithm simply says that these two combinators represent the two ground
conditions of abstracting over the variable itself and abstracting over any other
variable or constant, and that the case of abstracting over a compound term
consisting of the application of a function term A to an argument B is the Star-

ling combinator S applied to the results of abstracting over the function and

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

204 Chapter 8
over the argument. (Given the earlier definition of S, it is easy to verify that
this equivalence holds.) Since the combinator I can in turn be defined in terms

of the other two combinators (as SKK), the algorithm (attributed in origin to
Rosser (1942) in Curry and Feys 1958, 237) is often referred to as the “SK”
algorithm. It is obvious that the algorithm is complete, in the sense that it will
deliver a combinatory equivalent of any A-term. It therefore follows that any
combinator, including composition and type-raising, can be defined in terms of S and K alone. ,

The SK algorithm is extremely elegant, and quite general, but it gives rise
to extremely cumbersome combinatory expressions. Consider the following
examples, adapted from Turner 1979b. The successor function that maps an
integer onto the integer one greater might be defined as follows in an imaginary
functional programming language:

(2) succ = Ax.plus I x

The obvious variable-free definition of this trivial function is the following:

(3) succ = plus I

However, the SK algorithm produces the much more cumbersome (albeit en-
tirely correct) expression shown in the last line of the following derivation:

(4) succ = Ax.plus1x
=> SdAx.plus 1hx.x
=> S§(SAx.plusix.])I
= $(SKplusK/)I

The following is the familiar recursive definition of the factorial function
(where cond A B C means “if A then B else C’):4

(5) fact = Ax.cond(equal 0 x)1(times x(fact(minus x 1)))

It yields the following monster:

(6) S(S(S(K cond) (S(S(K equal)(K 0))D)(K 1))
(S(S(K times)D(S(K fact)
(S(S(K minus)D(K 1))))

What is wrong with the SK algorithm is that it fails to distinguish cases in
which either the function or the argument or both are terms in which the vari-
able x does not occur (is not free) from the general case in which both function

and argument are terms in x. It is only in the latter case that the combinator S
is appropriate. Curry and Feys (1958, 190-194) offer the following alternative
algorithm:

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 205
(7) a Axx = |

b. Axy = Ky
c. Axfx = f
d. Ax.fA = Bf(Ax.A)
e. AxAy = C(Ax.A)y
f. AxAB = S(Ax.A)(Ax.B)
where x is not free in f, y

This algorithm distinguishes the case (7c) (corresponding to n-reduction), in
which the expression to be abstracted over consists of a function term that does

not contain the variable and an argument term that is the variable. This case
immediately preempts a great many applications of K (to constants), | (for the

variable), and S (for the application). For example, it immediately gives us
what we want for the successor function:

(8) succ = Ax.plus1x
=> plus 1

The new algorithm also distinguishes the cases (7d) and (7e), where either
the argument term or the function term do not include the variable. These
cases correspond to the familiar functional composition combinator B, and the

“commuting” combinator C, which has not been encountered in natural syntax
before, but whose definition is as follows:® ,
(9) Cfxy = fyx

This algorithm gives rise to much terser combinatory expressions. For ex-
ample, the earlier definition of factorial comes out as follows:

(10) S(C(Bcond(equal 0)) 1)(Stimes(Bfact(Cminus 1)))

Like the SK set, this set of combinators is complete with respect to the A-
calculi. This result is obvious, since it includes S and K. More interestingly,
in includes other subsets that are also complete. The most interesting of these
is the set BCSI. This set is complete with respect to the A-calculus with the
single exception that K itself is not definable. This set therefore corresponds to
the A-calculus without vacuous abstraction, which is known as the /y-calculus

(Church 1940), as distinct from the Ax-calculus. Vacuous abstraction is the op-
eration that figured as an irrelevant side effect of Huet’s unification algorithm in

the discussion in chapter 7 of work by Dalrymple, Shieber, and Pereira (1991;
see also Shieber, Pereira and Dalrymple 1996), who used it as an operation on
predicate-argument structures, to recover interpretations for VP ellipsis. It is

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

206 Chapter 8
therefore interesting to note the existence of calculi and combinatory systems
that exclude it, corresponding to linear, relevance, and intuitionistic logics, and
to recall that it is not represented among the syntactic combinatory rules either.

Turner (1979a,b) and others have proposed further cases to optimise and |
extend similar translations of A-terms into combinatory equivalents, including
combinators corresponding to T, the type-raising combinator (which is a nat-
ural partner to C in (7)), to Curry’s ®, the combinator that is implicit in the
coordination rule proposed earlier, and to the “paradoxical” fixed-point com-

binators that are required to complete the combinatory definition of recursive
functions like (10).

What then can we say concerning the nature and raison d’étre of the com-

binatory system BTS that we have observed in natural language syntax? The
most obvious question is whether this set of combinators is complete. To begin
with, note that the linguistic combinatory rules, unlike the systems discussed —
in most of the literature cited above (but see Church 1940; Barendregt 1981,
app. A; Hindley and Seldin 1986), are a typed combinatory system. That is to

say, rules like the forward composition rule of chapter 3 are defined in terms of
(variables over) the types of the domain and range of the input functions and
the function that results. Indeed, the syntactic categories of a categorial gram-
mar are precisely types, in that sense. So we are talking about completeness
with respect to the simply typed A*-calculi. Since mathematicians and com-
puter scientists usually think of functions in this way, the typed A-calculi are
useful and interesting objects.

Interestingly, the paradoxical combinators such as Curry’s ¥Y and Smullyan’s
Ax.xx are not definable in the typed systems. Since the existence of such fixed-
point combinators is what allows the definition of recursion within the pure
A-calculus, recursive functions like fact cannot be defined within the pure A‘-
calculi. There is also an interesting relation (discussed by Fortune, Leivant and
O’ Donnell 1983) to type systems in programming languages like PASCAL and
ML.

_ Exactly the same correspondence holds between typed combinators and the
typed A-calculi as we have seen for the untyped versions. In particular, the

SK system is complete with respect to the Ay-calculus. The BCSI system

is similarly complete with respect to the Aj-calculus. Since the type-raising
combinator T is equivalent to the combinatory expression Cl, and since the
linguistically observed set BTS includes B and S, it seems highly likely that

BTS is related to BCSI and hence also to the A;-calculus. Certainly C is

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 207
definable in terms of T and B, as shown by Church (see Smullyan 1985, 113).’

The only qualification to the correspondence that I have been able to identify
is that the combinator I itself does not appear in general to be definable in
terms of BTS. A combinator corresponding to a special case of I, of type
(a — B) — (a — B), can be defined as CT. This is not the true | combinator,

for it will not map an atom onto itself. Nevertheless, CT constitutes the identity
functional for first-order functions and all higher types, so this does not seem

a very important deviation. We may assume that the A;-calculus constitutes an

upper bound on the expressive power of the BTS system and that the two are
essentially equivalent.®

It follows immediately that all of the important constraints on the system
as a theory of natural grammars stem from directional constraints imposed
upon syntactic combinatory rules by the twin Principles of Consistency and
Inheritance, discussed in chapter 4. This observation raises the further question
of the expressive or automata-theoretic power of CCG.

8.3 Expressive Power

The way the Dutch cross-serial verb construction was captured in examples
like (2) of chapter 6 suggests that CCG is of greater strong generative power
than context-free grammar.’ The Dutch construction intercalates the depen-
dencies between arguments and verbs, rather than nesting them, and therefore
requires this greater power, at least for strongly adequate capture. Whether
standard Dutch can be shown on the basis of this construction not to be a
weakly context-free language is of course another question. Huybregts (1984)
and Shieber (1985) have shown that a related construction in related dialects
of Germanic is not even weakly context-free. It is therefore clear that Uni-
versal Grammar has more than context-free power, and the further question of
whether standard Dutch happens to exploit this power in a way that makes the
language non-context-free (as opposed to the strongly adequate grammar) is
of only technical interest.

The question is, how much more power do cross-serial dependencies de-
mand and does CCG offer? An interesting class of languages to consider is the
class of indexed grammars, which are discussed by Gazdar (1988) with refer-
ence to the Dutch construction. More recently Vijay-Shanker and Weir (1990,
1994) have argued that several apparently unrelated near-context-free gram-
mar formalisms, including the present one, are weakly equivalent to the least
powerful level of indexed grammars, the so-called linear indexed grammars. !°

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

208 Chapter 8
This section presents an informal version of their argument.

Indexed grammars (IGs) are grammars that, when represented as phrase
structure rewriting systems, allow symbols on both sides of a production to
be associated with features whose values are stacks, or unbounded pushdown

stores. We can represent such rules as follows, where the notation [...] rep-
resents a stack-valued feature under the convention that the top of the stack
is to the left, and where & and B are nonterminal symbols and W; and W) are
strings of nonterminals and terminals, in the general case including nontermi-
nals bearing the stack feature:

(1) o,) — W By W
Such rules have the effect of passing a feature encoding arbitrarily many long-

range dependencies from a parent a to one or more daughters B. The rules are
allowed to make two kinds of modification to the stack value: an extra item
may be “pushed” or added on top of the stack, or the topmost item already
on the stack may be “popped” or removed. These two types of rule can be
represented as similar schemata, as follows:

(12) a. “pushing:” o,) — W, By) We
b. “popping:” 7.) — Wi By.) We

In general, IGs may include rules that pass stack-valued features to more than
one daughter. The most restrictive class of indexed grammars, linear indexed
grammars (LIGs), allows the stack-valued feature to pass to only one daughter;
that is, W; and W, are restricted to strings of terminals and nonterminals not
bearing the stack feature.

It is easy to show that Linear Indexed Grammar (LIG) offers a formalism
that will express cross-serial dependencies. I will simplify the Dutch problem
for illustrative purposes and assume that the goal is to generate a language
whose strings all have some number of nouns on the left, followed by the same
number of verbs on the right, with the dependencies identified by indices in the
grammar. The following simple grammar (adapted from Gazdar 1988) will do
this.

(3) S.) 7 nm Sy
/ 1 ~” >.

Sy oT? SEY
S; —> €

[|

The derivation tree for the string nj nz n3 Vy V2 V3 1S Shown in figure 8.1.

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 209
St]

Nn,
S[v] N

S[v,v]
~~

fi viv, Vv]

S’[v,v,v]
/

S’[v,v]

fh nn n, e v, ., v,
Figure 8.1
LIG derivation for n>v>

This is rather reminiscent of the structure produced by the (linguistically
incorrect) CCG derivation using crossed composition but lacking type-raised
categories shown in figure 6.2. While this particular grammar is weakly equiv-
alent to a context free grammar (since a”b” is a context-free language, although
a context-free grammar assigns different dependencies), it is equally easy to
write a related grammar for the language a”b"c", which is not a context-free
language.

Vijay-Shanker and Weir (1990, 1994) identify a characteristic automaton
for these grammars, and show on the basis of certain closure properties that
it defines what they call an “abstract family of languages” (AFL), just as the
related pushdown automaton does. They provide polynomial time recognition
and parsing results, of the order of n°. These results crucially depend upon the
linearity property, because it is this property that ensures that two branches of
a derivation cannot share information about an unbounded number of earlier
steps in the derivation (Vijay-Shanker and Weir 1994, 591-592). This fact
both limits expressivity and permits efficient divide-and-conquer algorithms to apply. |

Weir (1988) and Weir and Joshi (1988) were the first to observe that there
is a Close relation between linear indexed rules and the combinatory rules of
CCG. Function categories like give and zag helpen voeren can be equated with
indexed categories bearing stack-valued features, as follows:

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

210 Chapter 8
(14) give = (VP/NP2)/NP] = VP NP) ,NP>|

zag helpen voeren := (((S\NP4)\NP3)\NP2)\NP7 = Swp,,NP>,NP3,NP4]

Note that the LIG categories no longer encode directionality—itt is up to the
LIG rules to do that.

Combinatory rules can be translated rather directly in terms of such cat-
egories into sets of LIG productions of the form shown on the right of the
equivalences in (15) and (16). Since LIG categories do not capture direction-
ality, the grammar for a particular language will be made up of more specific
instances of these schemata involving just those categories that do in fact com-
bine in the specified order for that language.!! —

(15) X/Y Y = X = Xi = Xy Yi)

(16) X/Y Y/Z => X/Z = Xiz..j — Xy Yiz
Rule (15) is forward application, realized as a binary LIG rule of the “push”

variety. Rule (16) is first-order forward composition, B, and involves both
pushing a Y and popping a Z. Crucially, the stack, represented as ..., is passed
to only one daughter. The same is true for the substitution rule:

(17) Y/Z (X\Y)/Z = X/Z = Xz.) > Vz Xzy....
The same linearity property also holds for the rules corresponding to B’, B’

and so on, because the set of arguments of the function into Y is bounded.
It would not hold for an unbounded schema for a rule corresponding to B”.
This rule, which can be written in the present notation as follows, involves two
stack-valued features, written ...; and ...2: — / / (18) X/Y Y/Z$ > X/Z$ — Xi Zoo] _? Xv] ¥0...1,Z]

It is not currently known precisely what strong generative power such general-
ized rules engender. They may not take us to the full power of IGs, because the
translation from CCG forces us to regard the left-hand side of the rule as bear-
ing a single stack feature, which the production nondeterministically breaks
into two stack fragments that pass to the daughters. This is not the same as
passing the same stack to two daughters—crucially, the two branches of the
derivation that it engenders do not share any information, and therefore seem
likely to permit efficient divide-and-conquer parsing techniques.

Weir and colleagues treat type-raising as internal to the lexicon, rather than
as a rule in syntax, However, Hoffman (1993, 1995b) has pointed out that a

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

| Combinators and Grammars 211
similar increase in power over LIG follows from the involvement of type-raised

categories like T/(T\WP) if T is regarded as a true variable, rather than a finite
schematization. To a first approximation, the indexed category corresponding

- to a type-raised category looks like this:

(19) T/(T\Y) = Xitel

Again, the LIG category does not capture the order information, and in partic-
ular the order-preserving character, of the original. That has to be captured in
the LIG productions, in such facts as that for every instance of rule (15) there
is a rule like the following:

(20) X",4) Xixty jet] XY] |
The LIG equivalent of a raised category has two copies of the stack ...;. How-
ever, as far as functional application goes, it is simply a function like any
other—that is, an instance of Og). It follows that this rule is simply an-
other instance of (15). Again, no information is shared across branches of the
derivation.

However, by the same reasoning, when two of the raised categories com-

pose, even via the first-order composition rule (16), so that Y is Ty}, their
two distinct stack variables give rise to a nonlinear production, as follows:

(21) XX 9) rm XX op-2I XZ.Xiy jl]

This composition has the characteristic noted earlier of nondeterministically
partitioning a single stack feature on the left-hand side into two fragments,
passed as stack features to the daughters. In effect, the variable transforms
bounded composition into the unbounded variety. Again no information is
shared across the two branches of the derivation.

Hoffman shows how the language a”b"c"d"e" (which is outside the set of
linear-indexed languages) can be defined by exploiting this behavior of vari-
ables in type-raised categories. It is therefore known that if this property is
allowed in CCGs, it raises their power strictly beyond LIG. What is not cur-
rently known is how much beyond LIG it takes us, or whether CCLs so defined
are a subset of IL, the full set of indexed languages. ; os

Alternatively, we can, as suggested earlier, confine ourselves to LIG power
by eschewing the general interpretation of composition and type-raising and
by interpreting the variables involved in each as merely finite schemata. Such
a limitation allows all derivations encountered in parts I and II of the book and

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

212 Chapter 8
keeps CCG weakly equivalent to LIG.'”

The advantages of keeping to such a limitation are potentially important, as
Vijay-Shanker and Weir (1990, 1994) show. As noted earlier, because LIGs
pass the stack to only one branch, they limit expressive power and allow effi-
cient algorithms to apply. As a result, Vijay-Shanker and Weir have been able
to demonstrate polynomial worst-case complexity results for recognizing and
parsing CCGs and TAGs, which are also weakly equivalent to LIGs. It is cur-
rently unclear whether similar advantages obtain for the more general class of
CCGs. The important fact that neither generalised composition nor variables
in type-raised categories pass any one stack feature to more than one daughter
gives reason to suppose that they too may be polynomially recognizable using
divide-and-conquer techniques.

As Gazdar (1988) has pointed out, it is not clear that the linguistic facts allow

us to keep within either of these bounds. The full generality of the Dutch verb-
raising construction in noncoordinate sentences can be captured with weakly
LIG-equivalent rules, but they allow functions of arbitrarily high valency to be
grown. If such functions can coordinate, then we need the full power of IG.
This result follows immediately from the fact that the unbounded coordination
combinator ®” corresponds to a production that passes the same stack feature
to two daughters:

(22) X44) > =X, CONT X.__))

The crucial cases for Dutch are those in which unboundedly long sequences of
nouns or verbs of unbounded valency coordinate. However, once the valency
or number of arguments gets beyond four, the limit found in the Dutch and
English lexicon, the sentences involved become increasingly hard to process,
and hard to judge.

Rambow (1994a) makes a similar argument for the translinear nature of
scrambling in German. However, this argument depends on the assumption
that unbounded scrambling is complete to unbounded depth of embedding.
Because these sentences also go rapidly beyond anything that human proces-
sors can handle, any argument that either kind of sentence is grammatical de-
pends on assumptions about what counts as a “natural generalization” of the
construction, parallel to a famous argument of Chomsky’s (1957) concerning
the non-finite-state nature of center embedding.

Joshi, Rambow and Becker (to appear) have made the point that this analogy
may not hold. They note that all such arguments—including Chomsky’s—fall
if a lesser automaton or AFL that covers all and only the acceptable cases

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 213
is ever shown to exist. The status of any residual marginal cases is then de-
cided by that automaton. It is only because no one has yet identified such a
finite-state automaton that Chomsky’s claim that context-free grammars con-
stitute a lower bound on competence still stands, and is unlikely ever to be
overthrown.!?

It follows that if LIG alone can be shown to be of sufficient power to pro-
vide strongly adequate grammars for the core examples, or alternatively if un-
bounded composition rules and variable-based type-raising are indeed of lesser
power than IG, and if a class of automata characterizing an AFL can be iden-
tified, the question of whether that lesser power provides an upper bound on
natural complexity comes down to the question of whether some exceedingly
marginal coordinations and scramblings are acceptable or not. If an automa-
ton exists that is strongly adequate to recognize all and only the sentences that
we are certain about, then we might well let that fact decide the margin, in the
absence of any other basis for claiming a natural generalization. This is a ques-
tion for further research, but however it turns out, CCG should be contrasted in
this respect with multimodal type-logical approaches of the kind reviewed by
Moortgat (1997), which Carpenter (1995) shows to be much less constrained
in automata-theoretic terms.

8.4 Formalizing Directionality in Categorial Grammars

In chapter 4, I claimed that the Principles of Adjacency, Consistency, and In-
heritance are simple and natural restrictions for rules of grammar. In chapters
6 and 7, I claimed that a number of well-known crosslinguistic universals fol-
low from them. We have just seen that low automata-theoretic power and a
polynomial worst-case parsing complexity result also follow from these prin-
ciples. So quite a lot hinges on the claim that these principles are natural and
nonarbitrary.

The universal claim further depends upon type-raising’s being limited (at
least in the case of configurational languages) to the following schemata:'*

(23) X >7 T/(T\X)
X =7 T\(T/X)

If the following patterns (which allow constituent orders that are not otherwise
permitted) were allowed, the regularity would be unexplained. In the absence
of further restrictions, grammars would collapse into free order:

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

214 Chapter 8
(24) X =>7 T/(T/X) |

X >7 T\(T\X)

| But what are the principles that limit combinatory rules of grammar, to include
(23) and exclude (24)? And how can we move type-raising into the lexicon
without multiplying NP categories unnecessarily?

The intuition here is that we want to make type-raising sensitive to the direc-
tionality of the lexically defined functions that it combines with. However, the
solution of combining type-raising with the other combination rules proposed
by Gerdeman and Hinrichs (1990) greatly expands their number.!°

| The fact that directionality of arguments is inherited under the application of
combinatory rules, according to the Principle of Inheritance, strongly suggests
that directionality is a property of arguments themselves, just like their cate-
gorial type, NP or whatever, as suggested in Steedman 1987, and as in Zeevat,
Klein and Calder 1987 and Zeevat 1988.

Our first assumption about the nature of such a system might exploit a vari-
ant of the notation used in the discussion of LIGs above (cf. Steedman 1987),
in which a binary feature marks an argument of a function as “to the left” or
“to the right.” In categorial notation it is convenient to indicate this by sub-
scripting the symbol < or — to the argument in question. Since the slash in
a function will now be nondirectional, both \ and / can be replaced by a sin-

gle nondirectional slash, also written /, so that for example the transitive verb
category is written as follows:'®

(25) enjoys := (S/NP._)/NP_, Oo
(The result S has no value on this feature until it unifies with a function as its
argument, so it bears no directional indication. It is just an unbound variable.)

In this notation the (noncrossed) forward composition rule is written as fol-
lows:

(26) Forward composition |
X/Y. Y/Z.. =p X/Z. (>B) ,

The forbidden rule (6) of chapter 4, which violates the Principle of Inheritance,
would be written as follows:

(27) X/Y.. Y/Z, £# X/Z
However, given the definition of directionality as a feature of Z, this is not
a rule of composition at all. As long as the combinatory rules are limited to
operations like composition, only rules obeying the Principle of Inheritance
are permitted.

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 215
The feature in question does not have the equally desirable effect of limiting

type-raising rules to the order-preserving kind in (23). Those rules are now
written as follows:

(28) X= T/(T/X_)
X>T T/(T/X_,)—

Since the input to the rule, X, is unmarked on this feature, there is nothing to
stop us from writing the order-changing rules in (24):

(29) XT /(T/X.)..
X >7 T/(T/X_)

This is very bad. Although we can easily exclude the latter rules to define
srammars for languages like English, we could with equal ease exploit the
same degree of freedom to define a language in which only order-changing
type-raising is allowed, so that the directionality of functions in the lexicon
would be systematically overruled. Thus, we could have a language with an
SVO lexicon, but OVS word order. Worse still, we could equally well have a
language with one of each kind of type-raising rule—say, with an SVO lex-
icon but a VOS word order. Such languages seem unreasonable, and would
certainly engender undesirably cynical attitudes toward life in any child faced
with the task of having to acquire them.

Zeevat, Klein and Calder (1987) and Zeevat (1988) offer an ingenious, but
partial, solution to this problem. Of the two sets of rules (28) and (29), it is
actually the order-changing pair in (29) that looks most reasonable, in that the

raised function can at least be held to inherit the same directionality as its argu-
ment. That is, both rules are instances of a schema in which the directionality
value is represented as a variable, say, D. In the present notation they can both
be conveniently represented by the following single rule:

(30) xX >T T/(T/Xp)p

This rule has the attractive properties of being able to combine with either
rightward- or leftward-combining arguments and of inheriting its own direc-
tionality from them. Since it therefore only combines to the left with leftward
arguments and to the right with rightward ones, it offers a way around the prob-
lem of having multiple type-raised categories for arguments. We can simply
apply this rule across the board to yield one type for NPs. In fact, we can do
this off-line, in the lexicon, as Zeevat, Klein, and Calder propose.
~ However, there is a cost in theoretical terms. As noted earlier, since this
is the direction-changing rule, the lexicon must reverse the word order of the

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

216 Chapter 8
language. An SVO language like English must have an OVS lexicon. This is
in fact what Zeevat, Klein and Calder (1987) propose (see Zeevat 1988, 207—
210).

Despite this disadvantage, there is something very appealing about this pro-
posal. It would be very nice if there were a different treatment of the direction-
ality feature that preserved its advantages without implicating this implausible
assumption about the lexicon. Of course, as a technical solution we might en-

code the values — and + as list structures [0,1] and [1,0], and write a similar
single order-preserving rule as follows, using variables over the elements:

(31) X 7 T/(T/Xpy) py |
But such a move explains nothing, for we could equally well exploit this de-
vice to write the order-changing rule or, by using constants rather than vari-
ables, define any mixture of the two. What is wrong is that directionality is
being represented as an abstract feature, without any grounding in the prop-
erties of the string itself. If instead we define the feature in question in terms
of string positions, in a manner that is familiar from the implementation of
definite clause grammars (DCGs) in logic programming, we can attain a more
explanatory system, in which the following results emerge:

1. The Principle of Inheritance is explained as arising from inheritance of this
feature under unification of categories.

2. A single order-preserving type-raised category combining either to the right

or to the left can be naturally specified. |
3. No comparable single order-changing type-raised category can be specified

(although a completely order-free category can).

Since these matters are somewhat technical, and since they impinge very
little upon linguistics, this whole discussion is relegated to an appendix to the
present chapter, which many readers may wish to skip entirely. Since the nota-
tion becomes quite heavy going, it is emphasised here that it is not a proposal
for anew CCG notation. It is a semantics for the metagrammar of the present
CCG notation.

Appendix: Directionality as a Feature

This appendix proposes an interpretation, grounded in string positions, for the

symbols / and \ in CCG. This interpretation is easiest to present using unifi-
cation as a mechanism for instantiating underspecified categories and feature

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 217
value bundles, a mechanism that has been implicit at several points in the ear-
lier discussion.

For a full exposition of the concept of unification, the reader is directed to
Shieber 1986. The intuition behind the notion is that of an operation that amal-
gamates compatible terms and fails to amalgamate incompatible ones. The
result of amalgamating two compatible terms is the most general term that is
an instance of both the original terms. For example, the following pairs of
terms unify, to yield the results shown:

(32) x a! = +
fi(gia’) x = f'(s'd’)
f'x fi(s'y) => fg'y)
fia'x f'yy —>, flada'

The following pairs of terms do not unify:

(33) a’ b’ => fail
fx gy => fail
fab’ f'yy => fail

(Constants are distinguished from variables in these terms by the use of
primes.)

Besides providing a convenient mechanism for number and person agree-
ment, unification-based formalisms provide a convenient way of implement-
ing combinatory rules in which X, Y, and so on, can be regarded as variables
over categories that can be instantiated or given values by unification with cat-

egories like NP or S\NP. This observation provides the basis for a transparent
implementation of CCG in the form of definite clause grammar (DCG; Pereira
and Warren 1980) in programming languages like Prolog (and its higher-order

descendant A-Prolog), and in fact such an implementation has been implicit at
a number of points in the exposition above—for instance in the discussion of
agreement in chapter 3. A example of a simple (but highly inefficient) pro-
gram of this kind for use as a proof checker for the feature-based account of
directionality that follows is given in Steedman 1991c.

The unification-based implementation has the important attraction of forc-
ing the Principle of Combinatory Type Transparency to apply to combinatory
rules interpreted in this way, because of the resemblance between a model-
theoretic semantics for unification and the set-theoretic representations of cat-
egories (see van Emden and Kowalski 1976; Stirling and Shapiro 1986; Miller
1991, 1995).

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

218 , Chapter 8
One form of DCG equivalent of CFPSG rewrite rules like (34a) is the Prolog

inference rule (34b), in which : — is the Prolog leftward logical implication
operator, and PO, Pi, P are variables over string positions. such as the posi-
tions 1, 2, and 3, in (34c) (see Pereira and Shieber 1987 for discussion):

(34) a. S — NP VP
b. s(PO,P) :— np(PO,P1),vp(P1,P).
c. ; dexter > walks 3

The Prolog clause (34b) simply means that there is a sentence between two
string positions PO and P if there is an NP between PO and some other position
Pi, and a VP between the latter position and P. This device achieves the effect
of declarativizing string position and has the advantage that, if lists are used
to represent strings, the Prolog device of difference-list encoding can be used
to represent string position implicitly, rather than explicitly as in (34c) (see
Pereira and Warren 1980; Stirling and Shapiro 1986).

The basic form of a combinatory rule under the Principle of Adjacency is
ap = y. However, this notation leaves the linear order of a and B implicit.
We therefore temporarily expand the notation, replacing categories like NP by
4-tuples, of the form {a, DPg, Ly, Ro}, comprising (a) a type such as NP; (b)
a distinguished position, which we will come to in a minute; (c) a left-end
position; and (d) a right-end position. The latter two elements are the exact
equivalent of the DCG positional variables.

The Principle of Adjacency then finds expression in the fact that all legal
combinatory rules must have the form in (35), in which the right-end of © is
the same as the left-end of B: |

(35) {a,DP.,P1,P2} | {B,DPg,P2,P3} => {Y, DP, P71, P3}

I will call the position Pz, to which the two categories are adjacent, the “junc-
ture.”

The distinguished position of a category is simply the one of its two ends that
coincides with the juncture when it is the “canceling” term Y, which from now
on we can refer to as the “juncture term” in a combination. A rightward com-
bining function, such as the transitive verb enjoy, specifies the distinguished
position of its argument (here underlined for salience) as being that argumen-
t’s left-end. So this category is written in full as in (36a), using a nondirectional
Slash /:

(36) a. enjoy = {{VP,DPp,Lyp;Rip}/{NP,LnpsLup:Rup}sDPrerbsLverb,Rvev}

b. enjoy := {VP/{NP, Lup, Lap, Rp}; -1Lverbs Rverb }

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars , 219
The notation in (36a) is rather overwhelming. When positional features are of
no immediate relevance in such categories, they will be suppressed, either by
representing the whole category by a single symbol or by representing anony-
mous variables whose identity and binding is of no immediate relevance as
« 17 For example, when we are thinking of such a function as a function,
rather than as an argument, we will write it as in (36b), where VP stands for

{VP, DP,p,Lyp, Rvp} and the distinguished position of the verb is written _. It is

important to note that although the binding of the NP argument’s distinguished :
position to its left-end Ly», means that enjoy is a rightward function, the distin-

guished position is not bound to the actual right-end of the verb, R,.-p, as in
the following version of (36b):

(37) *enjoy = {VP/{NP, Ryerb, Rverbs Rnp }; -,_Lyerb, Ryerb }

It follows that the verb can potentially combine with an argument elsewhere,
just so long as it is to the right. This property was crucial to the earlier analysis
of heavy NP shift. Coupled with the parallel independence in the position of
the result from the position of the verb, it is the point at which CCG parts
company with the directional Lambek calculus, as we will see. |

In the expanded notation the rule of forward application is written as fol-lows: |
(38) {{X,DP,,P1,P3}/{Y,P2,P2,P3},-,P1,P2} {Y,P2,P2,P3} = {X,DP,,P1,P3}

The fact that the distinguished position must be one of the two ends of an ar- —
gument category, coupled with the requirement of the Principle of Adjacency, —
means that only the two order-preserving instances of functional application
can exist, and only consistent categories can unify with those rules.

A combination under this rule proceeds as follows. Consider example (39),
the VP enjoy musicals. (In this example the elements are words, but they could be any constituents.) | | |
(39) 1 enjoy 2 musicals 3

{VP/{NP, Larg; Larg,Rarg}, -1Lfuns Rfun} . {NP, DP np, Lnp,Rup } ,

The derivation continues as follows. First the positional variables of the cate-
gories are bound by the positions in which the words occur in the string, as in
(40), which in the first place we will represent explicitly, as numbered string
positions: !®

(40) 1 enjoy 2 musicals 3 |
{VP/{NP, Larg,Larg,Rarg}, -,1,2} {NP, DPnp,2,3} / .

Next the combinatory rule (38) applies, to unify the argument term of the func-

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

220 Chapter 8
tion with the real argument, binding the remaining positional variables includ-
ing the distinguished position, as in (41) and (42):

(41) 1 enjoy 2 musicals 3
{VP/{NP, Lare, Largs Rare }s-11,2} {NP, DP np, 2,3}

{x /{Y,P2,P2,P3},-,P1,P2} {Y, P2, P2, P3}

(42) 1 enjoy 2 musicals 3
{VP/{NP,2,2,3},-,1,2} {NP,2,2,3}

{VP, 1,3}

At the point when the combinatory rule applies, the constraint implicit in the
distinguished position must actually hold. That is, the distinguished position
must be adjacent to the functor.

Thus, the Consistency property of combinatory rules follows from the Prin-
ciple of Adjacency, embodied in the identification of the distinguished position
of the argument terms with the juncture P2, the point to which the two combi-
nands are adjacent, as in the application example (38). ,

The Principle of Inheritance also follows directly from these assumptions.
The fact that rules correspond to combinators like composition forces direc-
tionality to be inherited, like any other property of an argument such as being
an NP. It follows that only instances of the two very general rules of composi-
tion shown in (43) are allowed, as a consequence of the three principles:

(43) a. {{X,DP,,Lx,Rx}/{¥,P2,P2,Ry},-,P1,P2} {{Y,P2,P2,Ry}/{Z,DP,,Lz,Rz},-,P2,P3}

=p {{X,DP,,L,,R.}/{Z,DPz,Lz,Rz};-,P1,P3}

b. {{Y, P2,L,,P2}/{Z,DP.,Lz,Rz},-,P1,P2} {{X,DPz,Lx,Rx}/{Y,P2,Ly,P2},-,P2,P3}

=p {{X,DPy,L,,R.}/{Z,DPz,Lz,R2};-,P1, P3}

To conform to the Principle of Consistency, it is necessary that L, and Ry,
the ends of the canceling category Y, be distinct positions—that is, that Y not
be coerced to the empty string. This condition has always been explicit in
the Principle of Adjacency (Steedman 1987, 405, and see above), although
in any Prolog implementation such as that in Steedman 1991c it has to be
explicitly imposed. These schemata permit only the four instances of the rules
of composition proposed in Steedman 1987 and Steedman 1990, and chapter 4,
repeated here as (44) in the basic CCG notation:

(44) The possible composition rules

a. X/Y Y/Z =>pg X/Z (>B) b. X/Y Y\Z =p X\Z (>B,.) c. Y\Z X\Y =>p X\Z (<B) d. Y/Z X\Y =p X/Z (<B,.)

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 221
“Crossed” rules like (44b,d) are still allowed (because of the nonidentity noted
in the discussion of (36) between the distinguished position of arguments of
functions and the position of the function itself). They are distinguished from
the corresponding noncrossing rules by further specifying DP,, the distin-
guished position on Z.!? However, no rule violating the Principle of Inheri-
tance, like (27), is allowed: such a rule would require a different distinguished
position on the two Zs and would therefore not be functional composition at
all.2° This is a desirable result: as shown in the earlier chapters, the non-
order-preserving instances (44b, d) are required for the grammar of English
and Dutch. In configurational languages like English they must of course be
carefully restricted with regard to the categories that may unify with Y.

The implications of the present formalism for the type-raising rules are less
obvious. Type-raising rules are unary, and probably lexical, so the Principle of
Adjacency does not obviously apply. However, as noted earlier, we only want
the order-preserving instances (23), in which the directionality of the raised
category is the reverse of that of its argument. But how can this reversal be
anything but an arbitrary property?

Because the directionality constraints are defined in terms of string posi-
tions, the distinguished position of the subject argument of a predicate walks—
that is, the right-edge of that subject—is equivalent to the distinguished posi-
tion of the predicate that constitutes the argument of an order-preserving raised
subject Dexter—that is, the left-edge of that predicate. It follows that both of
the order-preserving rules are instances of the single rule (45) in the extended
notation:

(45) {X, DParg, Larg, Rare }

= {T/{T/{X,DParg, Larg, Rare}, DPargs pred: Rpred}:s Largs Rarg}

The crucial property of this rule, which forces its instances to be order-
preserving, is that the distinguished-position variable DParg on the argument
of the predicate in the raised category is the same as that on the argument
of the raised category itself. (The two distinguished positions are underlined
in (45).) Notice that this choice forces the raised NP and its argument to be
string adjacent; it is exactly the opposite choice from the one that we took in
allowing lexical categories like (36) to unify with arguments anywhere in the
specified direction.*! Of course, the position is unspecified at the time the rule
applies, and it is simply represented as an unbound unification variable with
an arbitrary mnemonic identifier. However, when the category combines with
a predicate, this variable will be bound by the directionality specified in the

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

222 Chapter 8
predicate itself. Since this condition will be transmitted to the raised category,
it will have to coincide with the juncture of the combination. Combination
of the categories in the nongrammatical order will therefore fail, just as if the
original categories were combining without the mediation of type-raising.

Consider the following example. Under rule (45), the categories of the
words in the sentence Dexter walks are as shown in (46), before binding.

(46) 1 Dexter 2 walks 3
{S/{S/{NP, DP, ,Lg,Re},DP2,LpredsRpred},-,Lg,Re} {S/{NP, Rap, Lnp;Rnp },DPw,Lw,Rw }

Binding of string positional variables yields the categories in (47).

(47) 1 | Dexter 2 walks 3
{5/{S/{NP, DP, ,1,2},DPg,Lpred,Rprea}, - 1,2} {S/{NP, Rup, Lp, Rnp },DPy,,2,3}

The combinatory rule of forward application (38) applies as in (48), binding
further variables by unification. In particular, DP,z, Rup, DPw, and P2 are all

, bound to the juncture position 2, as in (49):

(48) 1 Dexter 2 walks 3
{S/{S/{NP, DP,, 1,2},DPo,Lpred;Rpred}s-1,2} {S/{NP,Rnp,LnpsRnp},DPw,2,3}

{X/{Y,P2,P2,P3},-,P1,P2} {Y, P2, P2,P3}

(49) i Dexter 2 walks 3
{S/{S/{NP,2,1,2},2,2,3},1,2} {S/{NP,2,1,2},2,2,3} {S,1,3} OT

By contrast, the same categories in the opposite linear order fail to unify with
any combinatory rule. In particular, the backward application rule fails, as in
(50):

(50) 1 * Walks 2 Dexter 3
{S/{NP,Rnp,Lnp;Rnp}5-1,2} {S/{S/{NP, DP,,2,3},DPy,Lpred,Rpred}s-12,3} _{¥, P2, PI, P2} {X/{Y,P2,P1,P2},-,P2,P3}

(Combination is blocked because 2 cannot unify with 3.)
On the assumption implicit in (45), the only permitted instances of type-

raising are the two rules given earlier as (23). The earlier results concerning
word order universals under coordination are therefore captured. Moreover,
we can now think of these two rules as a single underspecified order-preserving
rule directly corresponding to (45), which we might write less long-windedly
as follows, augmenting the original simplest notation with a vertical “order-
preserving” slash | to distinguish it from the undifferentiated nondirectional
slash /:

(51) The Order-preserving type-raising rule
X = TI\(TIX)

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Combinators and Grammars 223
The category that results from this rule can combine in either direction, but
will always preserve order. Such a property is extremely desirable in a lan-
guage like English, whose verb requires some arguments to the nght and some
to the left, but whose NPs do not bear case. The general raised category can
combine in both directions, but will still preserve word order. Like Zeevat’s
(1988) rule, it thus eliminates what was earlier noted as a worrying extra de-
gree of categorial ambiguity. As under that proposal, the way is now clear to
incorporate type-raising directly into the lexicon, substituting categories of the

form T|(T|X), where X is a category like NP or PP, directly into the lexicon
in place of the basic categories, or (more readably, but less efficiently), to keep
the basic categories and the rule (51), and exclude the base categories from
all combination. Most importantly, we avoid Zeevat’s undesirable assumption
that the English lexicon is OVS, thus ensuring continued good relations with
generations of language learners to come.

Although the order-preserving constraint is very simply imposed, it is in
one sense an additional stipulation, imposed by the form of the type-raising
rule (45). We could have used a unique variable—say, DPp;eq—in the crucial

position in (45), unrelated to the positional condition DP,;g on the argument
of the predicate itself, to define the distinguished position of the predicate-
argument of the raised category, as in (52):

(52) *{X,DParg,Larg;Rarg} =>

, {T/{T/{X, DParg Largs Rarg }DP pred, Lpred; Rprea} - Largs Rare }

However, this tactic would yield a completely unconstrained type-raising rule,
whose result category could not merely be substituted throughout the lexicon
for ground categories like NP without grammatical collapse. (Such categories
immediately induce totally free word order—for example, permitting (50) on
the English lexicon.)

Although it is conceivable that such non-order-preserving type-raised cate-
gories might figure in grammars for extremely nonconfigurational languages,
such languages are usually characterized by the presence of some fixed el-
ements. It seems likely that type-raising is universally confined to the
order-preserving kind and that the sources of so-called free word order lie
elsewhere.””

Such a constraint can therefore be understood in terms of the present pro-
posal simply as a requirement for the lexicon itself to be consistent. It should
also be observed that a single uniformly order-changing category of the kind
proposed by Zeevat (1988) is not possible under this theory.

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

224 Chapter 8
That is not to say that more specific order-changing categories cannot be

defined in this notation. As noted earlier, in a non-verb-final language such
as English the object relative-pronoun must have the category written in the
basic notation as (V\N)/(S/NP), which is closely related to a type-raised cat-

egory. In the extended notation, and abbreviating N\WN as R, this category is
the following:

(53) whom := {R/{T/{X, Larg, Largs Rarg };Lpred: Lred» prea}; -, Larg, Rarg }

In fact, provided we constrain forward crossed composition correctly, as we
must for any grammar of English, the following slightly less specific category
will do for the majority dialect of English in which there is no distinction
between subject and object relative-pronouns who, or for the un-case-marked
relative-pronoun that:

(54) who/that = {R/{T/{X, DParg, Larg, Rarg}; Lyreds Lpreds Rpred } - Largs Rarg }

In the former category both the complement function and its argument are
specified as being on the right. In the latter, the directionality of the comple-
ment argument is unspecified. Thus, we need look no further than the relative-
pronouns of well-attested dialects of English to see exploited in full all the
degrees of freedom that the theory allows us to specify various combinations
of order-preserving and non-order-preserving type-raising in a single lexical
category.

The account of pied-piping proposed by Szabolcsi (1989), to which the
reader is directed for details, is also straightforwardly compatible with the
present proposal.”

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

Chapter 9

Processing in Context

[After the second word of Tom wanted to ask Susan to bake a cake] we have in the
semantics a function, which we might call (Tom want). ...If the parser is forced to
make a choice between alternative analyses, it may make reference in this choice to | semantics. |
John Kimball, “Predictive Analysis and Over-the-Top Parsing”

To account for coordination, unbounded dependency, and Intonation Structure,
strictly within the confines of the Constituent Condition on Rules, we have
been led in parts I and II of the book to a view of Surface Structure according to
which strings like Anna married and thinks that Anna married are constituents
in the fullest sense of the term. As we have repeatedly observed, it follows that
they must also potentially be constituents of noncoordinate sentences like Anna
married Manny and Harry thinks that Anna married Manny. For moderately
complex sentences there will in consequence be a large number of nonstandard
alternative derivations for any given reading.

We should continue to resist the natural temptation to reject this claim out
of hand on the grounds that it 1s at odds with much linguistic received opinion.
We have already seen in earlier chapters that on many tests for constituency—
for example, the list cited in (1) of chapter 2—the combinatory theory does
better than most. The temptation to reject the proposal on the basis of pars-
ing efficiency should similarly be resisted. It is true that the presence of such
semantic equivalence classes of derivations engenders rather more nondeter-
minism in the grammar than may have previously been suspected. Although
this makes writing parsers a little less straightforward than might have been
expected, it should be clear that this novel form of nondeterminism really is
a property of English and all other natural languages and will be encountered
by any theory with the same coverage with respect to coordination and intona-
tional phenomena. It is also worth remembering that natural grammars show
no sign of any pressure to minimize nondeterminism elsewhere in the gram-
mar. There is therefore no a priori reason to doubt the competence theory on
these grounds.

The only conclusion we can draw from the profusion of grammatical non-
determinism is that the mechanism for coping with it must be very powerful.

Steedman, Mark. The Syntactic Process.
E-book, Cambridge, Mass.: The MIT Press, 2000, https://hdl.handle.net/2027/heb08464.0001.001.
Downloaded on behalf of 18.118.154.25

