
12
User-Centered Design Methods

One usability engineer watched while a new user tried to insert a floppy
disk into a crack in the front of the computer housing instead of the
proper disk slot. Then there was the user who when told to press any
key, pressed the break [halt everything] key and brought the system
down. Said the user, “It said press any key.”

Traditionally, a lead sentence right about here says that of course a single
chapter like this won’t make you competent; you’ll need to read many
other books, go back to school, hire the author as a consultant. In this
case, I have my doubts. Experienced experts will do better evaluation,
but they won’t know the application as well as those who are responsible,
and they may not be listened to as respectfully. This chapter says most of
what needs reading before getting started. The best next step is doing.
Nobody has a magic formula beyond the general kinds of activities in
which to engage. Little extra knowledge is essential. Certainly once a
particular aspect is in focus—say, screen design for a form filling inter-
face—reading up on what others have done and said will provide useful
guidance. Practice, however, appears to be critical; every one of the cited
successes came from an experienced team. Here is a list of techniques
that have been involved in significant achievements.

Task Analysis

Chapters and books have been devoted to task analysis. They set forth
pseudo-formal methodologies and structured sets of activities with

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

278 How to Fix Computers

specific reports and analyses, and they make very boring reading.’ In
practice, task analysis is a loose collection of formal and informal tech-
niques for finding out what the job is to which the system is going to be
applied, how it is done now, what role the current and planned technol-
ogy might play. Probably the most important aspect is identifying the
goals of the work. This means not just the goals of the computer system
but the goals of the business or entertainment activity for which it is
contemplated. The most effective attitude is that a noncomputer solution
is equally welcome.

The first step is always to go the place of work and see what is being
done now. Analysts watch people and ask questions; they talk to execu-
tives, managers, supervisors, and especially to the people doing the work.
The way work is actually done is seldom the way it is officially pre-
scribed; real workers find better procedures. Analysts hanging about the
workplace at Xerox discovered a rich underground culture of job knowl-
edge passed by example and word of mouth that was nowhere in the
supervisors’ descriptions, the official job specifications, or the training
materials. Such observations directly suggested solutions ranging from
furniture and office architecture to electronic message facilities to facili-
tate informal communication rather than suppress it (Brown 1991).

Many analysts try to get workers to talk aloud as they work. The con-
text of actively performing the job brings things to mind that aren’t
thought of later or mentioned in an interview. The opportunity to delve
deeper and ask what might help is greater. Some analysts make video-
tapes and find footage of struggling workers valuable for converting un-
believing executives and designers. (Whether extensive taping 1s
worthwhile as a supplement to live observation is debatable. It is very
labor expensive.) The analyst looks for tasks that might be done better
or not at all and tries to determine if a reorganization of the work, or
even a change of goals, is called for. Thinking about computer function
and design comes very late in the game.

Task analysts always take careful notes about how much work of what
kind is being done. They measure how long people spend doing what.
They stick around long enough to find out what the major problems are,
not just by asking supervisors but by watching and asking many workers.
They notice what kind of errors workers are urged to avoid, the “stupidi-

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 279

ties” on the part of workers about which managers complain. (Worker
errors and stupidities are usually due to bad procedures and systems.)
How much time does each part of the work or process take? How much
variation is there in that time? On what does the variation depend? Are
some workers much faster than others? Are some kinds of jobs finished
much faster than others? How could slow jobs or slow people be con-
verted into fast jobs and fast people? All of this investigation takes time,
typically several full days.

No one set of methods or activities characterizes all successful task
analyses. Almost every situation in which a new computer system is con-
templated is different in important respects from every other. What ap-
pears to be required is a questioning approach that puts its emphasis on
finding the relevant facts and keeping an open mind about how improve-
ments are to be realized.

All consultants know “how much of their sustained employment they
owe to the fact that few managers actually know what goes on in their
workplaces” (Zuboff 1991, 164).

Here are some more specific techniques that have often been successful:

Learn the Job. On learning to do a job, experienced computer designers
see all kinds of ways in which it can be improved. Effective task analysts
never stop there. They ask users whether the improvement would be
worthwhile; as often as not, the users will have thought of the same ideas
and will have rejected them for good reason. The analyst is not the only
smart cookie on the block.

Consult the Users. When it comes to jobs, it’s hard to be wiser than the
people doing them. Opinions and suggestions are collected both infor-
mally and formally. One formal method is the questionnaire, but most
questionnaires are misunderstood by the people who answer them and
provide uninterpretable or misleading data. In this aspect of task analy-
sis, expertise is important. An expert analyst never writes a questionnaire
before doing observations and never administers one without testing. A
questionnaire is a user interface and is never gotten right the first time.
Involving users in the design process increases the chances that they will

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

280 How to Fix Computers

like what they get. The so called Scandinavian school of system design
prescribes going out into the work environment in which the system is to
be used and bringing users into the process at every step. The emphasis
is on personal, social, and organizational factors in the introduction and
use of new technology. Spending time with workers in the workplace and
involving them in design helps ensure that the system will promote rather
than interfere with important aspects of work and work life, essential
work habits of individuals, and communication patterns of groups. For
example, if the normal communications among the nursing and medical
staff of a hospital are maintained through the bedside chart, replacing
the chart with a computer could have disastrous consequences for the
exchange of informal news about patients and the maintenance of good
working relationships.

Use Subject Matter Experts. An indirect sort of observation and ques-
tioning is often achieved by using a subject matter expert, someone with
extensive experience of the work in question. A talkative low-level super-
visor is the usual source. The wise analyst never takes the information
extracted from a subject matter expert as gospel. Experts have a tendency
to think things fine and easy that aren’t. They have a fish-in-water view.
Information from subject matter experts is best used to guide and inter-
pret field observations.

Conduct Time and Motion Studies. The old technique of time and mo-
tion studies is still used to good effect. The analyst first categorizes the
various subparts and activities of a business process, then applies an in-
conspicuous stopwatch. These measurements call attention to time-con-
suming activities that can be reduced or eliminated. Whiteside, Bennett,
and Holtzblatt (1988) report a case in which people spent significant time
accessing an online help system when they didn’t need any help.

Consult Normal Business Records. Measurements that most businesses

keep as routine data (even though they may never use them) are often
helpful. The amounts of money spent on consultants, training, overtime
for error correction, and the like can be revealing. The budget tells where
important gains are to be made. The analyst measures the number of
whatever per day and asks what makes there be so much or little. Xerox
homed in on its usability problems by counting service calls.

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 281

Formative Design Evaluation

“Engineering design shares certain characteristics with the positing of
scientific theories. But instead of hypothesizing about behavior of a given
universe,... engineers hypothesize about assemblages of concrete and
steel that they arrange into a world of their own making” (Petroski 1982,
43).

The terminology formative evaluation is borrowed from the development
of instructional methods, which often contrasts it with summative evalu-
ation. Formative evaluation is used to guide changes; summative evalua-
tion is testing to determine how good something is. Unfortunately, most
usability testing for computer systems is summative: somebody wants to
check that the finished system works or to produce data for marketing
purposes. Such evaluation rarely produces useful design guidance.’ In
formative evaluation, by contrast, the notion is not just to decide which
is better, system A or system B, but to produce detailed information
about why system A is better or what is good and bad about both sys-
tems—what needs fixing, amplification, or replacement. The Olympic
Message System, DEC, and SuperBook iterative development stories
were about formative design evaluation. Formative evaluation can run a
gamut of techniques from simple observations and questions to elaborate
laboratory experiments. Some of the deeper methods are described in a
later section on performance analysis. Here we focus on quick and practi-
cal approaches that have been successfully applied in ordinary software
development settings.

The Gold Standard: User Testing
We want information that will help us make what people do with a sys-
tem more productive. Only by studying real workers doing real jobs in
real environments can we be sure that what we find out is truly relevant.
User testing tries to get as close to this ideal as possible. The Olympic
Message System trials and the Xerox video vignettes were the nearest
we've seen. Field trials with finished systems can get even closer.

Usually practicalities get in the way. Real workers and real design-
ers are busy in different cities. Measurement and observation is too

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

282 How to Fix Computers

cumbersome, intrusive, and slow in the real workplace. The real system
can’t be tested until there is a real system, but much earlier guidance is
much better. Compromises and approximations are necessary. The most
common compromise is to test people like those for whom the system is
intended with tasks like those they will most often do, using a prototype
or early version in a laboratory setting that is vaguely like the intended
office or other place of use. Experience suggests that such compromises
are usually good enough. Information gained from user tests has been
the most frequent source of major usability improvements.

User testing is straightforward. Someone—it has been most successful
when the person was a specialist but also a full-fledged member of the
design team—thinks up a set of tasks for users to try with the system,
and gets test users to come in or goes to them. While users try, the tester
watches, notes errors, measures times, and later asks questions. Many
practitioners urge the test users to talk aloud as they work so that their
conceptions, misunderstandings, and suggestions can be gathered and
discussed. Others prefer the greater realism and more accurate measures
of work efficiency afforded if users don’t try to divide their time this way.

Mike Grisham at Bell Labs worked the bugs out of instructions to
Operate a voice messaging system by having volunteers come into the
lab and try to operate a crude mockup of the system. With the initial,
professionally written instructions, the majority of users made fatal er-
rors of one kind or another. For a few weeks, Grisham tried one wording
and procedure sequence after another, modifying each on the basis of
what he learned from the previous ones. In later field tests, fatal error
rates were less than 1 percent.

It is a good idea to start formative evaluation before building the sys-
tem. Rapid prototypes that can be quickly built, then thrown away or
changed, are extremely useful. Unfortunately, it is often either impossible
or too expensive to build them. Moreover, it is best to get an even earlier
head start, to evaluate how to build the prototype. A variety of tech-
niques have been devised for testing user-oriented systems before they
exist.

Wizard of Oz Experiments. The DEC email system, where Dennis
Wixon played the part of the computer, was an example of this tech-
nique. Another is provided by John Gould (Gould, Conti, and Hovany-

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 283

ecz 1983), who wanted to see how well businesspeople could use a
typewriter that took dictation using automatic speech recognition. Since
no such system existed, he faked it by having a human sit behind a wall
and translate. The idea is to test function and interface without having
to build it first.

A Good Second Best: Heuristic Evaluation

In this technique real users, and sometimes real systems, are replaced by
expert judgment. This distinctly doesn’t mean just letting the boss or a
consultant take a look. Rather, it means a systematic, disciplined inspec-
tion by several specially trained evaluators working independently. Jakob
Nielsen, working with Rolf Molich at the Technological University of
Denmark, evolved a set of ten heuristics for judging the quality of a com-
puter’s user interface. (A heuristic is a general principle or rule of thumb
that is usually but not always effective.) His heuristics represent a consen-
sus of usability guideline wisdom (Nielsen 1993c).

People already knowledgeable about computers spend a half-day to a
few weeks learning the meaning of the heuristic rules and their basis and
practice applying them. Then they spend an hour to a half-day examining
the system, either real, in prototype, or as a set of written descriptions
and drawings. They search for usability problems, aspects of the system’s
user interface that violate the heuristic rules.

Here are Nielsen’s ten heuristics, briefly paraphrased:

1. Use simple and natural dialogue. Tell only what is necessary, and
tell it in a natural and logical order. Ask only what users can answer.

2. Speak the users’ language. Use words and concepts familiar to them
in their work, not jargon about the computer’s innards.

3. Minimize the users’ memory load by providing needed information
when it’s needed.

4. Be consistent in terminology and required actions.
5. Keep the user informed about what the computer is doing.
6. Provide clearly marked exits so users can escape from unintended

situations.

7. Provide shortcuts for frequent actions and advanced users.
8. Give good, clear, specific, and constructive error messages in plain

language, not beeps or codes.

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

284 How to Fix Computers

9, Wherever possible, prevent errors from occurring by keeping choices
and actions simple and easy.
10. Provide clear, concise, complete online help, instructions, and docu-
mentation. Orient them to user tasks.

Evaluators need to know quite a lot more to cash these principles out
in practice. Catching wordings that are computer gibberish is relatively
easy, but knowing what wordings are truly communicative for intended
users takes experience (indeed, may not be possible without repeated user
tests). In one case, Nielsen (1992) found that usability experts, people
with training and professional experience in usability engineering, no-
ticed almost twice as many problems, on average, as programmers who
had had a half-day introduction to the method. The more sensitive detec-
tives weren’t just being pickier; once identified, the problems they found
were judged to be just as real and bad by evaluators who had missed
them.

Nielsen has found that a single evaluator typically finds only about a
third of the lurking problems—sometimes more, sometimes less, de-
pending on system, experience, and luck. But different evaluators find
different problems. In fact there’s very little correlation between the 20
percent that one expert finds and the 40 percent that the next one detects.
That means that more and more of the bugs can be detected by sending
out more and more experts to look.?

Nielsen also found enormous variation between one system and an-
other; you never know how many usability bugs to expect, although
there are usually a lot of them. Over one set of eleven user interfaces
subjected to exhaustive evaluation, the number of problems ranged from
9 to 145, with an average of 42. Of usability problems found this way,
perhaps half are both easy to fix and well worth fixing (Nielsen 1993a).
No matter how many problems there are, a single evaluator finds about
the same proportion of them, usually around a third.

The number of usability problems found by heuristic evaluation 1s
roughly the same as the number found by user testing (Virzi 1992). That
is, one expert examination will find about the same number as one test
user will tumble over. (And different user tests expose different problems,
just as different experts do.) However, the kind of problems found by the
two methods may not be the same. Those found by testing appear to be

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods = 28S

somewhat more severe, and more frequently occurring problems tend to
be experienced first. More important, user testing seems more likely to
reveal why users are doing well or poorly and to offer insights into how
to improve usefulness and polish usability. Heuristic evaluation is aimed
primarily at catching common interface design errors rather than analysis
of the adequacy of a system’s functionality for getting a job done. User
tests have more often led to significant innovations. One of Nielsen’s
studies suggests that the best approach may be a combination of two
to four expert examinations and a like number of user tests at each
iteration.

Paper, Pencil, Plastic, and Palaver
Another shortcut method is a sort of brainstorming session held over a
cheap mock-up of the interface. People try to simulate a new interface
and mimic the operations they would do with it. This method is particu-
larly useful for initial designs of screens for information input and dis-
play. Recently it has been expanded into a cute technique for designing
graphical user interfaces. In the PICTIVE technique a design team sits
around a table with a drawing of a computer screen. Using a number of
common interface tools—icons, menus, and cursors—in the form of plas-
tic overlays or glued note sheets, they arrange and rearrange interface
components and act out work activities done with the interface, at-
tempting to design layout, dialogue, and functionality for a system they
have in mind. If the design team includes actual users as well as usability
engineers and programmers, the first try will be closer to the best (Muller
1992).

A related technique is called a cognitive walkthrough. A group of ex-
perts reads the specs, then gathers round to imagine going through the
same mental steps a user would, discussing and commenting on the good
and bad. In all, these group design methods appear to find fewer prob-
lems than Nielsen’s heuristic evaluation but perhaps different ones (Jeff-
ries et al. 1991; Muller, Dayton, and Root 1993).*

Engineering Models
More formal methods rely on explicit models of human task perfor-
mance; the best is the so-called GOMS model (Card, Moran, and Newell,

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

286 How to Fix Computers

1983). Skilled tasks are broken down into atomic components consisting
of goals (what the user is trying to do—say, change this to thus), opera-
tors (the actual action needed—a thought or a keystroke), and methods
(the strategy chosen—for example, deleting and replacing the whole of-
fending word or line or just editing one letter). Careful observations are
made of the use of a system, and the time for each kind of operation is
measured. To estimate how well people would perform with a variation
of the design, the engineer specifies the new sequence of operations that
expert users would execute. The time required to achieve goals with the
new system is estimated by adding up the times for all the component
actions. The predicted times for different strategies are compared, and
the expert user is assumed to choose the best one. For the kinds of sys-
tems and tasks to which it is applicable, GOMS analysis is sometimes
sufficiently accurate to substitute for heuristic evaluation or user tests
(Gray, John, and Atwood 1992; Nielsen and Phillips 1993).

GOMS works best when the operators are simple perception-motion
sequences like keystrokes. Its major deficiencies are the incorrect assump-
tion that experts always choose the best of the available ways to do some-
thing and the lack of a good way to predict errors, which often eat a
large share of a user’s time and patience.

Another form of analysis has been tried for cases in which the action
is mostly mental. In cognitive complexity analysis, the thought processes
are simulated by an artificial intelligence program. To measure the differ-
ence in difficulty between two designs, the number of steps in the pro-
gram is counted. Similarly, the proportion of common steps in the
two predicts transfer of training between one and the other. The au-
thors, Kieras and Polson (1985), have had some luck predicting which
systems are easier to learn for people who already know which other
systems. The method, however, is labor intensive and difficult to apply
successfully.

Performance Analysis

Performance analysis refers to the kind of systematic experiments and
observations that were illustrated in the SuperBook project; in contrast

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods —_ 287

to the methods reviewed so far, their main goal is deeper understanding
on which to base innovation and initial design rather than assessment
and improvement of existing designs. Performance analysis is more likely
to be found in an industrial or academic applied research organization
than in the usability assurance group of a software house. Broadly, per-
formance analysis studies people doing information processing tasks in
an attempt to understand what they do well and poorly, where help is
needed, and, if possible, what might help. Performance analysis is done
either in the laboratory with somewhat abstracted tasks, such as sug-
gesting titles or key words for information objects, or explicitly with an
existing technology for the performance of some job. Performance analy-
sis, when successful, leads to the identification of a human work problem
that a computer can ameliorate. Computers are so powerful and flexible
and there are so many things that they can be made to do that finding
the right problem is often harder than finding its solution. An example
is the unlimited aliasing technique already described. Once it had been
discovered that many more names were needed, providing them with a
computer was easy. There are a variety of aspects of user task perfor-
mance that can be observed and used in performance analysis.

Time Is the Essence

In striving for work productivity, we fundamentally want to reduce the
amount of time that a user needs to spend to accomplish a given amount
of work. Eric Nilsen, in his 1991 University of Michigan thesis, measured
the time users took to make selections from menus of different design.
He discovered that the popular walking menu results in excessive selec-
tion times because it requires carefully aimed curved movements with the

mouse. These movements are difficult for people. By substituting two
short, straight movements for one long, curved movement, Nilsen found
an alternative that saved substantial time.

Errors Are the Villains

Errors are the main thieves of time (and satisfaction). In an early and
influential book on the psychology of human-computer interaction,
Card, Moran, and Newell (1983) presented detailed analyses of the ac-
tions involved in using text editors. The data showed that the largest

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

288 How to Fix Computers

source of wasted time was errors. Finding what causes errors and getting
rid of the cause (or at least providing more than a beep or secret code
number to help the user recover) has big benefits.

“Beep,” System has quit due to error 593.

Learning from Learning
Learning time is both a diagnostic and a design object in its own right.
In some software development environments, standard operating proce-
dure is to assume that usability is the exclusive province of training; just
design a powerful feature, then let someone figure out how to teach its
use. The bigger the training manual, the longer the time required to learn
a particular function, the more redesign is needed. (Beware a 400-page
manual beginning, “This application is very easy to learn and very easy
to use.”) Analysis of what aspects users find hard to learn illuminates
both how to change the system and how to write the instructions if all
else fails.

Variability Is a Source of Progress
In Darwinian evolution, natural genetic variation provides the opportu-
nity for change. Something similar applies in usability design. Looking
where there is the most variability between one task and another, or be-
tween one user and another, can reveal paths to progress. If some people
do things well that others do poorly, the more efficient may have found
a strategy that everyone could use. The power of the structured search
feedback technique of SuperBook was discovered this way.

The flip side is that especially slow or error-prone users may have dis-
covered an especially poor way to perform the task that deserves extinc-
tion. These kinds of situations occur most frequently in powerful,
feature-rich systems that offer users many ways to do the same job. Some
users are sure to compound enormously complex, and sometimes enor-
mously poor, procedures. The same comments hold for variations across
task problems. If some problems are dealt with quickly and others
slowly, an opportunity may be hiding or a soft spot in system design may
be at fault. SuperBook again offers an example—this time a flaw. With

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 289

SuperBook, chemists did very well on most information search problems,
much better than with paper technology. However, when the problems
required information from pictures of chemical structures, they did quite
poorly. Analysis disclosed that students using the online version often
failed to bring up the pictures.

The Talent Search

Productive technology for the service sector multitudes should not re-
quire rare talent. Yet as figures 10.2 to 10.4 showed, many, and perhaps
most, do. Tracking down the special abilities needed can unearth hints
about what needs to be done. In the case of each of the problems illus-
trated in these figures, ways to reduce the dependence on special abilities
were found. In text editing, when so-called full-screen editors were intro-
duced, older people found them much easier. Young people got better
too, but the older people improved more. Designers of full-screen editors
had believed that it was the WYSIWYG (what you see is what you get)
visual nature of full-screen displays that accounted for their superiority.
Gomez and Egan showed that, instead, it was the way the user specifies
a place in the text that mattered. The hunt that found the reason was
guided by looking for parts of the task that required special abilities.
Gomez and Egan discovered that people with poor spatial memory
couldn’t think abstractly about positions in the text so they had to point.
Older people had trouble formulating complex statements. Replacing
complex commands with simple syntax or arrow keys reduced the need
for youth and talent.

In the case of the database query languages studied by Greene and
associates, the analysis suggested that some method of querying that did
not require logical reasoning was needed. Other experiments showed that
people, regardless of logical ability, can identify the cells in a table that
contain the data they want. (They may not know much about data, but
they know what they like.) Greene, and coworkers devised an interface
in which the computer provided the tables and the users had only to
mark the cases they wanted. As figure 12.1 shows, this interface made
everyone almost equal, again by bringing up the laggards without hurting
the champs.

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

290 How to Fix Computers

Query Language and Talent 100 q Oh o
‘al O O C G ‘i 80 r,

Py

— 6 y
a4 rf D yA = 6 a S , O P

20 , A

a A a.
0 Fa 0 2 40 60 80 100

Logical Reasoning Ability Percentile

Figure 12.1.
After discovering that standard query languages require special logic expressing
abilities but picking the right cell in a data table doesn’t, a new query language
that everyone can use was invented. Data from Greene, Gomez, and Devlin 1986.

The final example, shown in figure 12.2, comes from Susan Dumais’s
work on text querying and makes a similar point. Even when people
could say what they wanted in their native language, their verbal
fluency—the ability to remember words of a particular meaning—had a
large impact on success. In an alternative search technique, once users
find examples of desired documents, they can ask the system to find simi-
lar ones. When they are using this technique, the need for high verbal
fluency virtually disappears.

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 291

Talent and Text Search Method

24

g _—
< New Text Search Method —_— a — 7@) — fe = | — 1@) —_— i ae 2 20 — = _— Natural Language Search | — fe) —_ a = 3 — 2 — 6 18 —

16 0 20 40 60 80 100
Verbal Fluency Percentile

Figure 12.2.
Telling the computer what you want, even in your own words, demands high
verbal fluency. When people instead can provide examples of the documents they
want, everyone does well. Data from Dumais and Schmitt 1991.

An Aside: Different Strokes for Different Folks?

The fact that some interaction styles can be easy for one person and dif-
ficult for another has not been lost on software designers; as the two
previous figures show, it’s hard to miss. However, some have drawn from
this a dangerously incorrect conclusion: systems should provide a wide
variety of ways to do the same thing, so as to fit all comers, and to make
interfaces reconfigurable so users can more or less design for themselves.

This conclusion has several problems. First, while it is often true that
a particular method is much easier for Jill than for Jack, it is rarely true

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

292 How to Fix Computers

that some other method will be much easier for Jack than for Jill. In
virtually every case I know of, the real situation is like the one depicted
in figures 12.1 and 12.2: those who do well with method A will do well
with method B too, while those who do poorly with A may sometimes
do better with B. If a method is found that helps Jack, it will not hurt
Jill—it just equalizes the two of them somewhat. There are techniques
that few can master and techniques that all can master—not different
easy strokes for different folks.

The only exception, and even it is often overestimated, is the difference
between novices and experts. What the user can be expected to know or
needs to be told obviously depends on experience. It’s not a good idea to
make beginners memorize eighty-eight arcane key chords before they can
get started, even if chords may be helpful after mastery. Advanced, pow-
erful techniques are best reserved for experienced users. However, the
line can be fuzzy. Many menu-and-mouse-driven interfaces provide alter-
native keyboard accelerators—keystroke chords that have the same effect
as a menu selection. These are intended, and believed by most expert
users, to make those who are willing to learn them faster. Tognazzini
(1992) claims the advantage is illusory. He says timing studies of experts
invoking commands by key chords and mouse with menus find them
equally fast. He claims the keystroke method just seems faster because of
a perceptual phenomenon by which time appears to run slower when it
is occupied by things you consciously see and think about, such as menu
alternatives and cursor movements on the screen.

The absence of cases where different methods are optimal for different
people would not surprise educational researchers. Despite a widely be-
lieved myth, decades and hundreds of attempts to show these kinds of
effects in teaching methods—that one method is best for one kind of
learner and another for others—have generally met with failure (Cron-
bach and Snow 1977). Most graphs of learning speed for different teach-
ing methods used for students with differing aptitudes, say verbal or
spatial abilities, look like figures 12.1 and 12.2. One method stresses the
ability more heavily than the other; the other makes all students more
nearly equal, but there is no flip-over. In the rare cases when there is a
flip—student type V does better with method 1, student type M with

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 293

method 2—the effect is always small; a tiny percentage of all students
change places in the ranking because the teaching method changes.
Again, the major exception to this generalization is experience. An ad-
vanced text is more helpful for advanced students than for beginners, and
an introductory text the opposite. Interestingly, when students are of-
fered a cafeteria of learning methods, having choice sometimes helps, but
only for the top-ranking students. Only the most able are able to take
advantage of using different methods at different times (Cronbach and
Snow 1977). Perhaps we have a parallel in computer systems. Perhaps
the most talented—the programmers and power users—do profit from a
wide variety of alternative methods and features. This could explain why
designers and data processing department gurus are attracted to variety
and self-tailored interfaces. On the other hand, as we will see later, given
a choice between two interfaces, one of which is objectively quite supe-
rior, most users, even programmers, may have little better than a fifty-
fifty chance of choosing the more effective. Thus, providing both would
make half the users less efficient than necessary.

The second problem with variety is that it is confuses and delays. The
more techniques there are to learn, the longer it takes and the more likely
the learner will mix up the options and actions of one with another. The
more options available at one time, the longer it will take to choose—it
takes twice as long to decide among eight alternatives as between two—
and the greater will be the chance of choosing wrong. One popular
spreadsheet program offers more than eight different ways to move from
one cell to another. Even highly expert users of the system often select
the less efficient method for particular tasks (Nilsen et al., 1992)

An additional problem with user tailorability (letting users design their
own functions and interfaces) is that usability engineering is not an ama-
teur sport. It’s easy enough to be done by any software development team
but takes much more than tinkering by average users, who will not know
what’s best or even how to tell. Making users design their own interfaces
is not much more sensible than making drivers design cars or highway
bridges. In summary, Jack Spratt and wife are not a good model for pro-
ductivity software design.”

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

294 How to Fix Computers

Guidelines, Standards, and Examples

When iron was first used in bridges, there were very frequent collapses—
one in four bridges by certain accounts. In 1847 Queen Victoria ap-
pointed a commission to find out what was going on and charged it to
look into the situation and propose rules. The commission came up with
some useful strictures, though the theoretical reasoning behind them was
entirely mistaken (Petroski 1982).

A final way to go about user-centered design is to heed good advice.
Advice based on wisdom gained from experience, the best guesses of ex-
perts, and the results of research, both basic and applied, have been codi-
fied in compendia of design guidelines. These how-to books range from
the minutia of one company’s suggestions for one product type to Noah’s
arks covering all species. Collections of general guidelines range from
162 to 944 entries; a catalog of all the separate admonishments plausibly
relevant to a single system can easily exceed 1,000 (Brown 1988; Mar-
shall, Nelson, and Gardiner 1987; Mayhew 1992; Smith and Mosier
1984).

Undoubtedly, careful attention to applicable guidelines would improve
usability over current norms. Clear violations of clearly established prin-
ciples are rampant in commercial products: commands like A3492-Q6,
yellow letters on gray backgrounds, missing help information for incom-
prehensible menu choices. There are, however, severe limitations to the
value of guidelines. First, in the current state of the art and science, their
validity is often questionable. Pick any specific guideline from any collec-
tion and ask three experts; at least one is likely to disagree or qualify its
application. Like commonsense aphorisms, usability guidelines are some-
times contradictory: “provide alternate accelerators for experts” but “al-
ways keep it simple.” The guidelines all say to make instructions specific
and clear, but clarity can be assured only by user testing. Second, guide-
lines are hard to follow. There are so many of them that finding all the
relevant ones is difficult. Many are vague: for example, “provide feed-
back”—but about what, when, how much? Third, guidelines provide lit-
tle support for the critical analytic and creative parts of design. In
practice, guidelines are infrequently consulted and inconsistently obeyed

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 295

(Bellotti 1990). Most designers appear to copy their designs from prede-
cessors and competitors, not a bad idea. Nielsen’s ten general heuristics
are easier to apply than 1,000 specific guidelines but are successful for
evaluation of designs, not for their creation. He has found that the same
training in heuristics that makes programmers into reasonably good in-
terface critics has virtually no effect on the quality of interfaces they pro-
duce before inspection begins. A principle that helps you recognize
problems does not necessarily proffer the skill to avoid them.

Standards differ from guidelines in being more specific and in being
enforced, or at least agreed in some official manner. Their main goal is
consistency. Provided they do not cast in concrete bad elements of de-
sign—a real concern at our current stage of knowledge—standards can
make it easier for users to go from one application or system to another.
As I write, companywide and international committees are laboriously
negotiating standards for human interfaces for computers. Luckily for all
of us, many are concentrating most heavily on urging user-oriented meth-
ods of design rather than specifying detailed solutions.

Science

It is tempting to think that cognitive psychology, human factors and hu-
man engineering principles, and the newly emerging field of cognitive
science might provide theory and fact to steer this effort. They can, but
only to a modest extent. Psychological science has provided some real
advances in understanding human behavior but only in limited domains,
usually attached to narrow problems that have been brought to the labo-
ratory. A few “laws” and principles are available that speak to system
design. For example, the Hick-Hyman law says that decision time is pro-
portional to the log of the number of equal alternatives. Useful in design-
ing menus, it implies that a single screen with many choices (well
organized and laid out) is better than a series of screens with a few
choices each (Landauer and Nachbar 1985). Fitts’ (1954) law tells how
long it takes to point to an object depending on how large and how far
away the object is. Fitts’ law helps in designing pointing devices and lay-
ing out the icons and buttons on a screen. Yet another law, the power
law of practice, tells how response speed increases over time. Given

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

296 How to Fix Computers

appropriate user tests, it could predict by how much and when experts
with a new system would outperform those using an old system. There is
knowledge about how much people can remember from one screen to
the next and about how long it takes them to do most of the simple
stimulus—response things they do when interacting with a computer. This
knowledge forms the foundation of the GOMS method.

Knowing all this, plus immersion in all the lab lore and rules of thumb
enshrined in guidelines, combined with experience, is unquestionably
valuable. In the Bailey experiment cited earlier, half the designers had
training and experience in computer system human factors. Their designs
for the recipe file system tested out significantly superior to those of pro-
grammers lacking such backgrounds (although it took them longer to
write the programs). In fact, their initial designs were better, in terms of
flaws and user efficiency, than the final versions arrived at by unwashed

programmers.
Nevertheless, as a foundation for design, cognitive science is up against

a tough, possibly impossible problem. The human mind is an extremely
complex information processing device. Physically it is based on a brain
that has hundreds of billions of mysterious parts that interact in extraor-
dinarily complex and almost completely unknown ways. It uses enor-
mous amounts of information from enormous-squared amounts of
experience; we ingest billions of bits of perceptual information every sec-
ond. Its complexity is similar to what one bumps up against trying to
predict weather or model the turbulence of air flow around an airplane
wing. Like other such dynamic physical systems, the brain is vulnerable
to chaotic disorganization. The mind—the brain’s function—may be at
least as complex. There have been repeated expressions of hope that men-
tal activity and behavior will somehow be subject to simpler organizing
principles than the physical machinery on which it rests. Such occur-
rences are not without precedent in nature; the heart beats in finely con-
ducted rhythms despite the fact that its cellular systems for neural control
are of vast complexity. However, the hope of discovering simplicity in
mental function has so far gone mostly unfulfilled. (I hear psychologists
and AI proponents screaming. They want to voice confidence in one or
another theory. But read their literature. Every theory has serious holes

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 297

and ever-changing countertheories; almost none has the validity, general-
ity, or precision needed as a base for technology.)

We cannot rely on scientific theory for answers; however, all is not
lost. The same situation applies in most areas of engineering, and where
it does not apply today, it certainly did in times not long past. There’s a
great deal of debate over the relation between science and technology.
Some knowledgeable commentators, such as the philosopher of science
Kuhn (1977), go so far as to argue that technology progresses faster when
science is in abeyance. Technological advances most often come from
accumulated practical wisdom. People try things, see what’s wrong with
them, try to fix, and so forth. Only at occasional critical points does even
a modern field of engineering such as electronics need to renew its scien-
tific principles to solve a problem or to suggest new directions. It is said
that the interplay between science and technology is, despite common
belief, much more often in the opposite direction. Problems raised by
technology raise curiosity that drives scientific research.

“We have not had a thousand failures. We have discovered a thousand
things that don’t work.” Attributed to Thomas Edison.

Here is an illustrative example of both the success and limitations of
science as so far applied to computer usability. Early research efforts fo-
cused on the design of command languages. The question was what
words to use and what syntax when stringing them together. Some au-
thorities assumed that “all natural” words would be a big advantage, as
would consistent, natural syntax. Experiments comparing ways to
choose words made several discoveries. First, for small systems, say a
basic text editor, and frequent users, the choice of words didn’t make
much difference. Total nonsense strings were a problem, but using the
words allege, cipher, and deliberate instead of omit, add, and change was
inconsequential (Landauer Galotti, and Hartwell, 1983). Why? In the
first place, new users were so busy learning about the system—the very
concept of a typewriter that did mysterious things behind the scenes—
that the added difficulty of learning a new meaning for a few words in
special context didn’t slow them down. Second, humans have many

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

298 How to Fix Computers

names for the same thing, and computer actions don’t fit known word
meanings perfectly, so there isn’t an enormous difference between one
word and another as a choice for a computer command. Investigations
of syntax had a similar upshot. Using “normal” English word order
sometimes made a difference but not a great deal. Using a consistent
word order—verb before object, for example—sometimes was helpful.
However, sometimes, as in natural languages like English, it is more use-
ful to have different orders for different kinds of functions or activities

(Barnard and Grudin 1988; Barnard et al. 1981). The language research
with the best payoff was on how to construct abbreviations. It turned
out that using a consistent rule was more important than what rule was
used (Streeter, Acroff, and Taylor 1983).

Although I am pessimistic about basic science as the main basis of
usability engineering, nevertheless it can do good. We are surrounded
by bad design decisions that could have been better guided by existing
knowledge about perception and cognition; for example, screen color is
often used in ways that science says confuses and slows. Perhaps some
such knowledge helped Bailey’s sophisticates, and perhaps all designers
would profit from better training in usability-relevant science. Moreover,
the examples we have seen show that research aimed at better under-
standing of the cognitive underpinnings of information system use can
pay off. However, it will take time, and much greater volume than the
current trickle, to make a major contribution.

Now, the most-needed aspect of science may be its skepticism. Current
design of information tools is largely based on intuition and art. It is
popular among practitioners to compare computer interface design to
architecture. The problem with intuition as a basis for design in this
realm is that intuition about human thought is unreliable. People do not
understand their own minds, nor can they predict their own behavior or
that of their best friends. There is endless evidence for this assertion. Here

are some examples. Remember the numbers 2, 4, 3, 7, 1. Got them?
Do this in your head only, and don’t look back at the list.
Quick, was the number four part of that set? How did you determine

that it was? Most people will say that they compared four with 2, then
with 4, decided it matched, and answered yes. The evidence is over-

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

User-Centered Design Methods 299

whelming, however, that they ordinarily do nothing of the sort. Instead,
they unconsciously compare the target with all the numbers in the set
before deciding. The evidence is that the time to make such a decision
increases by 35 milliseconds for each additional number in the set; it
doesn’t matter if the added numbers come before or after the matching
one (4 here) or even if none match.

You meet with a group of people for a day, or live with them in a dorm
for a semester. Then you try to judge which ones think that you like them
and which don’t. If you are an average person, you will be quite confident
in your predictions, but you would do almost as well by flipping a coin.

You talk to somebody for an hour, then try to rate his or her intelli-
gence or honesty. You would have done almost as well without ever hav-
ing met the person. You probably don’t believe that. Your intuition tells
you otherwise, largely because your intuition has never had a chance to
test itself against truth in such situations and therefore goes on support-
ing your self-confidence.

Here is one of my favorites: almost everyone’s intuition tells them that
if they want to remember a telephone number permanently, they should
repeat it over and over to themselves right after they have heard it. This
method will keep the memory fresh as long as they keep repeating it, but
it has virtually no benefit for remembering it half an hour or more later
(Landauer and Bjork 1978).

The point is that the same complexities and uncertainties that plague
the science of human interaction with computers plague our intuitions
about such matters. The analogy to architectural design is both apt and
inappropriate—apt because architects rarely do the kind of upfront task
analysis that their products deserve. (Thus the almost universal provision
of the same number of toilet facilities for men and women in public
places, despite the painful differences in queue length at every public
event.) Like current software designers, architects have very poorly devel-
oped mechanisms for feedback of usability results into their designs. The
sense in which the analogy is inappropriate is that architects are largely
concerned with aesthetics. People, but especially architects, care a great
deal about the beauty of their surroundings and are manifestly willing to
trade some comfort and convenience for eye appeal. Although eye appeal

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

300 How to Fix Computers

in computer screens is certainly something users like, it seems unlikely
that they would knowingly trade much usability or usefulness for better
looks in their work tools.

This overview of the available technology for doing user-centered design
has demonstrated that the quiver is far from empty and provides almost
enough instruction to get started. For readers who are interested in more
how-to, the chapter by John Gould in the Handbook of Human Com-
puter Interaction, edited by Martin Helander (1988), followed by the
recent book Usability Engineering, by Jakob Nielsen (Nielsen 1993b),
will take you a long way down the path to being as much of an expert as
book learning alone can promise.

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

13
User-Centered Development

“Who the hell thought of this? It doesn’t make any sense. Nobody has
talked to any users.” Supervisor of an order department after installation
of a new system.

Usability and Development

After design comes production. Right? Wrong. Neither ideally nor in
practice does it work that way for software. With automobiles and televi-
sion sets, a good design is just the starting place. The critical factor is
devising an economical manufacturing process to spew out millions of
near-identical copies. With software, the copying part is trivial; the criti-
cal step is completing the first model. Doing that corresponds roughly to
the combined design and development stages in automobile manufactur-
ing. Ideally, since it is impossible to get usability right without iterative
prototyping and testing, software design must evolve throughout devel-
opment. In practice too, design evolves throughout development but for
different reasons. As a system is implemented, the original plans fre-
quently turn out to be too hard to execute; its parts get in each other’s
way. Often usability-related aspects—what screens will look like, how
error messages will be worded, what action options will be in which
menus—are not specified in advance. Usually programmers get new ideas
as they work. This means that opportunities for ‘UCE continue to
abound. It quickly gets harder to change what the system does, its basic
functionality, as implementation progresses. However, if the architec-
ture—the overall organization of the software’s components and how

Landauer, Thomas K. The Trouble with Computers: Usefulness, Usability, and Productivity.
E-book, Cambridge, Mass.: The MIT Press, 1995, https://hdl.handle.net/2027/heb01144.0001.001.
Downloaded on behalf of 18.191.81.127

